12秋期中考试八年级数学试题
人教版八年级上册数学期中考试试题含答案

人教版八年级上册数学期中考试试卷一、单选题1.12月2日是全国交通安全日,你认为下列交通标识不是轴对称图形的是()A .B .C .D .2.若一个三角形的三边长分别为3,7,x ,则x 的值可能是()A .6B .3C .2D .113.点M (1,2)关于x 轴对称的点的坐标为()A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,﹣1)4.如图,两个三角形全等,则∠α等于()A .50°B .58°C .60°D .72°5.在下列正多边形瓷砖中,若仅用一种正多边形瓷砖铺地面,则不能将地面密铺的是()A .正三角形B .正四边形C .正六边形D .正八边形6.如图,在ABC 中,AB AC =,D 是BC 的中点,下列结论不一定正确的是()A .BC ∠=∠B .2AB BD =C .12∠=∠D .AD BC ⊥7.如图,已知∠ABC =∠BAD ,再添加一个条件,仍不能判定△ABC ≌△BAD 的是()A .AC =BDB .∠C =∠D C .AD =BC D .∠ABD =∠BAC8.如图,小明从点A 出发,沿直线前进8米后向左转60︒,再沿直线前进8米,又向左转60︒,…,照这样走下去,他第一次回到出发点A时,走过的总路程为()A.48米B.80米C.96米D.无限长9.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS10.如图,AB∥CD,AD∥BC,AE⊥BD,CF⊥BD垂足分别为E、F两点,则图中全等的三角形有()A.1对B.2对C.3对D.4对二、填空题11.八边形的内角和为________度.12.如图,点A、D、B、E在同一直线上,若△ABC≌△EDF,AB=5,BD=3,则AE=____.13.若等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边长为____.14.如图所示,一艘船从A点出发,沿东北方向航行至点B,再从B点出发沿南偏东15°方向行至点C,则∠ABC=_________度.15.如图,DE是∆ABC的边AB的垂直平分线,点D为垂足,DE交AC于点E,且AC=8,BC=5,则∆BEC的周长是_________.16.如图,把一张长方形的纸沿对角线折叠,若118∠=︒,则BACABC∠=___.三、解答题17.如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=42°,∠C=70°,求∠AEC和∠DAE的度数.18.如图,在△ABC中,D是三角形内一点,连接DA、DB、DC,且∠1=∠2,∠3=∠4,求证:AB=AC.19.如图,在平面直角坐标系中,△ABC位于第二象限,请你按要求在该坐标系中在图中作出:(1)把△ABC向右平移4个单位长度得到的△A1B1C1;(2)再作与△A1B1C1关于x轴对称的△A2B2C2.20.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O.(1)求证:BD=CE;(2)若∠A=80°,求∠BOC的度数.21.如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E,(1)求证:△ABD≌△ECB;(2)若∠DBC=50°,求∠DCE的度数.22.如图,在直角坐标系中,点A的坐标为(1,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)试问△OBC与△ABD全等吗?证明你的结论;(2)求∠CAD的度数;(3)当以点C、A、E为顶点的三角形是等腰三角形,求OC的长.23.如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.24.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边且BE=CF,AD+EC =AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.25.(1)如图1,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA于D,PE⊥OB于E.F 是OC上的另一点,连接DF、EF.求证:OP垂直平分DE;(2)如图1,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA于D,PE⊥OB于E.F 是OC上的另一点,连接DF、EF.求证:DF=EF(3)如图2,若∠PDO+∠PEO=180°,PD=PE,求证:OP平分∠AOB.参考答案1.B【解析】【详解】由轴对称图形的定义:“把一个图形沿着某条直线折叠,直线两旁的部分能够完全重合,这个图形叫做轴对称图形”分析可知,上述四个图形中,A、C、D都是轴对称图形,只有B不是轴对称图形.故选B.2.A【解析】【分析】根据三角形的三边关系列出不等式,即可求出x的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x,∴7-3<x<7+3,即4<x<10,四个选项中,A中,4<6<10,符合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.3.C【解析】【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【详解】解:点M(1,2)关于x轴对称的点的坐标为(1,﹣2).故选C.【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.D【解析】【分析】由全等三角形的对应角相等,即可得到答案.【详解】解:根据题意,如图:∵图中的两个三角形是全等三角形,∴第一个三角形中,边长为a的对角是72°,∴在第二个三角形中,边长为a的对角也是72°,∴∠α=72°;故选:D.【点睛】本题考查了全等三角形的性质,解题的关键是掌握全等三角形的对应角相等.5.D【解析】【分析】看哪个正多边形的一个内角的度数不是360°的约数,就不能密铺平面.【详解】解:A.正三角形的一个内角为60°,是360°的约数,能密铺平面,不符合题意;B.正四边形的一个内角度数为180﹣360÷4=90°,是360°的约数,能密铺平面,不符合题意;C.正六边形的一个内角度数为180﹣360÷6=60°,是360°的约数,能密铺平面,不符合题意;D.正八边形的一个内角度数为180﹣360÷8=135°,不是360°的约数,不能密铺平面,符合题意;故选:D.【点睛】本题主要考查平面密铺的问题,解答此题的关键是熟练掌握知识点:一种正多边形能镶嵌平面,这个正多边形的一个内角的度数是360°的约数;正多边形一个内角的度数=180°-360°÷边数.6.B【解析】【分析】根据等腰三角形“三线合一”的性质解答,即可得到A、C、D三项,但得不到B项.【详解】解:∵△ABC中,AB=AC,D是BC中点,∴∠B=∠C(故A正确)∠1=∠2(故C正确)AD⊥BC(故D正确)无法得到AB=2BD,(故B不正确).故选:B.【点睛】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质.7.A【解析】【分析】根据已知可以得到∠ABC=∠BAD,AB=BA,然后再分别判断各个选项中的条件能否使得△ABC≌△BAD即可.【详解】解:∵∠ABC=∠BAD,AB=BA,∴若添加条件AC=BD,无法判定△ABC≌△BAD,故选项A符合题意;若添加∠C=∠D,则△ABC≌△BAD(AAS),故选项B不符合题意;若添加AD=BC,则△ABC≌△BAD(SAS),故选项C不符合题意;若添加∠ABD=∠BAC,则△ABC≌△BAD(ASA),故选项D不符合题意;故选:A .【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.8.A【解析】【分析】根据题意,小明走过的路程是正多边形,先用360︒除以60︒求出边数,然后再乘以8米即可.【详解】小明每次都是沿直线前景8米后向左转60度,∴他走过的图形是正多边形,∴边数360606n =︒÷︒=,∴他第一次回到出发点A 时,一共走了6848⨯=(米).故选:A【点睛】本题考查了正多边形的边数的求法,根据题意判断出小明走过的图形是正多边形是解题关键.9.D【解析】【分析】根据全等三角形的判定可作出选择.【详解】解:在△ADC 和△ABC 中,AD AB DC BC AC AC ⎧⎪⎨⎪⎩===,∴△ADC ≌△ABC (SSS ),∴∠DAC=∠BAC ,即∠QAE=∠PAE .∴AE 是∠PRQ 的平分线故选D .【点睛】本题考查全等三角形的判定与性质、角平分线的定义,熟练掌握全等三角形的判定与性质是10.C【解析】【分析】根据全等三角形的判定方法求解即可.判定三角形全等的方法有:SSS ,SAS ,AAS ,ASA ,HL(直角三角形).【详解】解:∵AB ∥CD ,AD ∥BC ,∴ABD CDF ∠=∠,ADB CBD ∠=∠,∴在△ABD 和△CDB 中,BD DB ABD CDB ADB CBD =⎧⎪∠=∠⎨⎪∠=∠⎩∴()ABD CDB ASA △≌△;∴AB CD =,AD BC =,∴在△ABE 和△CDF 中,AB CD ABD CDF AEB CFD =⎧⎪∠=∠⎨⎪∠=∠⎩,∴()ABE CDF AAS △≌△;∴在△ADE 和△CBF 中,AD BC ADB CBD AED CFB =⎧⎪∠=∠⎨⎪∠=∠⎩,∴()AED CFB AAS △≌△,则图中全等的三角形有:△ABE ≌△CDF ,△ADE ≌△CBF ,△ABD ≌△CDB ,共3对.故选:C .【点睛】此题考查了三角形全等的判定,解题的关键是熟练掌握三角形全等的判定方法.判定三角形全等的方法有:SSS ,SAS ,AAS ,ASA ,HL(直角三角形).【解析】【详解】解:八边形的内角和=180(82)1080︒︒⨯-=,故答案为:1080.12.7【解析】【分析】根据△ABC ≌△EDF ,得到AB=ED ,然后求得AD=BE ,根据线段之间的关系即可求出AE 的长度.【详解】∵△ABC ≌△EDF∴AB=ED=5,∴AB-DB=ED-DB∴AD=EB=2∴AE=AB+BE=7.故答案为:7.【点睛】此题考查了三角形全等的性质,解题的关键是熟练掌握三角形全等的性质.全等三角形的性质:全等三角形对应边相等,对应角相等.13.3【解析】【分析】分边长为3的边为腰和边长为3的边为底边两种情况,再根据三角形的周长公式、三角形的三边关系定理即可得.【详解】由题意,分以下两种情况:(1)当边长为3的边为腰时,则这个等腰三角形的底边长为13337--=,337+<,即此时三边长不满足三角形的三边关系定理,∴这个等腰三角形的底边长不能为7;(2)当边长为3的边为底边时,则这个等腰三角形的腰长为1335 2-=,此时355+>,满足三角形的三边关系定理;综上,这个等腰三角形的底边长为3,故答案为:3.【点睛】本题考查了等腰三角形的定义、三角形的三边关系定理,熟练掌握等腰三角形的定义是解题关键.14.60【解析】【详解】如图,由题意可知∠EAB=45°,∠DBC=15°,AE∥BD,∴∠ABD=∠EAB=45°,∴∠ABC=∠ABD+∠DBC=45°+15°=60°.故答案为:60【点睛】解本题需注意两点:(1)东北方向是指北偏东45°方向;(2)在同一平面内,从一个点引出的表示正北方向的射线和从另一个点引出的表示正南方向的射线是互相平行的.15.13【解析】【分析】直接利用线段垂直平分线的性质得出AE=BE,进而得出答案.【详解】解:∵DE 是△ABC 的边AB 的垂直平分线,∴AE=BE ,∵AC=8,BC=5,∴△BEC 的周长是:BE+EC+BC=AE+EC+BC=AC+BC=13.故答案为:13.【点睛】本题主要考查了线段垂直平分线的性质,正确掌握线段垂直平分线的性质是解题关键.16.31°【解析】【分析】根据折叠的性质可以判断出ABC 是等腰三角形,再根据三角形内角和为180°求解即可.【详解】解:将翻折后的图形如图所示:∵四边形ADCF 是长方形,∴CD AF ∥,∴FAC BCA ∠=∠,由折叠的性质得:FAC EAC ∠=∠,∴BAC BCA ∠=∠,∵118ABC ∠=︒∴31BAC BCA ∠=∠=︒故答案为:31︒【点睛】本题考查了等腰三角形的性质和三角形的内角和,正确理解知识点是解题的关键.17.∠DAE =14°,∠AEC =76°.【解析】【分析】由三角形内角和定理可求得∠BAC 的度数,在Rt △ADC 中,可求得∠DAC 的度数,AE 是角平分线,有∠EAC =12∠BAC ,故∠EAD =∠EAC ﹣∠DAC ,∠AEC =90°﹣∠EAD .【详解】解:∵∠B =42°,∠C =70°,∴∠BAC =180°﹣∠B ﹣∠C =68°,∵AE 是角平分线,∴∠EAC =12∠BAC =34°.∵AD 是高,∠C =70°,∴∠DAC =90°﹣∠C =20°,∴∠EAD =∠EAC ﹣∠DAC =34°﹣20°=14°,∠AEC =90°﹣14°=76°.【点睛】本题考查了三角形内角和定理、角平分线的定义,属于简单题,熟悉三角形的内角和是180°是解题关键.18.见解析.【解析】【分析】根据等角对等边,可得DB =CD ,从而可利用SAS 证得△ABD ≌△ACD ,即可求证.【详解】证明:∵∠1=∠2,∴DB =CD ,在△ABD 和△ACD 中,34AD AD BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD (SAS ),∴AB=AC.【点睛】本题主要考查了等腰三角形的判定,全等三角形的判定和性质,熟练掌握等腰三角形的判定定理,全等三角形的判定定理和性质定理是解题的关键.19.(1)作图见解析;(2)作图见解析.【解析】【分析】(1)利用平移的性质可画出图形;(2)利用关于x轴对称的点的性质画出图形即可.【详解】(1)如图所示:△A1B1C1即为所求:(2)如图所示:△A2B2C2即为所求:【点睛】本题考查了平移的性质及轴对称的性质,解题的关键是掌握变换的规律.20.(1)见解析;(2)100°.【解析】【分析】(1)只要证明△ABD≌△ACE(AAS),即可证明BD=CE;(2)利用四边形内角和定理即可解决问题.【详解】(1)证明:∵BD、CE是高,∴∠ADB=∠AEC=90°,在△ABD和△ACE中,A A ADB AEC AB AC ∠∠⎧⎪∠∠⎨⎪⎩===∴△ABD△ACE(AAS),∴BD=CE.(2)∵∠A=80°,∠ADB=∠AEC=90°,∴∠BOC=360°-80°-90°-90°=100°.【点睛】本题考查全等三角形的判定和性质、四边形内角和定理等知识,解题的关键是正确寻找全等三角形解决问题.21.(1)见解析(2)25°【解析】【分析】(1)因为这两个三角形是直角三角形,BC=BD ,因为AD ∥BC ,还能推出∠ADB=∠EBC ,从而能证明:△ABD ≌△ECB .(2)因为∠DBC=50°,BC=BD ,可求出∠BDC 的度数,进而求出∠DCE 的度数.【详解】(1)证明:∵AD ∥BC ,∴∠ADB=∠EBC .∵CE ⊥BD ,∠A=90°,∴∠A=∠CEB ,又∵BC=BD ,∴△ABD ≌△ECB ;(2)解:∵∠DBC=50°,BC=BD ,∴∠EDC=12(180°-50°)=65°,又∵CE ⊥BD ,∴∠CED=90°,∴∠DCE=90°-∠EDC=90°-65°=25°.22.(1)△OBC ≌△ABD ,证明见解析;(2)∠CAD=60°;(3)当OC 等于3时,以点C 、A 、E 为顶点的三角形AEC 是等腰三角形.【解析】(1)根据等边三角形的性质得到OB=AB ,BC=BD ,然后根据SAS 证明三角形全等的方法即可证明△OBC ≌△ABD ;(2)根据(1)中证明的△OBC ≌△ABD ,可得OCB ADB ∠=∠,然后根据三角形内角和即可求得60CAD CBD ∠=∠=︒;(3)根据(2)求得的60CAD ∠=︒可得60OAE ∠=︒,然后根据OA 的长度和30°角直角三角形的性质可求得AE=2,然后根据△AEC 是等腰三角形求出AC 的长度,即可求出OC 的长.【详解】(1)△OBC ≌△ABD理由如下:∵△OAB 与△CBD 是等边三角形∴OB =AB ,BC =BD ,∠OBA =∠CBD =60°∴∠OBA+∠ABC =∠CBD+∠ABC ,即∠OBC =∠ABD∴在△OBC 与△ABD 中,OB AB OBC ABD BC BD =⎧⎪∠=∠⎨⎪=⎩∴△OBC ≌△ABD(SAS),(2)如图所示,设AD 交BC 于点F,解:∵△OBC ≌△ABD ,∴OCB ADB ∠=∠,又∵AFC BFD ∠=∠,∴∠CAD=∠CBD=60°;(3)解:∵60OAE CAD ∠=∠=︒∴∠EAC=120°,30OEA ∠=︒,∴22AE OA ==,∴以A ,E ,C 为顶点的三角形是等腰三角形时,只能是以AE 和AC 为腰∴AC=AE=2,∴OC=OA+AC=1+2=3,所以当OC 等于3时,三角形AEC 是等腰三角形.【点睛】此题考查了三角形全等的性质和判定,30°角直角三角形的性质和等腰三角形的性质等知识,解题的关键是根据题意证明出△OBC ≌△ABD .23.见解析【解析】【分析】由CD ∥BE ,可证得∠ACD=∠B ,然后由C 是线段AB 的中点,CD=BE ,利用SAS 即可证得△ACD ≌△CBE ,证得结论.【详解】∵C 是线段AB 的中点,∴AC=CB ,∵CD ∥BE ,∴∠ACD=∠B ,在△ACD 和△CBE 中,∵AC=CB ,∠ACD=∠B ,CD=BE ,∴△ACD ≌△CBE (SAS ),∴∠D=∠E .24.(1)见解析;(2)∠DEF =70°.【解析】【分析】(1)求出EC=DB ,∠B=∠C ,根据SAS 推出△BED ≌△CFE ,根据全等三角形的性质得出DE=EF 即可;(2)根据三角形内角和定理求出∠B=∠C=70°,根据全等得出∠BDE=∠FEC ,求出∠DEB+∠FEC=110°,即可得出答案;【详解】(1)证明:∵AB =AC ,∴∠B =∠C ,∵AB =AD+BD ,AB =AD+EC ,∴BD =EC ,在△DBE 和△ECF 中,BE CF B C BD EC =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△ECF (SAS )∴DE =EF ,∴△DEF 是等腰三角形;(2)∵∠A =40°,∴∠B =∠C =1(18040)2- =70°,∴∠BDE+∠DEB =110°,又∵△DBE ≌△ECF ,∴∠BDE =∠FEC ,∴∠FEC+∠DEB =110°,∴∠DEF =70°.25.(1)见解析;(2)见解析;(3)见解析.【解析】(1)根据HL 证明Rt △OPD ≌Rt △OPE ,得OD=OE 可得结论;(2)根据SAS 证明△ODF ≌△OEF 即可;(3)先过点P 作PM ⊥OA ,PN ⊥OE ,证明△PMD ≌△PNE ,根据全等三角形的性质即可解决问题.【详解】(1)证明:∵OC 是∠AOB 的平分线,PD ⊥OA ,PE ⊥OB ,∴PD =PE ,在Rt △OPD 和Rt △OPE 中,OP OP PD PE =⎧⎨=⎩,21∴Rt △OPD ≌Rt △OPE (HL ),∴OD=OE ,∴OP 垂直平分DE ,(2)由(1)知Rt △OPD ≌Rt △OPE ∴OD =OE ,在△ODF 和△OEF 中,PD PEDPF EPF PF PF=⎧⎪∠=∠⎨⎪=⎩,∴△ODF ≌△OEF (SAS ),∴DF =EF .(3)过点P 作PM ⊥OA ,PN ⊥OB,∵∠PDO+∠PEO=180°,∠PDO+∠PDM=180°∴∠PDM=∠PEN;在△PMD 和△PNE 中,PMD PNEPDM PEN PD PE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△PMD ≌△PNE (AAS )∴PM=PN ;∵PM ⊥OA ,PN ⊥OB,∴OP 平分∠AOB。
人教版数学八年级下册《期中考试试卷》(带答案)

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,1523. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.5. 关于x一元二次方程x2-kx-6=0根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 57. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB=米,则点到直线AB距离PC为().A. 米B. 3米C. 米D. 米8. 如图,在矩形ABCD 中,AE平分∠BAD 交BC于点E,ED=5,EC=3,则矩形的周长为( )A. 18B. 20C. 22D. 249. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角四边形是菱形10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个二.填空题(每小题3分,共30分)11. 函数x–1的自变量x的取值范围是_____.12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.18. 如图,在正方形ABCD 中,AC=62,E是BC边的中点,F是AB边上一动点,则FB+FE 的最小值为_________.19. 在ABCD 中,AB=10,BC边上的高为6,AC=5则▭ABCD 的面积为_________.20. 如图,在△ABC中,∠ABC=90°,D为AB边上一点(BD<BC),AE⊥AB,AE=BD,连接DE交AC于F,若∠AFE=45°,AD=5CD=5,则线段AC长度为_________.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程 (1)(3x -1)2=2(3x -1) (2)3x 2-23 x +1=022. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合. (1)画一个面积为10的等腰直角三角形; (2)画一个周长为20,面积为15菱形.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |cd =ad-bc ,上述记号就叫做2阶行列式. (1)若249|x13|x=0,求x 的值; (2)若11|x x +-11|x x -+=6,求x 的值.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC . (1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? 26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,ON=34,求EG的长.27. 已知,在四边形ABCD中,AD∥BC,AB∥DC,点E在BC延长线上,连接DE,∠A+∠E=180°.(1)如图1,求证:CD=DE;(2)如图2,过点C作BE的垂线,交AD于点F,请直接写出BE、AF、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC的平分线,交CD于G,交CF于H,连接FG,若∠FGH=45°,DF=8,CH=9,求BE的长.答案与解析一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)[答案]A[解析][分析]本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.[详解]A.该方程符合一元二次方程的定义,故本选项符合题意;B.x=1x,不是整式方程,故本选项不符合题意;C.x2+3x-2y=0,含有两个未知数,故不是一元二次方程,故本选项错误;D.x2+2=(x-1)(x+2),方程整理后是一元一次方程,故本选项错误;故选:A.[点睛]本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,152[答案]B[解析][分析]根据勾股定理的逆定理,验证四个选项中数据是否满足“较小两边平方的和等于最大边的平方”,由此即可得出结论.[详解]A、因为32=9,42=16,52=25,92+162≠252,不能构成直角三角形,此选项错误;B、因为52+122=132,能构成直角三角形,此选项正确;C、因为(13)2+(14)2(15)2,不故能构成直角三角形,此选项错误.D、因为222111345222⎛⎫⎛⎫⎛⎫+≠⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能构成直角三角形,此选项错误.故选:B.[点睛]本题考查了勾股定理的逆定理,解题的关键是根据勾股定理的逆定理验证四个选项.本题属于基础题,难度不大,解决该题型题目时,套入数据验证“较小两边平方的和是否等于最大边的平方”是关键.3. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等[答案]A[解析][分析]根据菱形性质和平行四边形的性质逐一判断即可.[详解]解:A.菱形对角线互相垂直,而平行四边形的对角线不一定垂直,故本选项符合题意;B.菱形和平行四边形的对角线都不一定相等,故本选项不符合题意;C.菱形和平行四边形的对角线都互相平分,故本选项不符合题意;D.菱形和平行四边形的对角都相等,故本选项不符合题意.故选A.[点睛]此题考查的是菱形的性质和平行四边形的性质,掌握菱形的性质和平行四边形的性质是解决此题的关键.4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.[答案]D[解析]根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.5. 关于x一元二次方程x2-kx-6=0的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况[答案]A[解析][分析]先计算△=(-k)2-4×1×(-6)=k2+24>0,即可判断方程根的情况.[详解]∵△=(-k)2-4×1×(-6)=k2+24>0,∴一元二次方程x2-kx-6=0有两个不相等的实数,故选:A.[点睛]本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 5[答案]B[解析][分析]根据勾股定理求出BC,根据三角形中位线定理计算即可.[详解]∵∠C=90°,AC=8,AB=10,∴22AB AC,∵D、E分别为AC、AB中点,∴DE=12BC=3,故选:B.[点睛]本题考查的是三角形中位线定理和勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB =米,则点到直线AB 距离PC 为( ).A. 米B. 3米C. 米D. 米[答案]B [解析] [分析]设点到直线AB 距离PC 为米,根据正切的定义用表示出AC 、BC ,根据题意列出方程,解方程即可. [详解]解:设点到直线AB 距离PC 为米, 在Rt APC △中,3tan PCAC x PAC==∠,在Rt BPC △中,3tan 3PC BC x PBC ==∠,由题意得,3323x x -=, 解得,3x =(米),故选:.[点睛]本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键. 8. 如图,在矩形ABCD 中,AE 平分∠BAD 交BC 于点E ,ED =5,EC =3,则矩形的周长为( )A. 18B. 20C. 22D. 24 [答案]C[解析][分析]根据勾股定理求出DC=4;证明BE=AB=4,即可求出矩形的周长.[详解]∵四边形ABCD是矩形,∴∠C=90°,AB=CD;AD∥BC;∵ED=5,EC=3,∴DC2=DE2-CE2=25-9,∴DC=4,AB=4;∵AD∥BC,∴∠AEB=∠DAE;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB=4,矩形的周长=2(4+3+4)=22.故选:C.[点睛]该题主要考查了矩形的性质及其应用问题;解题的关键是灵活运用矩形的性质.9. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角的四边形是菱形[答案]C[解析][分析]利用平行四边形及特殊的平行四边形的判定方法判定后即可确定正确的选项.[详解]A.一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故选项A错误;B.两条对角线相等且有一个角是直角的平行四边形是矩形,故选项B错误;C.如图,作AE⊥BC于点E,DF⊥BC交BC的延长线于F,则∠AEB=∠DFC=90°.∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∴∠ABE=∠DCF,∴△ABE≌△DCF,∴AE=DF,BE=CF.在Rt△ACE和Rt△BDF中,由勾股定理得,AC2=AE2+EC2=AE2+(BC-BE)2,BD2=DF2+BF2=DF2+(BC+CF)2=AE2+(BC+BE)2,∴AC2+BD2=2AE2+2BC2+2BE2=2(AE2+BE2)+2BC2.又∵AE2+BE2=AB2,故AC2+BD2=2(AB2+BC2);即平行四边形两条对角线的平方和等于四条边的平方和,正确;D.有两条对角线平分一组对角的四边形是菱形,故选项D错误.故答案为:C[点睛]考查了命题与定理的知识,解题的关键是了解平行四边形的判定及特殊的平行四边形的判定方法,难度不大.10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 的周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个[答案]D[解析][分析]①作辅助线,延长HF交AD于点L,连接CF,通过证明△ADF≌△CDF,可得:AF=CF,故需证明FC=FH,可证:AF=FH;②由FH⊥AE,AF=FH,可得:∠HAE=45°;③作辅助线,连接AC交BD于点O,证BD=2FG,只需证OA=GF即可,根据△AOF≌△FGH,可证OA=GF,故可证BD=2FG;④作辅助线,延长AD至点M,使AD=DM,过点C作CI∥HL,则IL=HC,可证AL=HE,再根据△MEC≌△MIC,可证:CE=IM,故△CEH的周长为边AM的长.[详解]①连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.②∵FH⊥AE,FH=AF,∴∠HAE=45°.③连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.④连接EM,延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,∵HL⊥AE,CI∥HL,∴AE⊥CI,∴∠DIC+∠EAD=90°,∵∠EAD+∠AED=90°,∴∠DIC=∠AED,∵ED⊥AM,AD=DM,∴EA=EM,∴∠AED=∠MED,∴∠DIC=∠DEM,∴∠CIM=∠CEM,∵CM=MC,∠ECM=∠CMI=45°,∴△MEC≌△CIM,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故①②③④结论都正确.故选D.[点睛]解答本题要充分利用正方形的特殊性质,在解题过程中要多次利用三角形全等.二.填空题(每小题3分,共30分)11. 函数–1的自变量x的取值范围是_____.[答案]x≥0[解析]试题分析:根据二次根式有意义的条件是被开方数大于等于0,可知x≥0.考点:二次根式有意义12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.[答案]50°[解析]在四边形ABCD中,AB∥CD,AD∥BC,根据两组对边分别平行的四边形为平行四边形,可得四边形ABCD为平行四边形,根据平行四边形的对角相等即可得∠B=∠D=50°.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.[答案]﹣1.[解析][分析]根据一元二次方程的定义得到m-1≠0;根据方程的解的定义得到m2-1=0,由此可以求得m的值.[详解]解:把x=0代入(m﹣1)x2+x+m2﹣1=0得m2﹣1=0,解得m=±1,而m﹣1≠0,所以m=﹣1.故答案为﹣1.[点睛]本题考查一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____[答案]16[解析][分析]边AB的长是方程x2-7x+12=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.[详解]∵解方程x2-7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.[点睛]本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.[答案]20%[解析][分析]本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)2=1+44%,解这个方程即可求出答案.[详解]解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)2=1+44%,解得x1=-2.2(舍去),x2=0.2.答:这两年平均每年绿地面积的增长率为20%.故答案为20%[点睛]此题考查增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________[答案]63[解析]分析:先根据两组对边分别平行证明四边形ABCD是平行四边形,再根据两张纸条的宽度相等,利用面积求出AB=BC,然后根据邻边相等的平行四边形是菱形;根据宽度是3与∠ABC=60°求出菱形的边长,然后利用菱形的面积=底×高计算即可.详解:纸条的对边平行,即AB∥CD,AD∥BC ,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3 ,∴S四边形ABCD=AB×3=BC×3 ,∴AB=BC ,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60∘ ,∴∠BAE=90°−60°=30°,∴AB=2BE ,在△ABE中,AB2=BE2+AE2 ,即AB2=14AB2+32 ,解得AB=23,∴S四边形ABCD=BC⋅AE=23×3=63.故答案是:63.点睛:本题考查了平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,菱形的判定与性质,熟练掌握菱形的判定与性质是解答本题的关键.17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.[答案]210[解析][分析]过G作GM⊥AB于M,连接AE,则MG=AD=AB,根据折叠的性质得到AE⊥GF,根据全等三角形的性质得到MF=BE=2,根据勾股定理即可得到结论.[详解]过G作GM⊥AB于M,连接AE,则MG=AD=AB,∵将正方形ABCD的一角折向边CD,使点A与CB上一点E重合,∴AE⊥GF,∴∠FAE+∠AFG=∠AFG+∠MGF ,∴∠BAE=∠MGF ,在△ABE 与△MGF 中B GMF AB GMMGF BAM ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABE ≌△GMF ,∴MF=BE=2,∵MG=AD=BC=6,∴FG=22=210FM MG +, 故答案为:210.[点睛]此题主要考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键,难度一般.18. 如图,在正方形ABCD 中,AC =62,E 是BC 边的中点,F 是AB 边上一动点,则FB +FE 的最小值为_________.[答案]35[解析][分析]首先确定ED=EF+FD=EF+BF 的值最小.然后根据勾股定理计算.[详解]连接BD ,ED 交AC 于O ,F ,连接BF ,此时EF+BF= EF+FD =ED 的值最小.在正方形ABCD 中,AC =62, ∴BC=CD=6, ∵E 是BC 边的中点,∴CE=3在Rt △CDE 中,根据勾股定理可得DE=2263635CE CD +=+=. ∴FB +FE 的最小值为35故答案为:35.[点睛]此题考查了线路最短的问题,确定动点F 的位置时,使EC+ED 的值最小是关键. 19. 在ABCD 中,AB =10,BC 边上的高为6,AC =35,则▭ABCD的面积为_________.[答案]66[解析][分析]解直角三角形得到BC 的长,根据平行四边形的面积计算公式可得到结论.[详解]如图,∵AE ⊥BC ,在Rt △ABE 中,∵AB=10,AE=6,∴22AB AE -=8,在Rt △AEC 中,∵AC=35,AE=6,∴CE=22AC AE -=3,∴BC=BE+CE=11,∴平行四边形ABCD 的面积=11×6=66, 故答案为:66.[点睛]本题考查了平行四边形的面积,勾股定理,熟练掌握平行四边形的性质是解题的关键.20. 如图,在△ABC 中,∠ABC =90°,D 为AB 边上一点(BD <BC ),AE ⊥AB ,AE =BD ,连接DE 交AC 于F ,若∠AFE =45°,AD =35,CD =5,则线段AC 的长度为_________.[答案]10[解析][分析]延长BC 到G ,使BG=AD ,连接DG 、EG ,证明ACGE 是平行四边形,可得CG=AE=BD ,在直角三角形DBC 中运用勾股定理求出BD 、BC 的长,最后运用勾股定理求出AC 的长即可.[详解]延长BC 到G ,使BG=AD ,连接DG 、EG ,90,ABC AE AB ︒∠=⊥90EAD DBG ∴∠=∠=︒180EAD DBG ∴∠+∠=︒90AED ADE ∠+∠=︒//AE BG ∴,AE BD AD BG ==()AED BDG SAS ∴≅∆,DE DG AED BDG ∴=∠=∠90ADE BDG ∴∠+∠=︒1809090EDG ︒∴-︒∠==︒DEG ∴是等腰直角三角形,45DEG ∴∠=︒45AFE =︒∠AFE FEG ∴∠=∠AC EG ∴//∴四边形ACGE 是平行四边形,AE CG ∴=∵AE=BDBD CG ∴=∵AD =∴设BD=x ,则,在Rt △BCD 中,∵CD=5,∴222CD BD BC =+,即2225=)x x +,解得,1x =,2x当x =,即BD =此时BC =,BD BC >, 不合题意,∴x =即∴在直角三角形ABC 中,10==故答案为:10.[点睛]此题主要考查了平行四边形的判定与性质,以及勾股定理,作辅助线构造平行四边形以及证明CG=AE=BD 是解题的关键.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程(1)(3x -1)2=2(3x -1)(2)3x 2-x +1=0[答案](1)113x =,21x =;(2)12x x == [解析][分析](1)原方程移项后进行因式分解,变形为两个一元一次方程求出方程的解即可;(2)原方程运用公式法求解即可.[详解](1)(3x -1)2=2(3x -1)(3x -1)2-2(3x -1)=0(3x -1)[(3x -1)-2]=0(3x -1)(3x -3)=0∴3x -1=0,3x -3=0解得,113x =,21x =;(2)3x 2-x +1=0这里a=3,b=-c=1∴△=b 2-4ac=(-2-4×3×1=0∴x ==∴12x x ==. [点睛]此题主要考查了解一元二次方程的方法灵活运用,熟练掌握解一元二次方程的方法是解题的关键.22. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合.(1)画一个面积为10的等腰直角三角形;(2)画一个周长为20,面积为15的菱形.[答案](1)见解析;(2)见解析[解析]分析](1)利用数形结合的思想画出直角边为25的等腰三角形即可.(2)利用数形结合的思想画出边长5,高为3的菱形即可.[详解](1)如图1中,平行四边形ABCD即为所求.(2)如图2中,菱形ABCD即为所求.[点睛]本题考查作图-应用与设计,等腰直角三角形的判定,菱形的判定等知识,解题的关键是学会利用数形结合的思想思考问题.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |c d =ad-bc ,上述记号就叫做2阶行列式.(1)若249|x13|x =0,求x 的值; (2)若11|x x +- 11|x x -+=6,求x 的值.[答案](1)1x =2x =(2)1x =,2x =[解析][分析] (1)根据2阶行列式公式列出方程26490x -=,运用直接开平方法即可求得答案;(2)根据2阶行列式公式列出方程2(1)(1)(1)6x x x +---=,即可求得答案.[详解](1)由题意可得:26490x -=∴26=49x 249=6x∴1x =2x = (2)由题意可得:2(1)(1)(1)6x x x +---=,整理得,22x =,解得,1x =,2x =.[点睛]考查了解一元二次方程-直接开平方法,本题根据2阶行列式的公式来解一元二次方程,比较简单,容易掌握.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC .(1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.[答案](1)证明见解析;(2)S△ABC,S四边形ABDE,S矩形ADCE[解析][分析](1)首先得到四边形ADCE是平行四边形,然后利用有一个角是直角的平行四边形是矩形判断矩形即可;(2)根据四边形ADCE是矩形,得到AD∥CE,于是得到S△ADC=S△ADF=S△AED,即可得到结论.[详解](1)证明:∵点D、点O别是BC、AC的中点,∴OD∥AB,∴DE∥AB,又∵AE∥BD,∴四边形ABDE是平行四边形,∵点D是BC的中点,∴AE平行且等于DC,∴四边形AECD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴四边形ADCE是矩形;(2)解:∵四边形ADCE是矩形,∴AD∥CE,∴S△ADC=S△ADF=S△AED,∴四边形ABDF面积=S△ABC=S四边形ABDE=S矩形ADCE.[点睛]本题考查了矩形判定和性质,平行线的性质,三角形的中位线的性质,熟练掌握矩形的判定和性质定理是解题的关键.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? [答案](1)月销售量450千克,月利润6750元;(2)销售单价应定为80元/千克[解析][分析](1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量,即可求解;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x元,根据这个等量关系列出方程,解方程即可.[详解](1)月销售量为:500﹣5×10=450(千克),月利润为:(55﹣40)×450=6750(元).(2)设单价应定为x元,得:(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=60,x2=80.当x=60时,月销售成本为16000元,不合题意舍去.∴x=80.答:销售单价应定为80元/千克.[点睛]本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,求EG的长.[答案](1)证明见解析;(2)证明见解析;(3)7105[解析][分析](1)如图1中,证明Rt△CBE≌△Rt△DCF(HL),即可解决问题.(2)如图2中,连接OC.想办法证明△OBE≌△OCF(SAS),即可解决问题.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,首先证明△OMN是等腰直角三角形,利用勾股定理求出a即可解决问题.[详解](1)如图1中,∵四边形ABCD是正方形,∴BC=CD,∠B=∠DCF=90°,∵DE=CE,∴Rt△CBE≌△Rt△DCF(HL),∴BE=CF,∠ECB=∠CDF,∵∠ECB+∠DCE=90°,∴∠CDF+∠DCE=90°,∴∠CGD=90°,∴EC⊥DF.(2)如图2中,连接OC.∵CB=CD,∠BCD=90°,OB=OD,∴OC=OB=OD,OC⊥BD,∴∠OCB=45°,∵四边形ABCD是正方形,∴∠ABD=45°,∴∠OBE=∠OCF,∵BE=CF,OB=OC,∴△OBE≌△OCF(SAS),∴OE=OF,∠BOE=∠COF,∴∠EOF=∠BOC=90°,∴△EOF是等腰直角三角形.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,∵BE=BM,CF=CN,BE=CF,∴BM=CN,∵OB=OC,∠OBM=∠OCN=135°,BM=CN,∴△OBM≌△OCN(SAS),∴∠BOM=∠COM,∴∠MON=∠BOC=90°,∴△MON是等腰直角三角形,∵34∴MN=217, 在Rt △MBN 中,a 2+16a 2=68,∴a=2(负根已经舍弃),BE=2,BC=6,EC=210,∵△CGF ∽△CBE ,CG CF CB CE∴=, 26210CG ∴=, 3105CG ∴=, 31071021055EG EC CG ∴=-=-=. [点睛]本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题.27. 已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.(1)如图1,求证:CD=DE ;(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.[答案](1)证明见解析;(2)BE=AF+3DF ;(3)31[解析][分析](1)利用等角的补角判断出∠DCE=∠E即可;(2)先判断出四边形CFDN是矩形,再判断出CN=NE=FD,即可得出结论;(3)先判断出∠ABG=∠BGC,进而得出四边形BCFM是正方形,即可判断出△BMK≌△BCH,再用勾股定理求出BM=15,即可得出AD=BC=BM=15,即可求出结论.AD BC AB DC[详解](1)∵//,//四边形ABCD是平行四边形,∴∠A=∠BCD,∵∠A+∠E=180°,∠BCD+∠DCE=180°,∴∠DCE=∠E,∴CD=DE;(2)如图2,过点D作DN⊥BE于N,∵CF⊥BE,∴∠DNC=∠BCF=90°,∴FC∥DN,∵四边形ABCD是平行四边形,∴AD∥BC,∴四边形CFDN是矩形,∴FD=CN,∵CD=DE,DN⊥CE,∴CN=NE=FD,∵四边形ABCD是平行四边形,∴BC=AD=AF+FD,∴BE=AF+3DF.(3)如图3,过点B作BM⊥AD于点M,延长FM至K,使KM=HC.连接BK,∵▱ABCD,∴AB∥CD,∴∠ABG=∠BGC,∵BG平分∠ABC,∴设∠ABG=∠CBG=∠BGC=α,∴BC=CG,∵∠FGH=45°,∴∠FGC=45°+α,∵∠BCF=90°,∴∠BHC=∠FHG=90°-α,∴∠HFG=45°+α=∠FGC,∴FC=CG=BC,∵BM⊥AD,∴∠MBC=90°=∠FCE=∠MFC,∴四边形BCFM是矩形,∵BC=FC,∴四边形BCFM是正方形,∴BM=MF=BC=AD,∴MA=DF=8,∵∠KMB=∠BCH=90°,KM=CH,∴△BMK≌△BCH,∴KM=CH=9,∠KBM=∠CBH=α,∠K=∠BHC=90°-α, ∵∠MBC=90°,∴∠MBA=90°-2α,∴∠KBA=90°-α=∠K,∴AB=AK=8+9=17,在Rt△ABM中,∠BMA=90°,=15,∴AD=BC=BM=15,∴AF=AD-DF=15-8=7,∴BE=AF+3DF=7+3×8=31.[点睛]此题是四边形综合题,主要考查了平行四边形的性质,矩形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,勾股定理,解本题的关键是(2)判断出四边形CFDN是矩形,(3)求出AB=17.。
2012—2013学年度上学期八年级数学期中考试试卷 (考试时间120

2012—2013学年度上学期八年级数学期中考试试卷(考试时间:120分钟 满分:150分)一、选择题(每题3分,共24分)1、若直角三角形两边长为12和5,则第三边长为( )A 、13B 、15C 、13或15D 、13或119 2、下列说法正确的是( )A 、8的立方根是±2B 、负数没有立方根C 、互为相反数的两个数的立方根也互为相反数D 、立方根是它本身的数是03、如图,在平行四边形ABCD 中,对角线AC 、BD 相交于O ,将△AOB 平移至△DEC 的位置,则图中与OA相等的其他线段有( ) A 、1条 B 、2条 C 、3条 D 、4条4、已知平行四边形的一边长是14,下列各组数中能分别作为它的两条对角线的是( ) A 、10与16 B 、12与16 C 、20与22 D 、10与405、已知菱形较大的角是较小角的3倍,并且高为4cm ,则这个菱形的面积是( ) A 、82cm ² B 、162cm ² C 、3323 cm ² D 、32 cm ²6、下各数:(35)³,0.2323……,π,0,32)1(-,3.7842,-3,722,其中无理数有( ) A 、2个 B 、3个 C 、4个 D 、5 7、如果a 200是一个整数,那么正整数a 最小应取( ) A 、8 B 、5 C2 D 、18、下列给出的条件中,能判定一个四边形是菱形的是( ) A 、有一组对边平行且相等,有一个角是直角B 、有一组对边平行且相等,一组邻角相等评卷人 得分AODBCEC 、有一组对边平行,一组对角相等,两条对角线相等D 、一组对边平行,一组对角相等,有一组邻边相等二、填空(每题3分,共24分)9、已知直角三角形两直角边的比是3︰4,斜边长为20cm ,则斜边上的高是( )。
10、如图,有一个高12cm ,底面直径为10cm 的圆锥,现有一只蚂蚁在圆锥的顶部M 处,它想吃圆锥底部N 处的食物,需要爬行的最短路程是( )cm 。
浙江省温州市第十二中学2022-2023学年第二学期八年级期中考试数学试题

2022学年第二学期三校联盟期中检测八年级数学试卷满分:100分 考试时间:90分钟一、选择题(本题有10小题,每小题3分,共30分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1. 在下列方程中,属于一元二次方程的是( )A. 2125x x x +=- B. 232x x -+ C. 25320x y -+-= D. 216y =2. 有意义,则实数x 的取值范围是( )A. 3x ≠ B. 3x > C. 3x ≥ D. 3x <3.的化简结果是( )A. 4 B. 4- C. 16 D. 16-4. 一组数据2,2,2,3,4,8,12,若加入一个整数n ,一定不会发生变化的统计量是( )A. 众数B. 平均数C. 中位数D. 方差5. 下列方程中,有两个不相等的实数根的是( )A. 251x +=B. 2250x x +-=C. 2(6)0x -=D. 2230x x ++=6. 比较,3的大小,正确的是( )A.3<< B. 3<<C. 3<<D. 3<<7. 关于x 的一元二次方程22180x x a ++-=的一个根是1,则a 的值是( )A. 4B. 2或2-C. 4或4-D. 8. 用配方法解一元二次方程2890x x -+=,变形后的结果正确的是( )A. 2(4)7x -=-B. 2(4)25x -=C. 2(4)7x +=D. 2(4)7x -=9. 一组数据,有4个数的平均数为20,另外16个数的平均数为15,则这20个数的平均数是( )A. 16B. 17.5C. 18D. 2010. 对于一元二次方程,我国古代数学家还研究过其几何解法.以方程(6)72x x +=为例加以说明.数学家赵爽在其所著的《勾股圆方注》中记载的方法是:如图,将四个长为6x +,宽为x 的长方形纸片拼成一个大正方形,则大正方形的边长是6x x ++,面积是四个矩形的面积与中间小正方形的面积之和,即24726⨯+,据此易得18662x -==.小明用此方法解关于x 的方程(3)24x x n -=,其中3x n x ->构造出同样的图形,已知小正方形的面积为4,则n 的值为( )A. 2B. 4C. 6D. 8二、填空题(本题有8小题,每小题3分,共24分)11. =________.12. 甲、乙两名同学参加“古诗词大赛”活动,五次比赛成绩的平均分都是85分,如果甲比赛成绩的方差为S 甲2=16.7,乙比赛成绩的方差为S 乙2=28.3,那么成绩比较稳定的是_____(填甲或乙)13. 一组数据3,4,x ,7,8的平均数是6,这组数据的中位数为______.14. 已知方程210210x x -+=的根为13x =,27x =,则方程2(21)10(21)210x x ---+=的根是________.15. 某地一家餐厅开张,开业第一天收入为5000元,之后两天的收入按相同的增长率增长,第3天收入为6050元,则每天增长率为________.16. 计算:202220232)2)-+的结果是________.17. 江边有一处高10米,背水坡角为45︒的防洪大堤,大堤的横截面为梯形ABCD ,其中CD AB ∥,45DAB ∠=︒(如图).某防洪指挥部发现该大堤急需加固,经调查论证,防洪指挥部专家组制定的加固方案是沿背水坡面AD 用土石进行加固,使上底加宽3米,加固后背水坡EF 的坡比为.则加固后坝底增加的宽度AF =________米.18. 政府为了稳定房价,决定建造一批保障房供给社会,计划用3200万元的价格购得一块建房用地,在该土地上建10幢楼房供使用,每幢楼的楼层数相同且控制在5到32层,每层建10套每套100平方米,经测算每幢楼造n 层的总建筑造价为()25160nn +万元,其中532n ≤≤,每平方米平均综合费用+=购地费用所有建筑费用总的建筑面积.为使该保障房小区每平方米的平均综合费用控制在2800元以内,每幢最多造________层.三、解答题(本题有6小题,共46分.解答需写出必要的文字说明、演算步骤或证明过程)19. 计算.(1÷(2)21)+20. 解下列一元二次方程.(1)24120x x --=(2)(41)3(41)x x x -=-21. 某商贸公司10名销售员上月完成的销售额情况如下:销售额(万元)34567816销售员人数(人)1132111(1)求上月10名销售员平均每人完成的销售额;(2)为了提高大多数销售员的积极性,管理者准备实行“每天定额销售,超额有奖”的措施,如果你是管理者,从平均数,中位数、众数的角度进行分析,你将如何确定这个“定额”?22. 服装批发市场有一批服装,如果每件盈利(毛利润)50元,每天可售出500件.经市场调查发现,在进货价不变的情况下,若每件涨价1元,日销量将减少2件.(1)若以每件能盈利70元的单价出售,问每天的总毛利润为多少元?(2)现市场要保证每天总毛利润40000时,同时又要使顾客得到实惠,则每件应涨价多少元?23. 如图,在ABC 中,90B ∠=︒,6cm =AB ,8cm BC =.点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,与此同时,点Q 从点B 开始沿射线BC 以2cm/s 的速度移动.当点P 停止移动时,点Q 同时停止.点P ,Q 分别从A ,B 同时出发,经过时间为t 秒.(1)用t 表示PBQ 的面积;(2)当t 为何值时,以点A ,P ,Q ,C 为顶点的四边形面积为219cm ;(3)在移动过程中线段PQ 长度的最小值为________cm .24. 根据以下材料,完成题目.材料一:数学家欧拉为了解决一元二次方程21x =-在实数范围内无解的问题,引进虚数单位i ,规定21i =-.当0b ≠时,形如a bi +(a ,b 为实数)的数统称为虚数.比如5i ,32i +,1-.当0b =时,0a bi a i a +=+⋅=为实数.材料二:虚数的运算与整式的运算类似,任意两个虚数a bi +,i c d +(其中a ,b ,c ,d 为实数.且0b ≠,0d ≠)有如下运算法则()()()()a bi c di a d ic b +++=+++()()()()a bi c di ad ic b +-+=-+-2()()()()a bi c di ac adi bci bdi ac bd ad bc i+⋅+=+++=-++材料三:关于x 的一元二次方程20ax bx c ++=(a ,b ,c 为实数且a ≠0)如果没有实数根,那么它有两个虚数根,求根公式为x =解答以下问题:(1)填空:化简4i =________,2(1)i +=________;(2)关于x 的一元二次方程20x mx n ++=有一个根是1i +,其中m ,n 是实数,求m n +的值;(3)已知关于x 的一元二次方程2340x x k --+=无实数根,且k 为正整数,求该方程的虚数根.2022学年第二学期三校联盟期中检测八年级数学试卷满分:100分 考试时间:90分钟一、选择题(本题有10小题,每小题3分,共30分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)【1题答案】【答案】D【解析】【分析】根据一元二次方程的定义逐项判断即可.【详解】解:A. 2125x x x+=-,不是整式方程,故不是一元二次方程;B. 232x x -+,不是方程;C. 25320x y -+-=,含有两个未知数,故不是一元二次方程;D. 216y =,是一元二次方程;故选:D .【点睛】本题考查了一元二次方程的概念,只含有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx +c =0(且a≠0),特别要注意a≠0的条件,这是在做题过程中容易忽视的知识点.【2题答案】【答案】C【解析】【分析】根据二次根式有意义的条件,可得:x -3≥0,据此求出实数x 的取值范围即可.有意义,∴x -3≥0,解得:x ≥3.故选:C .【点睛】此题主要考查了二次根式有意义的条件,解答此题的关键是要明确:二次根式中的被开方数是非负数.【3题答案】【答案】A【解析】【分析】根据二次根式的性质进行化简即可得到答案.4==,故选A .a =是解题关键.【4题答案】【答案】A【解析】【分析】依据众数、平均数、中位数、方差的定义逐一进行判断,即可得到结论.【详解】解:A 、原来数据的众数是2,加入一个整数n 后众数仍为2,符合题意,选项正确;B 、原来数据的平均数是337,加入一个整数n 后,平均数一定变化,不符合题意,选项错误;C 、原来数据的中位数是3,加入一个整数n 后,如果3a ≠,中位数一定变化,不符合题意,选项错误;D 、原来数据的方差加入一个整数n 后的方差一定发生了变化,不符合题意,选项错误,故选A .【点睛】本题考查了众数、中位数、方差、平均数,熟练掌握相关概念是解题关键.【5题答案】【答案】B【解析】【分析】分别求出24b ac =-△,结合0< 方程无解,0> 方程有两个不相等的实数解,0= 有两个相等的实数解,逐个判断即可得到答案;【详解】解:由题意可得,A 选项20414160=-⨯⨯=-< ,故不符合题意,B 选项2241(5)240=-⨯⨯-=> ,故符合题意,C 选项0= ,故不符合题意,D 选项2241380=-⨯⨯=-<△,故不符合题意,故选B .【点睛】本题主要考查一元二次方程的根与判别式的关系,解题的关键是熟练掌握24b ac =-△, 0< 方程无解,0> 方程有两个不相等的实数解,0= 有两个相等的实数解.【6题答案】【答案】C【解析】【分析】分别计算出,3的平方,即可比较大小.【详解】解:28=,32=9,27=,∵7<8<9,3<<,故选C .【点睛】本题考查了实数大小比较,解决本题的关键是先算出3个数的平方,再比较大小.【7题答案】【答案】C【解析】【分析】将方程的根代入求解即可得到答案;【详解】解:∵22180x x a ++-=的一个根是1,∴2211180a ++-=,解得:4a =±,故选C .【点睛】本题考查根据一元二次方程的根求参数,解题的关键是将根代入列式求解.【8题答案】【答案】D【解析】【分析】先把常数项移到等式右边,再根据完全平方公式进行配方,即可.【详解】解:∵2890x x -+=,∴289x x -=-,∴28167x x -+=,即:2(4)7x -=,故选:D .【点睛】本题主要考查一元二次方程的配方,掌握完全平方公式,是解题的关键.【9题答案】【答案】A【解析】【分析】根据平均数的计算方法进行计算即可求解.【详解】解:依题意,这20个数的平均数是()142016151620⨯+⨯=故选:A .【点睛】本题考查了求一组数据的平均数,熟练掌握平均数的定义是解题的关键.平均数:是指一组数据中所有数据之和再除以数据的个数.【10题答案】【答案】C【解析】【分析】参照已知方法,求得大正方形的边长为10,得到410n x =-,再根据小正方形的边长和面积,求出4x =,即可得到n 的值.【详解】解:由题意可知,将四个长为3x n -,宽为x 的长方形纸片拼成一个大正方形,则大正方形的边长是3x n x -+,面积是四个矩形的面积与中间小正方形的面积之和,(3)24x x n -= ,小正方形的面积为4,∴大正方形的面积为4244100⨯+=,∴大正方形的边长为10,∴-+=-=,x n x x n3410∴=-,n x410小正方形的边长为3x n x-,--,即102x()2∴-=,x1024∴-=±x1022,->x1020∴=,x4∴=⨯-=,44106n故选C.【点睛】本题考查了一元二次方程的应用,仿照题干,正确理解一元二次方程的几何解法是解题关键.二、填空题(本题有8小题,每小题3分,共24分)【11题答案】【答案】【解析】【分析】直接根据二次根式的加减运算法则计算即可.【详解】解:原式=故答案为:.【点睛】此题考查的是二次根式的运算法则,掌握其运算法则是解决此题关键.【12题答案】【答案】甲【解析】【分析】【详解】∵S甲2=16.7,S乙2=28.3,∴S甲2<S乙2,∴甲的成绩比较稳定,故答案为甲.【答案】7【解析】【分析】根据:一组数据3,4,x ,7,8的平均数是6,可得:3+4+x+7+8=6×5,据此求出x 的值是多少,进而求出这组数据的中位数为多少即可.【详解】∵一组数据3,4,x ,7,8的平均数是6,∴3+4+x+7+8=6×5=30,解得x =8,将这组数据从小到大排列为:3,4,7,8,8,∴这组数据的中位数为7.故答案为:7.【点睛】本题考查了平均数和中位数的定义及求法,平均数是指在一组数据中所有数据之和再除以这组数据的个数;中位数:是指将一组数据按大小顺序排列,如果数据的个数是奇数,则处于最中间位置的数据就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【14题答案】【答案】12x =,24x =【解析】【分析】设21x t -=,可得210210t t -+=,根据210210x x -+=的根为13x =,27x =,可得213x -=或217x -=,即可得到答案;【详解】解:设21x t -=,可得210210t t -+=,∵210210x x -+=的根为13x =,27x =,∴213x -=或217x -=,解得:12x =,24x =,故答案为12x =,24x =;【点睛】本题考查换元法求方程的解,解题的关键是设21x t -=,得到210210t t -+=,结合方程210210x x -+=的根为13x =,27x =.1-【解析】【分析】设每天增长率为x ,根据题意列方程求解即可得到答案;【详解】解:设每天增长率为x ,由题意可得,25000(1)6050x +=,解得:11x =-,21x =-(不符合题意舍去),1;【点睛】本题考查一元二次方程实际应用题中的平均增长问题,解题的关键是找到等量关系式.【16题答案】2+【解析】【分析】根据积的乘方法则逆运算化简,结合平方差公式即可得到答案;【详解】解:原式202220222)2)(54)2)2⎡⎤=-++=-+⎦⨯⨯=+⎣,2;【点睛】本题主要考查积的乘方法则逆运算及平方差公式,解题的关键是熟练掌握()m m m ab a b =,22()()a b a b a b -=+-.【17题答案】【答案】7-【解析】【分析】根据CD AB ∥,45DAB ∠=︒可得10DG EH AG ===,3DE DK ==,设AF x =,结合坡比求解即可得到答案;【详解】解:设AF x =,∵CD AB ∥,45DAB ∠=︒,∴10DG EH AG ===,3DE DK ==,∴(103)7FH x x =+-=+,∵加固后背水坡EF 的坡比为1:,∴107x =+,解得:7x =-,故答案为7-;【点睛】本题考查坡比的应用及等腰直角三角形的性质,解题的关键是根据等腰直角三角形得到相应的线段关系,结合坡比列等式.【18题答案】【答案】20【解析】【分析】设每幢造n 层,依题意得,()2443200101028001511001060100n n n +⨯⨯+≤⨯⨯,整理得224640n n -+≤,解一元二次方程224640n n -+=,求得n 的范围,进而即可求解.【详解】设每幢造n 层,依题意得,()2443200101028001511001060100nn n +⨯⨯+≤⨯⨯即()232001051602800n n n ++≤∴224640n n -+≤当224640n n -+=时,解得:12n =-或12n =+∴1212n -<<<<即89<<∴3124<-<,201221<<∴520n ≤≤每幢最多造20层,故答案为:20.【点睛】本题考查了公式法解一元二次方程,无理数的估算,根据题意列出不等式解题的关键.三、解答题(本题有6小题,共46分.解答需写出必要的文字说明、演算步骤或证明过程)【19题答案】【答案】(1)5(2)4【解析】【分析】(1)根据二次根式的乘除法则进行计算即可得到答案;(2)根据完全平方公式和二次根式加减法则进行计算即可得到答案.【小问1详解】==5=;【小问2详解】解:21)+31=++-4=.【点睛】本题考查二次根式的混合运算,完全平方公式,掌握二次根式的混合运算顺序和运算法则是解题关键.【20题答案】【答案】(1)16x =,22x =-,(2)13x =,214x =,【解析】【分析】(1)利用因式分解法求解即可得到答案;(2)移项,利用因式分解法求解即可得到答案;【小问1详解】解:因式分解可得,(6)(2)0x x -+=,∴20x +=或60x -=,解得:16x =,22x =-,故方程的解为: 16x =,22x =-;【小问2详解】解:移项得,(41)3(41)0x x x ---=,因式分解可得,(3)(41)0x x --=,∴30x -=,410x -=,解得:13x =,214x =;【点睛】本题主要考查因式分解法解一元二次方程,解题的关键是选择适当的方法解方程.【21题答案】【答案】(1)6.5万元;(2)选择中位数定额比较合理;【解析】【分析】(1)根据加权平均数公式直接计算即可得到答案;(2)求出中位数,众数,根据平均数,中位数,众数分析数据即可得到答案;【小问1详解】解:由题意可得,上月10名销售员平均每人完成的销售额为:、(314153627181161) 6.510⨯+⨯+⨯+⨯+⨯+⨯+⨯=(万元);【小问2详解】解:由题意可得,中位数为:56 5.52+=,众数为:5,由上述数据可知:当选择中位数时,有5人不达标,选择众数时有2人不达标,当选择平均数时有7人未达标,∴应该选择中位数定额比较合理;【点睛】本题考查求加权平均数及根据中位数,众数,平均数做决策,解题的关键是求出几个数.【22题答案】【答案】(1)32200元;(2)50元【解析】【分析】(1)利用利润×日销量可得总毛利润;(2)设每件应涨价x 元,根据每件的盈利×日销量=总毛利润,列出方程解答即可.【详解】解:(1)70×[500-2(70-50)]=32200元,∴每天的总毛利润为32200元;(2)设每件应涨价x 元,由题意得:()()50500240000x x +-=,解得;x =50或x =150,∵要使顾客得到实惠,∴x =50,∴每件应涨价50元.【点睛】此题主要一元二次方程的实际运用,找出题目蕴含的数量关系,理解销售问题中的基本关系是解决问题的关键.【23题答案】【答案】(1)()2606t t t -+<≤(2)1t =或 4.3t =(3【解析】【分析】(1)根据题意得到6BP t =-,2BQ t =,再根据三角形面积公式即可得到答案;(2)先求出24ABC S = ,然后分两种情况讨论:①点Q 在点C 下方,根据ABC PBQ APQC S S S =- 四边形,列方程求解即可求出t 的值;②点Q 在点C 上方,根据ABQ PBC APCQ S S S =- 四边形,列方程求解即可求出t 的值;(3)有勾股定理,得到PQ =251236y t t =-+,利用二次函数的性质,得到当65t =时,y 有最小值为1445,即可求得线段PQ 长度的最小值.【小问1详解】解:由题意可知,AP t =,2BQ t =,=6AB ,6BP AB AP t ∴=-=-,90B ∠=︒ ,()()2116260622PBQ S BP BQ t t t t t ∴=⋅=-⋅=-+<≤ ;【小问2详解】解:90B ∠=︒ ,6AB =,8BC =,11682422ABC S AB BC ∴=⋅=⨯⨯= ,①如图,当点Q 在点C 下方时,此时4t ≤,19ABC PBQ APQC S S S =-= 四边形,由(1)可知,26PBQ S t t =-+ ,()224619t t ∴--+=,解得:1t =或5t =(舍),②如图,当点Q 在点C 上方时,此时46t <≤,()111162681024192222ABQ PBC APCQ S S S AB BQ BP BC t t t =-=⋅-⋅=⨯⋅--⨯=-= 四边形,解得: 4.3t =,即当1t =或 4.3t =时,以点A ,P ,Q ,C 为顶点的四边形面积为219cm ;【小问3详解】解:由题意可知,6BP t =-,2BQ t =,由勾股定理得:PQ ==,令251236y t t =-+,22614451236555y t t t ⎛⎫=-+=-+ ⎪⎝⎭ ,∴当65t =时,y 有最小值,最小值为1445,PQ ∴=,.【点睛】本题考查了一元二次方程的应用,二次函数的应用,二次函数的性质,勾股定理等知识,理解题意,巧妙运用二次函数解决问题是解题关键,注意分类讨论.【24题答案】【答案】(1)1,2i ;(2)0(3)1x =,2x =;【解析】【分析】(1)根据21i =-,2()()()()a bi c di ac adi bci bdi ac bd ad bc i +⋅+=+++=-++代入求解即可得到答案;(2)将方程的根代入列式,结合m ,n 是实数,求出m ,n 即可得到答案;(3)根据无实数根列不等式求出k ,代入虚根公式求解即可得到答案;【小问1详解】解:∵21i =-,∴4222()(1)1i i ==-=,∵2()()()()a bi c di ac adi bci bdi ac bd ad bc i +⋅+=+++=-++,∴2(1)2i i +=,故答案为:1,2i ;【小问2详解】解:∵一元二次方程20x mx n ++=有一个根是1i +,∴20i m mi n +++=,即2m n i mi +=--,∵m ,n 是实数,∴20m --=,解得:2m =-,2n =,∴0m n +=;【小问3详解】解:∵方程2340x x k --+=无实数根,∴2(3)41(4)0k --⨯⨯-<,解得:74k <,∵且k 为正整数,∴1k =,即:2330x x -+=,∵一元二次方程有两个虚数根,求根公式为x =,∴x ==,∴方程的虚数根为1x =,2x =;【点睛】本题主要考查了新定义虚数,求一元二次方程的虚数根,解题的关键是读懂题目中的虚数定义及虚数根的求根公式.。
初二年级数学下期中考试试卷

初⼆年级数学下期中考试试卷 数学被应⽤在很多不同的领域上,包括科学、⼯程、医学和经济学等,今天⼩编就给⼤家分享⼀下⼋年级数学,喜欢的来参考吧 ⼋年级数学下期中联考试卷 ⼀、选择题(本⼤题共10⼩题,每⼩题4分,共40分。
每⼩题都有四个选项,其中有且只有⼀个选项正确) 1.若⼆次根式a―2有意义,则a的取值范围是A.a≥0B.a≥2C.a>2D.a≠2 2.下列⼆次根式中,属于最简⼆次根式的是 A. B. C. D. 3.下列计算正确的是 A. B. C. D. 4. 正⽅形具有⽽菱形不⼀定具有的性质是A.四个⾓为直⾓B.对⾓线互相垂直C.对⾓线互相平分D.对边平⾏且相等 5.如图所⽰,在数轴上点A所表⽰的数为a,则a的值为A.﹣B.1﹣C.﹣1﹣D.﹣1+ 6. 以下各组数据为三⾓形的三边长,能构成直⾓三⾓形的是A.2,2,4B.2,3,4C.2,2,1D.4,5,6 7.化简(3―2)2002•(3+2)2003的结果为A.―1B.3+2C.3―2D.―3―2 8. 如图1,在△ABC中,∠C=90°,AC=2,点D在BC边上, ∠ADC=2∠B,AD= ,则BC的长为A. ﹣1B. +1C. ﹣1D. +1 9.如图2,在正⽅形ABCD的外侧作等边三⾓形DCE,若∠AED=15°, 则∠EAC=( )A.15°B.28°C.30°D.45° 10.若a=2016×2018-2016×2017, b=2015×2016-2013×2017,, 则a,b,c的⼤⼩关系是 A.a ⼆、填空题(本⼤题共6⼩题,每⼩题4分,共24分) 11.计算: = ; = . 12.在△ABC中,D,E分别是边AB,AC的中点,若BC=4,则DE=_______. 13.如图3,在□ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC,交BC边于点E,则BE= cm. 14.在中,,分别以AB、AC为边向外作正⽅形,⾯积分别记为 . 若,则BC=______. 15.如图4,已知正⽅形ABCD的边长为4,对⾓线AC与BD相交于点O,点E在DC 边的延长线上.若∠CAE=15°,则CE= . 16.公元3世纪,我国古代数学家刘徽就能利⽤近似公式a 2+r≈a+r2a得到2的近似值.他 的算法是:先将2看成12+1,由近似公式得2≈1+12×1=32;再将2看成 (32)2+(-14),由近似公式得2≈32+-142×32=1712;......依此算法,所得2的近似 值会越来越精确.当2取得近似值577408时,近似公式中的a是__________,r是__________. 三、解答题(本⼤题共9⼩题,共86分) 17.(本题满分12分,每⼩题6分)计算: (1)4 + ﹣ ; (2) (2 )(2 ) 18.(本题满分6分)计算: 19.(本题满分8分) 如图,在 ABCD中,E,F分别在边AD,BC上,且AE=CF,连接EF. 请你只⽤⽆刻度的直尺画出线段EF的中点O,并说明这样画的理由. 20.(本题满分8分) ,,求代数式的值 21. (本题满分8分) 古希腊的⼏何学家海伦(约公元50年)在研究中发现:如果⼀个三⾓形的三边长分别为,,,那么三⾓形的⾯积S与,,之间的关系式是 ① 请你举出⼀个例⼦,说明关系式①是正确的. 22.(本题满分8分)如图,在□ABCD中,点E,F分别是边AB,CD的中点, (1)求证:△CFB≌△AED; (2)若∠ADB=90°,判断四边形BFDE的形状,并说明理由; 23.(本题满分10分) 如图5,E,F分别是矩形ABCD的边AB,AD上的点, . (1)求证: AF=CD. (2)若AD=2,△EFC的⾯积为,求线段BE的长. 24.(本题满分12分) 如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上⼀点,过点D作DE⊥BC,交直线MN于点E,垂⾜为F,连接CD,BE (1)求证:CE=AD (2)若D为AB的中点,则∠A的度数满⾜什么条件时,四边形BECD是正⽅形?请说明理由. 25.(本题满分14分)如图6,我们把对⾓线互相垂直的四边形叫做垂美四边形 (1)概念理解:如图7,在四边形ABCD中,AB=AD,CB=CD,四边形ABCD是垂美四边形吗?请说明理由. (2)性质探究:试探索垂美四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系. 猜想结论: (要求⽤⽂字语⾔叙述).写出证明过程(先画出图形, 写出已知、求证,再证明) (3)问题解决:如图8,分别以Rt△ACB的直⾓边AC和斜边AB为边向外作正⽅形ACFG和正⽅形形ABDE,连接CE,BG,GE,若AC=4,AB=5,求GE的长. 2017-2018学年(下)六校期中联考⼋年级 数学科评分标准 ⼀、选择题(本⼤题有10⼩题,每⼩题4分,共40分.) 题号 1 2 3 4 5 6 7 8 9 10 选项 B D C A C A B D C B ⼆、填空题(本⼤题共6⼩题,每题4分,共24分) 11. ; . 12. . 13. . 14. . 15. . 16. , . 三、解答题(本⼤题共11⼩题,共86分) 17.(本题满分12分,每⼩题6分) (1)解:原式= …………… 3分 = …………… 4分 = …………… 6分 (2)解:原式= …………… 3分 = …………… 5分 = …………… 6分 注: 1.写出正确答案,⾄少有⼀步过程,不扣分. 2.只有正确答案,没有过程,只扣1分. 3.没有写出正确答案的,若过程不完整,按步给分. (以下题⽬类似) 18.(本题满分6分) 解:原式= …………… 3分 = …………… 5分 = …………… 6分 19. 20.(本题满分8分) 解:连接与相交于点,点为的中点。
推荐学习K12八年级数学上学期期中试题(含解析) 新人教版12

重庆市渝北区龙塔实验学校2015-2016学年八年级数学上学期期中试题一、选择题(共12小题,每小题4分,满分48分)1.下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.2.在平面直角坐标系中,点P(﹣2,3)关于x轴的对称点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.计算a6(a2)3的结果等于()A.a11B.a12C.a14D.a364.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF5.等腰三角形一腰上的高与另一腰的夹角为40°,则它的底角的度数是()A.50° B.65° C.25° D.65°或25°6.一个三角形的两边长分别为3cm和7cm,则此三角形第三边长可能是()A.3cm B.4cm C.7cm D.11cm7.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是()A.20° B.40° C.50° D.60°8.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40° B.50° C.60° D.75°9.如图,∠BAC=30°,AM是∠BAC的平分线,过M作ME∥BA 交AC于E,作MD⊥BA,垂足为D,ME=10cm,则MD的长()A.10cm B.5cm C.3cm D.7cm10.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.6811.如图,用火柴摆上系列图案,按这种方式摆下去,当每边摆10根时(即n=10)时,需要的火柴棒总数为()根.A.165 B.65 C.110 D.5512.如图,△ABC中,∠ACB=90°,D为AB上任一点,过D作AB的垂线,分别交边AC、BC的延长线于E、F两点,∠BAC、∠BFD的平分线交于点I,AI交DF于点M,FI交AC于点N,连接BI.下列结论:①∠BAC=∠BFD;②∠ENI=∠EMI;③AI⊥FI;④∠ABI=∠FBI;其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题4分,共24分)13.小明从镜子中看到对面电子钟如图所示,这时的时刻应是.14.若点P(﹣2a,a﹣1)在y轴上,则点P的坐标为,点P关于x轴对称的点为.15.如图,把一张矩形纸片ABCD沿对角线BD折叠,使C点落在C′,且BC′与AD交于E点,若∠ABE=40°,则∠ADB= .16.若等腰三角形的周长为26cm,一边为11cm,则腰长为.17.已知,AD是△ABC中BC边上的中线,若AB=3,AD=2,则AC的取值范围是.18.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C 沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠CFE为度.三、解答题(本大题共2小题,19题8分,20题6分,共14分)19.计算:(1)(﹣5a3b2)•(﹣3ab2c)•(﹣7a2b);(2)3a2(ab2﹣b)﹣(2a2b2﹣3ab)(﹣3a).20.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.四、解答题(本大题共4小题,每小题10分,共40分)21.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=5cm,DE=3cm,你知道BE的长吗?22.已知点A(2a﹣b,5+a),B(2b﹣1,﹣a+b).(1)若点A、B关于x轴对称,求a、b的值;(2)若A、B关于y轴对称,求﹙4a+b﹚2014的值.23.附加题:如图,在四边形ABCD中,点E是BC的中点,点F是CD的中点,且AE⊥BC,AF⊥CD.(1)求证:AB=AD;(2)请你探究∠EAF,∠BAE,∠DAF之间有什么数量关系?并证明你的结论.24.如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE(1)求证:BE=CE;(2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD.五、解答题(25题12分,26题12分.共24分)25.请阅读下列材料:已知:如图1在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45度.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,并对你的猜想给予证明;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图2,其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明.26.如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC 变化吗?若变化,请说明理由;若不变,则求出它的度数.2015-2016学年重庆市渝北区龙塔实验学校八年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【专题】几何图形问题.【分析】根据轴对称图形的概念结合4个汽车标志图案的形状求解.【解答】解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故选D.【点评】本题考查了轴对称图形的知识,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.在平面直角坐标系中,点P(﹣2,3)关于x轴的对称点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】关于x轴、y轴对称的点的坐标.【分析】首先根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得对称点的坐标,再根据坐标符号判断所在象限即可.【解答】解:点P(﹣2,3)关于x轴的对称点为(﹣2,﹣3),(﹣2,﹣3)在第三象限.故选:C.【点评】此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化特点.3.计算a6(a2)3的结果等于()A.a11B.a12C.a14D.a36【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】首先利用幂的乘方运算法则化简,进而利用同底数幂的乘法运算法则求出即可.【解答】解:a6(a2)3=a6•a6=a12.故选:B.【点评】此题主要考查了幂的乘方运算和同底数幂的乘法运算,正确掌握运算法则是解题关键.4.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【考点】全等三角形的判定.【分析】全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.5.等腰三角形一腰上的高与另一腰的夹角为40°,则它的底角的度数是()A.50° B.65° C.25° D.65°或25°【考点】等腰三角形的性质;三角形内角和定理.【专题】计算题.【分析】从锐角三角形和钝角三角形两种情况,利用三角形内角和定理即可求出它的底角的度数.【解答】解:在三角形ABC中,设AB=AC BD⊥AC于D①若是锐角三角形,∠A=90°﹣40°=50°底角=(180°﹣50°)÷2=65°②若三角形是钝角三角形,∠A=40°+90°=130°此时底角=(180°﹣130°)÷2=25°所以等腰三角形底角的度数是65°或者25°.【点评】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和应用,此题的关键是熟练掌握三角形内角和定理.6.一个三角形的两边长分别为3cm和7cm,则此三角形第三边长可能是()A.3cm B.4cm C.7cm D.11cm【考点】三角形三边关系.【分析】首先设第三边长为xcm,根据三角形的三边关系可得7﹣3<x<7+3,再解不等式即可.【解答】解:设第三边长为xcm,根据三角形的三边关系可得:7﹣3<x<7+3,解得:4<x<10,故答案为:C,【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.7.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是()A.20° B.40° C.50° D.60°【考点】线段垂直平分线的性质.【分析】由∠BAC的大小可得∠B与∠C的和,再由线段垂直平分线,可得∠BAP=∠B,∠QAC=∠C,进而可得∠PAQ的大小.【解答】解:∵∠BAC=110°,∴∠B+∠C=70°,又MP,NQ为AB,AC的垂直平分线,∴∠BAP=∠B,∠QAC=∠C,∴∠BAP+∠CAQ=70°,∴∠PAQ=∠BAC﹣∠BAP﹣∠CAQ=110°﹣70°=40°故选:B.【点评】本题考查了线段垂直平分线的性质;要熟练掌握垂直平分线的性质,能够求解一些简单的计算问题.8.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40° B.50° C.60° D.75°【考点】直角三角形全等的判定;全等三角形的性质.【分析】本题要求∠2,先要证明Rt△ABC≌Rt△ADC(HL),则可求得∠2=∠ACB=90°﹣∠1的值.【解答】解:∵∠B=∠D=90°在Rt△ABC和Rt△ADC中∴Rt△ABC≌Rt△ADC(HL)∴∠2=∠ACB=90°﹣∠1=50°.故选B.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.9.如图,∠BAC=30°,AM是∠BAC的平分线,过M作ME∥BA 交AC于E,作MD⊥BA,垂足为D,ME=10cm,则MD的长()A.10cm B.5cm C.3cm D.7cm【考点】角平分线的性质;含30度角的直角三角形.【分析】作MF⊥AC于F,根据平行线的性质得到∠MEF=∠BAC=30°,根据直角三角形的性质得到MF=5cm,根据角平分线的性质解答即可.【解答】解:作MF⊥AC于F,∵ME∥BA,∴∠MEF=∠BAC=30°,∴MF=ME=5cm,∵AM是∠BAC的平分线,MD⊥BA,MF⊥AC,∴MD=MF═5cm,故选:B.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.68【考点】全等三角形的判定与性质.【专题】压轴题.【分析】由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;同理证得△BGC≌△DHC,GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.【解答】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故选A.【点评】本题考查的是全等三角形的判定的相关知识,是中考常见题型.11.如图,用火柴摆上系列图案,按这种方式摆下去,当每边摆10根时(即n=10)时,需要的火柴棒总数为()根.A.165 B.65 C.110 D.55【考点】规律型:图形的变化类;三角形.【专题】规律型.【分析】图形从上到下可以分成几行,第n行中,斜放的火柴有2n根,下面横放的有n根,因而图形中有n排三角形时,火柴的根数是:斜放的是2+4+…+2n=2(1+2+…+n),横放的是:1+2+3+…+n,则每排放n根时总计有火柴数是:3(1+2+…+n)=.把n=10代入就可以求出.【解答】解:根据题意得出规律每排放n根时总计有火柴数是:3(1+2+…+n)=,当每边摆10根(即n=10)时,需要的火柴棒总数为=165.故选A.【点评】观察图形总结出规律是解决本题的关键.12.如图,△ABC中,∠ACB=90°,D为AB上任一点,过D作AB的垂线,分别交边AC、BC的延长线于E、F两点,∠BAC、∠BFD的平分线交于点I,AI交DF于点M,FI交AC于点N,连接BI.下列结论:①∠BAC=∠BFD;②∠ENI=∠EMI;③AI⊥FI;④∠ABI=∠FBI;其中正确结论的个数是()A.1个B.2个C.3个D.4个【考点】三角形内角和定理;三角形的外角性质.【分析】先根据∠ACB=90°可知∠DBF+∠BAC=90°,再由FD⊥AB可知∠BDF=90°,所以∠DBF+∠BFD=90°,通过等量代换即可得出∠BAC=∠BFD,故①正确;根据∠BAC=∠BFD,∠BAC、∠BFD的平分线交于点I可知∠EFN=∠EAM,再由对顶角相等可知∠FEN=∠AEM,根据三角形外角的性质即可判断出∠ENI=∠EMI,故②正确;由①知∠BAC=∠BFD,因为∠BAC、∠BFD的平分线交于点I,故∠MAD=∠MFI,再根据∠AMD=∠FMI可知,∠AIF=∠ADM=90°,即AI⊥FI,故③正确;因为BI不是∠B的平分线,所以∠ABI≠∠FBI,故④错误.【解答】解:∵∠ACB=90°,∴∠DBF+∠BAC=90°,∵FD⊥AB,∴∠BDF=90°,∴∠DBF+∠BFD=90°,∴∠BAC=∠BFD,故①正确;∵∠BAC=∠BFD,∠BAC、∠BFD的平分线交于点I,∴∠EFN=∠EAM,∵∠FEN=∠AEM,∴∠ENI=∠EMI,故②正确;∵由①知∠BAC=∠BFD,∠BAC、∠BFD的平分线交于点I,∴∠MAD=∠MFI,∵∠AMD=∠FMI,∴∠AIF=∠ADM=90°,即AI⊥FI,故③正确;∵BI不是∠B的平分线,∴∠ABI≠∠FBI,故④错误.故选C.【点评】本题考查的是三角形内角和定理及三角形外角的性质,熟知三角形的内角和等于180°是解答此题的关键.二、填空题(本大题共6小题,每小题4分,共24分)13.小明从镜子中看到对面电子钟如图所示,这时的时刻应是10:51 .【考点】镜面对称.【专题】几何图形问题.【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际时间.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是10:51.故答案为:10:51.【点评】考查镜面对称,得到相应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反,注意2的对称数字为5.14.若点P(﹣2a,a﹣1)在y轴上,则点P的坐标为(0,﹣1),点P关于x轴对称的点为(0,1).【考点】关于x轴、y轴对称的点的坐标.【专题】计算题.【分析】根据坐标的特点,已知点A在y轴上,所以x值为0,根据题意得﹣2a=0,得出a的值,求出P点的坐标,根据坐标平面内两个点关于x轴对称,则横坐标不变,纵坐标互为相反数,求出与点P关于x轴对称的点.【解答】解:根据题意,点P(﹣2a,a﹣1)在y轴上,得出﹣2a=0,∴a=0,∴a﹣1=0﹣1=﹣1,∴P点的坐标为(0,﹣1),∵平面内两个点关于x轴对称,则横坐标不变,纵坐标互为相反数,∴点P关于x轴对称的点为(0,1),故答案为(0,﹣1),(0,1).【点评】本题考查了平面直角坐标系中坐标的特点,以及根据坐标平面内两个点关于x轴对称,则横坐标不变,纵坐标互为相反数,难度不大.15.如图,把一张矩形纸片ABCD沿对角线BD折叠,使C点落在C′,且BC′与AD交于E点,若∠ABE=40°,则∠ADB= 25°.【考点】翻折变换(折叠问题).【分析】首先根据矩形的性质可得∠ABC=90°,AD∥BC,进而可以计算出∠EBC,再根据折叠可得∠EBD=∠CBD=∠EBC,然后再根据平行线的性质可以计算出∠ADB的度数.【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,∵∠ABE=40°,∴∠EBC=90°﹣40°=50°,根据折叠可得∠EBD=∠CBD,∴∠CBD=25°,∵AD∥BC,∴∠ADB=∠DBC=25°,故答案为:25°.【点评】此题主要考查了图形的折叠,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16.若等腰三角形的周长为26cm,一边为11cm,则腰长为7.5cm或11cm .【考点】等腰三角形的性质;三角形三边关系.【分析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【解答】解:①当11cm为腰长时,则腰长为11cm,底边=26﹣11﹣11=4cm,因为11+4>11,所以能构成三角形;②当11cm为底边时,则腰长=(26﹣11)÷2=7.5cm,因为7.5+7.5>11,所以能构成三角形.故答案为:7.5cm或11cm.【点评】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.17.已知,AD是△ABC中BC边上的中线,若AB=3,AD=2,则AC的取值范围是1<AC<7 .【考点】三角形三边关系;全等三角形的判定与性质.【分析】延长AD至E,使DE=AD,连接CE.根据SAS证明△ABD≌△ECD,得CE=AB,再根据三角形的三边关系即可求解.【解答】解:延长AD至E,使DE=AD,连接CE.∵BD=CD,∠ADB=∠EDC,AD=DE,∴△ABD≌△ECD,∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即3﹣AC<4<3+AC,∴1<AC<7.故答案为1<AC<7.【点评】此题综合运用了全等三角形的判定和性质、三角形的三边关系.注意:倍长中线是常见的辅助线之一.18.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C 沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠CFE为65 度.【考点】等腰三角形的性质;角平分线的性质;线段垂直平分线的性质.【分析】连接OB、OC,根据角平分线的定义求出∠BAO,根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得∠ABO=∠BAO,再求出∠OBC,然后判断出点O是△ABC的外心,根据三角形外心的性质可得OA=OC,再根据等边对等角求出∠OCA=∠OAC,根据翻折的性质可得OF=CF,然后根据等边对等角求出∠COF,再利用三角形的内角和定理和翻折的性质列式计算即可得解.【解答】解:如图,连接OB、OC,∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=∠CAO=∠BAC=×50°=25°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣50°)=65°,∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC﹣∠ABO=65°﹣25°=40°,∵AO为∠BAC的平分线,AB=AC,∴△AOB≌△AOC(SAS),∴OB=OC,∴点O在BC的垂直平分线上,又∵DO是AB的垂直平分线,∴点O是△ABC的外心,∴OA=OC,∴∠OCA=∠OAC=25°,根据翻折的性质可得OF=CF,∴∠COF=∠OCF=25°,∴∠OFC=130°,∴∠CFE=65°.故答案为:65.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.三、解答题(本大题共2小题,19题8分,20题6分,共14分)19.计算:(1)(﹣5a3b2)•(﹣3ab2c)•(﹣7a2b);(2)3a2(ab2﹣b)﹣(2a2b2﹣3ab)(﹣3a).【考点】整式的混合运算.【分析】(1)根据单项式乘以单项式法则进行即可;(2)先算乘法,再合并同类项即可.【解答】解:(1)(﹣5a3b2)•(﹣3ab2c)•(﹣7a2b)=﹣105a3+1+2b2+2+1c=﹣105a6b5c;(2)3a2(ab2﹣b)﹣(2a2b2﹣3ab)(﹣3a)=3a3b2﹣3a2b+6a3b2﹣9a2b=9a3b2﹣12a2b.【点评】本题考查了整式的混合运算的应用,能正确根据整式的运算法则进行化简是解此题的关键,注意运算顺序.20.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.【考点】作图-轴对称变换.【分析】(1)关于轴对称的两个图形,各对应点的连线被对称轴垂直平分.做BM⊥直线l于点M,并延长到B1,使B1M=BM,同法得到A,C的对应点A1,C1,连接相邻两点即可得到所求的图形;(2)由图得四边形BB1 C1C是等腰梯形,BB1=4,CC1=2,高是4,根据梯形的面积公式进行计算即可.【解答】解(1)如图,△A1B1C1是△ABC关于直线l的对称图形.(2)由图得四边形BB1C1C是等腰梯形,BB1=4,CC1=2,高是4.∴S四边形BB1C1C=,==12.【点评】此题主要考查了作轴对称变换,在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:①由已知点出发向所给直线作垂线,并确定垂足;②直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;③连接这些对称点,就得到原图形的轴对称图形.四、解答题(本大题共4小题,每小题10分,共40分)21.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=5cm,DE=3cm,你知道BE的长吗?【考点】全等三角形的判定与性质.【分析】易证△ACD≌△CBE,即可求得AD=CE,BE=CD,即可解题.【解答】解:∵∠BCE+∠ACD=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,∵在△BCE和△ACD中,,∴△BCE≌△ACD,(AAS)∴AD=CE,BE=CD∴BE=CD=CE﹣DE=AD﹣DE=2cm.【点评】本题考查了全等三角形的判定和全等三角形对应边相等的性质,本题中求证△BCE≌△ACD 是解题的关键.22.已知点A(2a﹣b,5+a),B(2b﹣1,﹣a+b).(1)若点A、B关于x轴对称,求a、b的值;(2)若A、B关于y轴对称,求﹙4a+b﹚2014的值.【考点】关于x轴、y轴对称的点的坐标.【分析】(1)根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得2a﹣b=2b﹣1,5+a﹣a+b=0,解可得a、b的值;(2)根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得2a﹣b+2b﹣1=0,5+a=﹣a+b,解出a、b的值,进而可得答案.【解答】解:(1)∵点A、B关于x轴对称,∴2a﹣b=2b﹣1,5+a﹣a+b=0,解得:a=﹣8,b=﹣5;(2)∵A、B关于y轴对称,∴2a﹣b+2b﹣1=0,5+a=﹣a+b,解得:a=﹣1,b=3,﹙4a+b﹚2014=1.【点评】此题主要考查了关于x、y轴对称的点的坐标,关键是掌握点的坐标的变化规律.23.附加题:如图,在四边形ABCD中,点E是BC的中点,点F是CD的中点,且AE⊥BC,AF⊥CD.(1)求证:AB=AD;(2)请你探究∠EAF,∠BAE,∠DAF之间有什么数量关系?并证明你的结论.【考点】线段垂直平分线的性质.【专题】证明题;探究型.【分析】(1)连接AC,根据题意易得AE、AF是BC、CD的垂直平分线,可得AB=AC,AD=AC,可证出AB=AD.(2)根据等腰三角形的性质解答即可.【解答】(1)证明:连接AC,∵点E是BC的中点,AE⊥BC,∴AB=AC,∵点F是CD的中点,AF⊥CD,∴AD=AC,∴AB=AD.(2)∴∠EAF=∠BAE+∠DAF.证明∵由(1)知AB=AC,即△ABC为等腰三角形.∵AE⊥BC,(已知),∴∠BAE=∠EAC(等腰三角形的三线合一).同理,∠CAF=∠DAF.∴∠EAF=∠EAC+∠FAC=∠BAE+∠DAF.【点评】此题考查的是线段的垂直平分线的性质及等腰三角形的性质等几何知识.解答此题的关键是连接AC,构造出等腰三角形.24.如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE(1)求证:BE=CE;(2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD.【考点】等腰梯形的性质;全等三角形的判定与性质.【专题】证明题;压轴题.【分析】(1)由已知等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,可推出△BAE≌△CDE,得证.(2)首先延长CD和BE交点H,通过证明三角形全等,证得BG=DG+CD【解答】证明:(1)已知等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,∴AB=DC,∠BAE=∠CDE,AE=DE,在△BAE与△CDE中,,∴△BAE≌△CDE,∴BE=CE;(2)延长CD和BE的延长线交于H,∵BF⊥CD,∠HEC=90°,∴∠EBF+∠H=∠ECH+∠H=90°∴∠EBF=∠ECH,又∵∠BEC=∠CEH=90°,BE=CE(已证),∴△BEG≌△CEH,∴EG=EH,BG=CH=DH+CD,∵△BAE≌△CDE(已证),∴∠AEB=∠GED,∠HED=∠AEB,∴∠GED=∠HED,又∵EG=EH(已证),ED=ED,∴△GED≌△HED,∴DG=DH,∴BG=DG+CD.【点评】此题考查的知识点是等腰梯形的性质和全等三角形的判定与性质,此题的关键是由等腰梯形的性质证明三角形全等推出结论.五、解答题(25题12分,26题12分.共24分)25.请阅读下列材料:已知:如图1在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45度.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,并对你的猜想给予证明;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图2,其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明.【考点】全等三角形的判定;等腰三角形的性质;旋转的性质.【专题】阅读型;动点型;探究型.【分析】(1)根据△AEC绕点A顺时针旋转90°得到△ABE’根据旋转的性质,可知△AEC≌△ABE′得到BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,根据Rt△ABC中的,AB=AC得到∠E′BD=90°所以E′B2+BD2=E′D2,证△AE′D≌△AED,利用DE=DE′得到DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立,可类比(1)的证明方法求证即可.【解答】(1)猜想:DE2=BD2+EC2,证明:根据△AEC绕点A顺时针旋转90°得到△ABE′,∴△AEC≌△ABE′,∴BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,在Rt△ABC中,∵AB=AC,∴∠ABC=∠ACB=45°,∴∠ABC+∠ABE′=90°,即∠E′BD=90°,∴E′B2+BD2=E′D2,又∵∠DAE=45°,∴∠BAD+∠EAC=45°,∴∠E′AB+∠BAD=45°,即∠E′AD=45°,∴△AE′D≌△AED,∴DE=DE′,∴DE2=BD2+EC2.(2)结论:关系式DE2=BD2+EC2仍然成立.证明:作∠FAD=∠BAD,且截取AF=AB,连接DF,连接FE,∴△AFD≌△ABD,∴AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠FAE=∠FAD+∠DAE=∠FAD+45°,∠EAC=∠BAC﹣∠BAE=90°﹣(∠DAE﹣∠DAB)=45°+∠DAB,∴∠FAE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°﹣∠ABC=135°,∴∠DFE=∠AFD﹣∠AFE=135°﹣45°=90°,∴在Rt△DFE中,DF2+FE2=DE2,即DE2=BD2+EC2.【点评】本题考查旋转的知识,三角形全等的判定方法和性质已经等边三角形的性质.判定两个三推荐学习K12资料角形全等的一般方法有:SSS、SAS、SSA、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.利用全等来证明相等的线段是常用的方法之一.26.如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC 变化吗?若变化,请说明理由;若不变,则求出它的度数.【考点】等边三角形的性质;全等三角形的判定与性质.【分析】(1)根据等边三角形的性质,利用SAS证明△ABQ≌△CAP;(2)由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=60°;(3)由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=120°.【解答】(1)证明:∵△ABC是等边三角形∴∠ABQ=∠CAP,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,∵,∴△ABQ≌△CAP(SAS);(2)解:点P、Q在运动的过程中,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠QMC=∠BAQ+∠MAC=∠BAC=60°…(6分)(3)解:点P、Q在运动到终点后继续在射线AB、BC上运动时,∠QMC不变.(7分)理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠BAQ+∠APM,∴∠QMC=∠ACP+∠APM=180°﹣∠PAC=180°﹣60°=120°.【点评】此题是一个综合性题目,主要考查等边三角形的性质、全等三角形的判定与性质等知识.推荐学习K12资料。
2011-2012学年度第二学期八年级期中考试数学试题及参考答案

2011-2012学年第二学期期中考试八 年 级 数 学 试 卷(满分:100分 时间:100分钟 )一、选择题(每题3分,共30分)1.在式子1a 、2xy π、2334a b c 、56x +、78x y+、109x y +中,分式的个数有( )A 、2个B 、3个C 、4个D 、5个2.已知在□ABCD 中,AD =3cm ,AB =2 cm ,则□ABCD 的周长等于 ( ) A .10cm B .6cm C .5cm D .4cm3. 函数21-=x y 的自变量x 的取值范围是 ( ) A.x >-2 B.x <2 C.x ≠2 D.x ≠-2。
4. 下列各组数中,以a 、b 、c 为边的三角形不是直角三角形的是 ( ) A . 1.5,2,3a b c === B . 7,24,25a b c === C . 6,8,10a b c === D. 3,4,5a b c ===5. 反比例函数)0(≠=k xky 的图象经过点(2-,3),则它还经过点 ( )A. (6,1-)B.(1-,6-) C. (3,2) D.(2,3)6.下面正确的命题中,其逆命题不成立的是 ( ) A .旁内角互补,两直线平行 B.三角形的对应边相等C .对顶角相等 D.角平分线上的点到这个角的两边的距离相等 7.如图所示:数轴上点A 所表示的数为a ,则a 的值是A .+1 C 学校 班级 姓名: 学号AMNCB 8. 某单位向一所希望小学赠送1080件文具,现用A 、B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个。
设B 型包装箱每个可以装x 件文具,根据题意列方程为 ( ) A .1080x =1080x -15+12 B .1080x =1080x -15-12C .1080x =1080x +15-12D .1080x =1080x +15+129.如图,点P (3a ,a )是反比例函y =kx(k >0)与⊙O 阴影部分的面积为10π,则反比例函数的解析式为 ( A .y =3x B .y =5x C .y =10x D .y =12x10. 如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 中点,MN ⊥AC 于点N ,则MN 等于 ( ) A.65 B. 95 C. 125 D. 165二、细心填一填:(每题3分,共30分)11. 根据里氏震级的定义,地震所释放出的相对能量E 与震级n 的关系为:E =10n ,那么5级地震所释放出的相对能量相当于9级地震所释放出的相对能量的 .(用科学记数法表示) 12. 解方程:xx x -=+--23123的结果是 。
2012学年第二学期八年级数学期中考试试卷(很好)

2012学年第二学期八年级数学期中考试试卷(考试时间90分钟,满分100分)一、选择题:(每题3分,共18分)1. 当0<m 时,一次函数m x y +-=3的图像经过 ( )A 一、二、三象限B 一、三、四象限C 一、二、四象限D 二、三、四象限2. 下列关于x 的方程中,一定有实数解的是 ( )A021=++x B x x -=-25 C01=+x D188-=-+-x x3. B A 、两地相距30千米,若甲、乙两车同时从A 地出发,甲车比乙车每小时快10千米,则甲车比乙车早7分钟到达目的地,设乙车的速度为x 千米/小时,则可列方程为( )A7103030=+-x x B 607103030=+-x x C 7301030=-+x x D 607301030=-+x x4. 能判定一个四边形是平行四边形的条件是 ( )A 一组对边平行,一组对角相等 B 一组对边平行,另一组对边相等 C 一组对边平行,一组邻角互补 D 一组对边相等,一组对角互补 5. 如图,直线1m 反映某公司产品的销售收入y 与销售量x 的关系,直线2m 反映该公司产品的销售成本y 与销售量x 的关系,从图像中可以看出该公司盈利时的销售量x 应当( )A 小于4件B 大于4件C 等于4件D 大于或等于4件6. 如图,直线834+-=x y 与x 轴、y 轴分别交于点A 、B ,M是OB 上的一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上的点B ′处,则直线AM 的解析式是 ( )A 432+-=x yB 41585+-=x yC 231+-=x yD 321+-=x y二、 填空题:(每题3分,共36分)7. 直线13-=x y 在y 轴上的截距是________________8. 多边形的每个内角都等于︒150,则此多边形为_____________边形 9. 若关于x 的方程13-=-m x 无解,则m 的取值范围是___________10 用换元法解分式方程5261322=-+-xx x x 时,若设y x x =-132,则原方程可化为关于y 的整式方程是________________ 11 方程x x -=-2的根是____________12 如图,在平行四边形ABCD 中,AB DE ⊥于点E ,BC DF ⊥于点F ,且468===DE BC AB ,,,则________DF =13 如果平行四边形ABCD 的周长为30厘米,10AB =厘米,那么_______BC = 14 一次函数的图像与直线23+-=x y 平行,它与y 轴的交点到x 轴的距离为5,则这个一次函数的解析式为_____________________15 在平面直角坐标系中,点A 的坐标为)2-1(,,点B 的坐标为)24(,,若点P 在x 轴上,且︒=∠90APB ,在点P 的坐标为___________16 已知:等腰三角形的周长为20,设它的腰长为x ,底边长为y ,则y 与x 的函数解析式是________________,定义域为_______________17 平行四边形一组邻边长为3厘米和6厘米,这两边的夹角是︒60,则平行四边形的面积是_______________18 已知:直线l 过点)42-(,,且与两坐标轴围成一个等腰三角形,则直线l 的函数解析式为____________ 三、简答题:(每题5分,共20分)19 解方程:x x =+12-2220 解方程:21122=--+x x x21 解关于x 的方程:)1(1222≠-=-a x a ax22 解方程组:⎩⎨⎧=+=++02596222xy x y xy x四、 解答题:(第23~25每题6分,第26题8分,共26分) 23 如图,已知:平行四边形ABCD 中,E 、F 分别是对角线BD 上的两点,且ED BF =, 求证:四边形AECF 是平行四边形24 为了将某市建设成为山水园林城市,市政府现将一工程包给某承建公司,该公司由甲、乙两个工程队,如果两队合作,这项工程共需4个月;如果先有甲队单独做3个月,剩下的工程有乙队单独完成,那么乙队还需做8个月才能完成这项工程,求甲、乙两队单独完成这项工程各需几个月?25 在直角坐标平面内有四条直线,直线321:1+=x y l 、221:2-=x y l 、3:3-=x l 、2:4=x l ,判定这四条直线围成的四边形的形状,并求出它的面积26 一次函数62-=x y 的图像经过点)A(2m ,、点)2(,n B , (1)求m 、n 的值;(2)已知:点Q 在y 轴上,若AQB ∆为等腰三角形,求点Q 的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B
D
C
M
N
E
F
C
B
A
D 一、精心选一选(大题共10小题,每小题3分,共30分)
1、下列图形:①三角形,②线段,③正方形,④直角.其中是轴对称图形的个数是( ) A .4个 B .3个 C .2个 D .1个
2、若
1
1-a 有意义,则a 的取值范围是( )
A.a>1 B.a ≥1 C . a≥0 D .a 为任何实数
3、如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定
△ABM≌△CDN 的是( ) A.∠M=∠N B. AM∥CN C.AB=CD
D. AM=CN
4、AD 是△ABC 的角平分线且交BC 于D ,过点D 作DE⊥AB 于E ,DF⊥AC 于F•,则下列结论不一定正确的是
( )
A .DE=DF
B .BD=CD
C .AE=AF
D .∠ADE=∠ADF
5、三角形中,到三边距离相等的点是( )
A.三条高线的交点 B.三条中线的交点 C .三条角平分线的交点
D .三边垂直平分线的交点。
6、等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标能确定的是
( )
A .横坐标
B .纵坐标
C .横坐标及纵坐标
D .横坐标或纵坐标
7、下列说法中,正确的是( )
A.有理数都是有限小数 B.无限小数就是无理数
C .实数包括有理数、无理数和零
D .无论是有理数还是无理数,都可以用数轴上的点来表示。
8、下列说法中正确的是( )
A. 实数2
a -是负数
B. a a
=2
C. a -一定是正数
D.实数a -的绝对值是a
9、如右图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF 等于( )
A
B
P O
A.5 B.4
C . 3
D .2
10、在下列各数:3.1415926、
100
49、0.2、
π
1
、7、11
131、327、中,无理数的个数( )
A 、2
B 、3
C 、4
D 、5
二、细心填一填(本大题共3小题,每小题3分,共30分) 11、已知点P (-3,4),关于x 轴对称的点的坐标为 。
12.︱35-︳的相反数是______________(用代数式表示)。
13、若x y
,为实数,且20x ++=,则2009
x y ⎛⎫
⎪
⎝⎭
的值为 。
14.如下图,直径为1
个单位长度的圆从原点沿数轴向右滚动一周(不滑动),圆上
的一点由原点到达点O′,点O′的坐标是
15、16的平方根是_______________ 。
16、如右图,点P 在∠AOB 的平分线上,若使△AOP≌△BOP,则需添 加的一个条件是 (只写一个即可,不添加辅助线)。
17、已知△ABC≌△A′B′C′,A 与A′,B 与B′是对应点,△A′B′C′周长为
9cm,AB=3cm ,BC=4cm ,则A′C′= cm 。
18、小明上午在理发店理发时,•从镜子内看到背后墙上普通时钟的时针与分针的位置如右图所示,此时时间是__________.
19、如下左图,在△ABC 中,AB=8,BC=6,AC 的垂直平分线MN 交AB 、AC 于点M 、N。
则△BCM 的周长为_________。
20、如下右图,在△ABC 中,∠ACB=90°,∠BAC=30°,在直线BC 或AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件的点P 共有_ __个。
(第18题图)
A
B
C 第19题
三、静心画一画(本大题共2小题,共11分)
21、(6分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图) (1)画出格点△ABC(顶点均在格点上)关于直线DE 对称的△A 1B 1C 1;(2分) (2)在DE 上画出点P ,使PC PB +1最小;(2分) (3)在DE 上画出点Q ,使QC QA +最小。
(2分)
22(5、C 的距离相等。
(1)若三所公寓A 、B 、C 的位置如图所示,请你在图中确定这处公共服务设施(用点P 表示)的位
置(尺规作图,保留作图痕迹,不写作法);(3分) (2)若∠BAC=56º,则∠BPC= º. (2分)
四、耐心求一求(本大题共5小题,共39分) 23、求下列式子的值:(5分)
(— 4)2 +23— 321-—2
7—38
24、(1)求x 值: 2542
=x (5分) (2)求x 值:027.0)7.0(3
=-x (5分)
25、(8分)已知:点B 、E 、C 、F 在同一直线上,AB =DE ,∠A =∠D ,AC ∥DF .求证:⑴ △ABC ≌△DEF
;⑵
BE =CF .
26、(8分)如图,在四边形ABCD
中BC=CD ,点E 是BC 的中点,点F 是CD 的中点,且AE⊥BC,AF⊥CD。
(1)求证:AB=AD 。
(2)请你探究∠EAF,∠BAE,∠DAF
27、(8分)如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C 、D
是垂足,连接CD ,且交OE 于点F.
(1)求证:OE 是CD 的垂直平分线.
(2)若∠AOB =60º,请你探究OE ,EF 之间有什么数量关系?并证明你的结论。
五、全心探一探:(10分)
28、如图15,(1)P 是等腰三角形ABC 底边BC 上的一人动点,过点P 作BC 的垂线,交AB 于点Q ,交CA 的延长线于点R 。
请观察AR 与AQ ,它们有何关系?并证明你的猜想。
(2)如果点P 沿着底边BC 所在的直线,按由C 向B 的方向运动到CB 的延长线上时,(1)中所得的结论还成立吗?请你在图15(2)中完成图形,并给予证明。
D。