【典型题】高中必修三数学上期末第一次模拟试卷(及答案)
【典型题】高中必修三数学上期末第一次模拟试题含答案

【典型题】高中必修三数学上期末第一次模拟试题含答案一、选择题1.在区间[]0,1上随机取两个数x ,y ,记P 为事件“23x y +≤”的概率,则(P = ) A .23B .12C .49 D .292.如图,ABC ∆和DEF ∆都是圆内接正三角形,且//BC EF ,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在ABC ∆内”,B 表示事件“豆子落在DEF ∆内”,则(|)P B A =( )A .334πB .32πC .13D .233.已知回归方程$21y x =+,而试验得到一组数据是(2,5.1),(3,6.9),(4,9.1),则残差平方和是( ) A .0.01B .0.02C .0.03D .0.044.执行如图的程序框图,那么输出的S 的值是( )A .﹣1B .12C .2D .15.执行如图的程序框图,如果输出a 的值大于100,那么判断框内的条件为( )A .5k <?B .5k ≥?C .6k <?D .6k ≥?6.执行如图所示的程序框图,如果输入的1a =-,则输出的S =A .2B .3C .4D .57.已知具有线性相关的两个变量,x y 之间的一组数据如下表所示:x0 1 2 3 4 y 2.24.34.54.86.7若,x y 满足回归方程 1.5ˆˆyx a =+,则以下为真命题的是( ) A .x 每增加1个单位长度,则y 一定增加1.5个单位长度 B .x 每增加1个单位长度,y 就减少1.5个单位长度 C .所有样本点的中心为(1,4.5) D .当8x =时,y 的预测值为13.58.要从其中有50个红球的1000个形状相同的球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( )A.5个B.10个C.20个D.45个9.执行如图的程序框图,如果输出的是a=341,那么判断框()k<A.4k<B.5k<C.6k<D.710.我国古代数学著作《九章算术》中,有这样一道题目:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?”下图是源于其思想的S=(单位:升),则输入的k=()一个程序框图,若输出的3A.9B.10C.11D.1211.已知统计某校1000名学生的某次数学水平测试成绩得到样本频率分布直方图如图所示,则直方图中实数a的值是()A .0.020B .0.018C .0.025D .0.0312.根据表中提供的全部数据,用最小二乘法得出y 关于x 的线性回归方程是9944y x =+$,则表中m 的值为( ) x 8 10 1112 14 y2125m2835A .26B .27C .28D .29二、填空题13.北京市某银行营业点在银行大厅悬挂着不同营业时间段服务窗口个数的提示牌,如图所示. 设某人到达银行的时间是随机的,记其到达银行时服务窗口的个数为X ,则()E X =______________.14.已知样本数据为40,42,40,a ,43,44,且这个样本的平均数为43,则该样本的标准差为_________.15.某篮球运动员在赛场上罚球命中率为23,那么这名运动员在赛场上的2次罚球中,至少有一次命中的概率为______.16.如果执行如图的程序框图,那么输出的S =__________.17.某单位有职工900人,其中青年职工450人,中年职工270人,老年职工180人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为10人,则样本容量为________.18.现有编号为1,2,3,…,100的100把锁,利用中国剩余定理的原理设置开锁密码,规则为:将锁的编号依次除以3,5,7所得的三个余数作为该锁的开锁密码,这样,每把锁都有一个三位数字的开锁密码.例如,编号为52的锁所对应的开锁密码是123,开锁密码为232所对应的锁的编号是23.若一把锁的开锁密码为203,则这把锁的编号是__________.19.某公司的班车在8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是__________20.取一根长度为3米的绳子,拉直后在任意位置剪断,则剪出的两段的长都不小于1米(记为事件A)的概率为________三、解答题21.已知一个口袋有3个白球,1个黑球,这些球除颜色外全部相同,现将口袋中的球随机逐个取出,并依次放入编号为1,2,3,4的抽屉内.(1)求编号为2的抽屉内放黑球的概率;(2)口袋中的球放入抽屉后,随机取出两个抽屉中的球,求取出的两个球是一黑一白的概率.22.某蔬果经销商销售某种蔬果,售价为每公斤25元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价以每公斤10元处理完.根据以往的销售情况,得到如图所示的频率分布直方图:(1)根据频率分布直方图计算该种蔬果日需求量的平均数x (同一组中的数据用该组区间中点值代表);(2)该经销商某天购进了250公斤这种蔬果,假设当天的需求量为x 公斤(0500)x ≤≤,利润为y 元.求y 关于x 的函数关系式,并结合频率分布直方图估计利润y 不小于1750元的概率.23.黄冈“一票通”景区旅游年卡,是由黄冈市旅游局策划,黄冈市大别山旅游公司推出的一项惠民工程,持有旅游年卡一年内可不限次畅游全市19家签约景区.为了解市民每年旅游消费支出情况(单位:百元),相关部门对已游览某签约景区的游客进行随机问卷调查,并把得到的数据列成如表所示的频数分布表: 组别 [)0,20[)20,40[)40,60[)60,80[)80,100频数1039040018812()1求所得样本的中位数(精确到百元);()2根据样本数据,可近似地认为市民的旅游费用支出服从正态分布()245,15N ,若该市总人口为750万人,试估计有多少市民每年旅游费用支出在7500元以上;()3若年旅游消费支出在40(百元)以上的游客一年内会继续来该景点游玩现从游客中随机抽取3人,一年内继续来该景点游玩记2分,不来该景点游玩记1分,将上述调查所得的频率视为概率,且游客之间的选择意愿相互独立,记总得分为随机变量X ,求X 的分布列与数学期望.(参考数据:()0.6827P X μσμσ-<<+≈,(22)0.9545P X μσμσ-<<+≈;(33)0.9973)P X μσμσ-<<+≈24.某公司为研究某产品的广告投入与销售收入之间的关系,对近五个月的广告投入x (万元)与销售收入y (万元)进行了统计,得到相应数据如下表: 广告投入x (万元) 9 10 8 11 12销售收入y (万元)21232120 25(1)求销售收入y关于广告投入x的线性回归方程y bx a=+$$$.(2)若想要销售收入达到36万元,则广告投入应至少为多少.参考公式:()()() 121ni iiniix x y ybx x∧==--=-∑∑,ˆˆ•a yb x=-25.某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,现用一种新配方做试验,生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:质量指标值[)75,85[)85,95[)95,105[)105,115[)115,125频数62638228(1)将答题卡上列出的这些数据的频率分布表填写完整,并补齐频率分布直方图;(2)估计这种产品质量指标值的平均值(同一组中的数据用该组区间的中点值作代表)与中位数(结果精确到0.1).质量指标值分组频数频率[)75,8560.06[)85,95[)95,105[)105,115[)115,125合计100126.口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.(Ⅰ)求甲赢且编号的和为6的事件发生的概率; (Ⅱ)这种游戏规则公平吗?试说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由题意结合几何概型计算公式求解满足题意的概率值即可. 【详解】如图所示,01,01x y ≤≤≤≤表示的平面区域为ABCD , 平面区域内满足23x y +≤的部分为阴影部分的区域APQ ,其中2,03P ⎛⎫ ⎪⎝⎭,20,3Q ⎛⎫⎪⎝⎭,结合几何概型计算公式可得满足题意的概率值为1222233119p ⨯⨯==⨯. 本题选择D 选项.【点睛】数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.2.D解析:D 【解析】如图所示,作三条辅助线,根据已知条件,这些小三角形全等,ABC ∆包含9 个小三角形,同时又在DEF ∆内的小三角形共有6 个,所以(|)P B A =6293= ,故选D. 3.C解析:C 【解析】 【分析】 【详解】 因为残差,所以残差的平方和为(5.1-5)2+(6.9-7)2+(9.1-9)2=0.03.故选C.考点:残差的有关计算.4.B解析:B 【解析】由题意可得:初如值S=2,k=2015, S=-1,k=2016<2018 S=12,k=2017<2018 2,2018S k ==输出2,选C.5.C解析:C 【解析】 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】由题意,模拟程序的运算,可得k 1=,a 1=满足判断框内的条件,执行循环体,a 6=,k 3= 满足判断框内的条件,执行循环体,a 33=,k 5= 满足判断框内的条件,执行循环体,a 170=,k 7=此时,不满足判断框内的条件,退出循环,输出a 的值为170. 则分析各个选项可得程序中判断框内的“条件”应为k 6<? 故选:C . 【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.6.B解析:B 【解析】 【详解】阅读流程图,初始化数值1,1,0a k S =-==. 循环结果执行如下:第一次:011,1,2S a k =-=-==; 第二次:121,1,3S a k =-+==-=; 第三次:132,1,4S a k =-=-==; 第四次:242,1,5S a k =-+==-=; 第五次:253,1,6S a k =-=-==; 第六次:363,1,7S a k =-+==-=, 结束循环,输出3S =.故选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.求解时,先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,如:是求和还是求项.7.D解析:D 【解析】 【分析】利用回归直线过样本点中心可求回归方程,根据该方程可得正确的选项. 【详解】由$$1.5y x a=+,得x 每增一个单位长度,y 不一定增加1.5,而是大约增加1.5个单位长度,故选项,A B 错误; 由已知表格中的数据,可知0123425x ++++==,2.2 4.3 4.5 4.8 6.74.55y ++++==,Q 回归直线必过样本的中心点()2,4.5,故C 错误;又4.5 1.52 1.5ˆˆa a =⨯+⇒=,∴回归方程为$1.5 1.5y x =+,当8x =时,y 的预测值为1.58 1.513.5⨯+=,故D 正确, 故选:D. 【点睛】本题考查线性回归方程的性质及应用,注意回归直线过(),x y ,本题属于基础题.8.A解析:A 【解析】应抽取红球的个数为5010051000⨯= ,选A. 点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .9.C解析:C 【解析】由程序框图可知a=4a+1=1,k=k+1=2; a=4a+1=5,k=k+1=3; a=4a+1=21,k=k+1=4; a=4a+1=85,k=k+1=5; a=4a+1=341;k=k+1=6.要使得输出的结果是a=341,判断框中应是“k<6?”.10.D解析:D 【解析】 【分析】计算出每次循环时各变量的值并与3S =比较后可得对应的k 的值. 【详解】1n =,S k =; 2n =,22k k S k =-=; 3n =,263k k k S =-=; 4n =,33124k k kS =-==,所以12k =. 故选:D. 【点睛】本题以数学文化为背景考虑流程图,此类问题应该根据流程图计算每次循环时各变量的值,从而可得程序终止的条件、输出的结果等,本题属于中档题.11.A解析:A【解析】【分析】由频率分布直方图的性质列方程,能求出a.【详解】由频率分布直方图的性质得:()100.0050.0150.0350.0150.0101a+++++=,解得0.020a=.故选A.【点睛】本题考查实数值的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.12.A解析:A【解析】【分析】首先求得x的平均值,然后利用线性回归方程过样本中心点求解m的值即可.【详解】由题意可得:810111214115x++++==,由线性回归方程的性质可知:99112744y=⨯+=,故21252835275m++++=,26m∴=.故选:A.【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x与y之间的关系,这条直线过样本中心点.二、填空题13.【解析】【分析】列出随机变量的分布列求解【详解】由题意知某人到达银行的概率为几何概型所以:其到达银行时服务窗口的个数为的分布列为:5 4 3 4 2 则【点睛】本题考查几何概型及随解析:3.5625【解析】 【分析】列出随机变量的分布列求解. 【详解】由题意知某人到达银行的概率为几何概型,所以: 其到达银行时服务窗口的个数为的分布列为:则()54342 3.56258161648E X =⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查几何概型及随机变量的分布列.14.【解析】【分析】由平均数的公式求得再利用方差的计算公式求得即可求解【详解】由平均数的公式可得解得所以方差为所以样本的标准差为【点睛】本题主要考查了样本的平均数与方差标准差的计算着重考查了运算与求解能解析:3【解析】 【分析】由平均数的公式,求得49a =,再利用方差的计算公式,求得2283s =,即可求解. 【详解】由平均数的公式,可得1(4042404344)436a +++++=,解得49a =, 所以方差为2222222128[(4043)(4243)(4043)(4343)(4343)(4443)]63s =-+-+-+-+-+-=,所以样本的标准差为3s =. 【点睛】本题主要考查了样本的平均数与方差、标准差的计算,着重考查了运算与求解能力,属于基础题.15.【解析】【分析】利用对立事件概率计算公式直接求解【详解】某篮球运动员在赛场上罚球命中率为这名运动员在赛场上的2次罚球中至少有一次命中的概率为故答案为【点睛】本题考查概率的求法考查对立事件概率计算公式解析:89【解析】 【分析】利用对立事件概率计算公式直接求解. 【详解】某篮球运动员在赛场上罚球命中率为23, ∴这名运动员在赛场上的2次罚球中,至少有一次命中的概率为022181()39p C =-=. 故答案为89. 【点睛】本题考查概率的求法,考查对立事件概率计算公式等基础知识,考查运算求解能力,是基础题.16.42【解析】【分析】输入由循环语句依次执行即可计算出结果【详解】当时当时当时当时当时当时故答案为42【点睛】本题主要考查了程序框图中的循环语句的运算求出输出值较为基础解析:42 【解析】 【分析】输入1k =,由循环语句,依次执行,即可计算出结果 【详解】当1k =时,0212S =+⨯= 当2k =时,021226S =+⨯+⨯= 当3k =时,021222312S =+⨯+⨯+⨯= 当4k =时,021********S =+⨯+⨯+⨯+⨯= 当5k =时,0212223242530S =+⨯+⨯+⨯+⨯+⨯= 当6k =时,021222324252642S =+⨯+⨯+⨯+⨯+⨯+⨯= 故答案为42 【点睛】本题主要考查了程序框图中的循环语句的运算,求出输出值,较为基础17.20【解析】青年职工中年职工老年职工三层之比为所以样本容量为故答案为20点睛:本题主要考查了分层抽样方法及其应用分层抽样中各层抽取个数依据各层个体数之比来分配这是分层抽样的最主要的特点首先各确定分层解析:20 【解析】青年职工、中年职工、老年职工三层之比为5:3:2,所以样本容量为102012=,故答案为20.点睛:本题主要考查了分层抽样方法及其应用,分层抽样中各层抽取个数依据各层个体数之比来分配,这是分层抽样的最主要的特点,首先各确定分层抽样的个数,分层后,各层的抽取一定要考虑到个体数目,选取不同的抽样方法,但一定要注意按比例抽取,牢记分层抽样的特点和方法是解答的关键,着重考查了学生的分析问题和解答问题的能力.18.80【解析】【分析】本道题一一列举把满足条件的编号一一排除即可【详解】该数可以表示为故该数一定是5的倍数所以5的倍数有5101520253035404550556065707580859095100解析:80 【解析】 【分析】本道题一一列举,把满足条件的编号一一排除,即可. 【详解】该数可以表示为32,5,73k m n ++,故该数一定是5的倍数,所以5的倍数有5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,该数满足减去3能够被7整除,只有10,45,80,而同时要满足减去2被3整除,所以只有80. 【点睛】本道题考查了列举法计算锁编号问题,难度一般.19.【解析】【分析】求出小明等车时间不超过10分钟的时间长度代入几何概型概率计算公式可得答案【详解】设小明到达时间为当在7:50至8:00或8:20至8:30时小明等车时间不超过10分钟故故答案为【点睛 解析:12【解析】 【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案. 【详解】设小明到达时间为y ,当y 在7:50至8:00,或8:20至8:30时, 小明等车时间不超过10分钟, 故201402P ==. 故答案为12. 【点睛】本题考查的知识点是几何概型,难度不大,属于基础题.20.13【解析】试题分析:记两段的长都不小于1m 为事件A 则只能在中间1m 的绳子上剪断剪得两段的长都不小于1m 所以事件A 发生的概率P (A )=考点:几何概型 解析:【解析】试题分析:记“两段的长都不小于1m”为事件A ,则只能在中间1m 的绳子上剪断,剪得两段的长都不小于1m , 所以事件A 发生的概率 P (A )=考点:几何概型三、解答题21.(1) 14P =.(2) 12P =. 【解析】 【分析】(1)4个球放入编号为1,2,3,4的抽屉里,有4种方法,满足题意的有1中,根据古典概型公式得到结果;(2)根据抽屉的编号,对于一种确定的放法,取法有6种情况,满足一白一黑的有3种情况,进而得到结果. 【详解】(1)将口袋中的3个白球,1个黑球,依次放入编号为1,2,3,4的抽屉内,共有4种不同的放法,分别是(白,白,白,黑),(白,白,黑,白),(白,黑,白,白),(黑,白,白,白),其中编号为2的抽屉内放黑球的情况有1种,所以编号为2的抽屉内放黑球的概率为14P =. (2)假设口袋内的球逐个依次取出放入抽屉内后是(白,白,白,黑),随机取出两个球,根据抽屉的编号,可能是()1,2,()1,3,()1,4,()2,3,()2,4,()3,4共6种,其中一黑一白的是()1,4,()2,4,()3,4共3种,所以取出的两个球是一黑一白的概率为12P =. 【点睛】 本题考查了古典概型公式的应用,对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可. 22.(1)265公斤 (2)0.7 【解析】 【分析】(1)用频率分布直方图的每一个矩形的面积乘以矩形的中点坐标求和即为平均值;(2)讨论日需求量与250公斤的关系,写出分段函数再利用频率分布直方图求概率即可. 【详解】 (1)500.00101001500.00201002500.00301003500.0025100x =⨯⨯+⨯⨯+⨯⨯+⨯⨯4500.0015100+⨯⨯ 265=故该种蔬果日需求量的平均数为265公斤.(2)当日需求量不低于250公斤时,利润()=2515250=2500y ⨯-元, 当日需求量低于250公斤时,利润()()=25152505=151250y x x x ---⨯-元所以151250,0250,2500,250500.x x y x -≤<⎧=⎨≤≤⎩由1750y ≥得,200500x ≤≤, 所以()1750P y ≥=()200500P x ≤≤=0.0030100+0.0025100+0.0015100=0.7⨯⨯⨯故估计利润y 不小于1750元的概率为0.7 .【点睛】本题主要考查了频率分布直方图的应用,做此类题的关键是理解题意,属于中档题. 23.()145(百元);()217.1万;()3分布列见解析,()245E X =. 【解析】 【分析】()1设样本的中位数为x ,可得()40103904000.510001000100020x -++⋅=,解得x ; ()245μ=,15σ=,275μσ+=,旅游费用支出在7500元以上的概率为()1(22)22P x P x μσμσμσ--<<+≥+=,即可估计有多少万市民旅游费用支出在7500元以上;()3由表格知一年内游客继续来该景点游玩的概率为35,X 可能取值为3,4,5,6,利用二项分布列即可得出. 【详解】解:()1设样本的中位数为x ,则()40103904000.510001000100020x -++⋅=, 解得45x =,所得样本中位数为45(百元);()245μ=,15σ=,275μσ+=,旅游费用支出在7500元以上的概率为()1(22)10.954420.022822P x P x μσμσμσ--<<+-≥+===,0.022875017.1⨯=,估计有17.1万市民旅游费用支出在7500元以上;()3由表格知一年内游客继续来该景点游玩的概率为35,X 可能取值为3,4,5,6.()3283()5125P X ===,()12332364()55125P X C ⎛⎫=== ⎪⎝⎭,()22332545()55125P X C ⎛⎫=== ⎪⎝⎭,()33276()5125P X ===,故其分布列为:()34561251251251255E X =⨯+⨯+⨯+⨯=. 【点睛】本题考查了二项分布列、互斥事件与对立事件的概率计算公式,考查了推理能力与计算能力,属于中档题.24.(1)71510ˆyx =+(2)30 【解析】 【分析】(1)由表中数据计算平均数和回归系数,求出y 关于x 的线性回归方程;(2)利用回归方程令715361ˆ0yx =+≥,求出x 的范围即可. 【详解】(Ⅰ)由题意知,10,22,x y ==()()()()()222221101211223710212ˆ10b-⨯-+⨯+-⨯-+⨯-+⨯==++++则,72210151ˆ0a∴=-⨯=, ∴ y 关于x 的线性回归方程为71510ˆy x =+. (Ⅱ)令715361ˆ0yx =+≥,则30x ≥,即广告投入至少为30(万元). 【点睛】本题考查了线性回归方程的求法与应用问题,是基础题. 25.(1)见解析; (2)100,99.7. 【解析】 【分析】(1)根据表格中的数据,可补全频率分布表,根据频率分布表中的频率除以组距求出纵坐标,从而可得频率分布直方图;(2)每个矩形的中点横坐标与该矩形的纵坐标相乘后求和可得平均值;先判断中位数x 在内[)95,105,利用()0.380.060.26950.510x ++-⨯=,从而可得结果. 【详解】(1)频率分布表和直方图如下: 质量指标值分组频数 频率 [)75,85 6 0.06 [)85,95 26 0.26 [)95,10538 0.38 [)105,115 22 0.22 [)115,1258 0.08 合计1001(2)质量指标值的样本平均数为800.06900.26x =⨯+⨯+ 1000.381100.22⨯+⨯+1200.08100⨯=.所以此产品质量指标值的平均数的估计值为100. 因为0.060.260.5+<,0.060.260.380.5++>, 所以中位数x 在内[)95,105, 则()0.380.060.26950.510x ++-⨯=,解得99.7x【点睛】本题主要考查频率分布直方图的应用,属于中档题. 直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标相乘后求和可得平均值;(4)直方图左右两边面积相等处横坐标表示中位数.26.(1)15(2)这种游戏规则不公平【解析】试题分析:(1)相当于两人掷含有个面的色子,共种情况,然后输入和为偶数,且和为的情况种数,然后用古典概型求概率;(2)偶数,就是甲胜,其他情况乙胜,分别算出甲胜的概率和乙胜的概率,比较是否相等,相等就公平,不相等就不公平.试题解析:解:(1)设“甲胜且编号的和为6”为事件.甲编号为,乙编号为,表示一个基本事件,则两人摸球结果包括(1,2),(1,3),…,(1,5),(2,1),(2,2),…,(5,4),(5,5)共25个基本事件;包括的基本事件有(1,5),(2,4),(3,3),(4,2),(5,1)共5个.∴.答:甲胜且编号的和为6的事件发生的概率为.(2)这种游戏不公平.设“甲胜”为事件,“乙胜”为事件.甲胜即两个编号的和为偶数所包含基本事件数为以下13个:(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5).所以甲胜的概率为,乙胜的概率为,∵,∴这种游戏规则不公平.考点:古典概型.。
【必考题】高中必修三数学上期末一模试卷(带答案)(1)

【必考题】高中必修三数学上期末一模试卷(带答案)(1)一、选择题1.将A ,B ,C ,D ,E ,F 这6个字母随机排成一排组成一个信息码,则所得信息码恰好满足A ,B ,C 三个字母连在一起,且B 在A 与C 之间的概率为( ) A .112B .15C .115D .2152.下面的程序框图表示求式子32×35×311×323×347×395的值, 则判断框内可以填的条件为( )A .90?i ≤B .100?i ≤C .200?i ≤D .300?i ≤3.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于A .14 B .13 C .12D .234.袋中装有红球3个、白球2个、黑球1个,从中随机摸出2个球,则与事件“至少有1个白球”互斥但不对立的事件是( ) A .没有白球 B .2个白球 C .红、黑球各1个D .至少有1个红球5.下列赋值语句正确的是( ) A .s =a +1 B .a +1=s C .s -1=a D .s -a =16.在半径为2圆形纸板中间,有一个边长为2的正方形孔,现向纸板中随机投飞针,则飞针能从正方形孔中穿过的概率为( ) A .4π B .3πC .2πD .1π7.执行如图所示的程序框图,若输入的a ,b ,c 依次为()sin sin αα,()cos sin αα,()sin cos αα,其中,42ππα⎛⎫∈⎪⎝⎭,则输出的x 为( )A .()cos cos ααB .()sin sin ααC .()cos sin ααD .()sin cos αα8.在某地的奥运火炬传递活动中,有编号为1,2,3,L ,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为( ).A .151 B .168 C .1306D .14089.执行如图的程序框图,如果输出a 的值大于100,那么判断框内的条件为( )A .5k <?B .5k ≥?C .6k <?D .6k ≥?10.太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化、相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被3sin6y x π=的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为( )A.136B.118C.112D.1911.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设D为BE中点,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是()A.17B.14C.13D.41312.执行如图的程序框图,若输出的4n ,则输入的整数p的最小值是()A.4B.5C.6D.15二、填空题13.若从甲、乙、丙、丁4位同学中选出2名代表参加学校会议,则甲、乙两人至少有一人被选中的概率为____.14.某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为_________15.现有编号为1,2,3,…,100的100把锁,利用中国剩余定理的原理设置开锁密码,规则为:将锁的编号依次除以3,5,7所得的三个余数作为该锁的开锁密码,这样,每把锁都有一个三位数字的开锁密码.例如,编号为52的锁所对应的开锁密码是123,开锁密码为232所对应的锁的编号是23.若一把锁的开锁密码为203,则这把锁的编号是__________.16.执行如图所示的程序框图,输出的值为__________.17.执行下面的程序框图,如果输入的0.02t =,则输出的n =_______________.18.在区间[,]-ππ内随机取出两个数分别记为a 、b ,则函数222()2f x x ax b π=+-+有零点的概率为__________.19.某种活性细胞的存活率(%)y 与存放温度()x C ︒之间具有线性相关关系,样本数据如下表所示: 存放温度()x C ︒ 10 4 -2 -8 存活率(%)y20445680经计算得回归直线的斜率为-3.2.若存放温度为6C ︒,则这种细胞存活率的预报值为__________%.20.某学校高一年级男生人数占该年级学生人数的45%,在一次考试中,男、女生平均分数依次为72、74,则这次考试该年级学生的平均分数为__________.三、解答题21.在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等. (1)求取出的两个球上标号为相同数字的概率;(2)若两人分别从甲、乙两个盒子中各摸出一球,规定:两人谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),这样规定公平吗?请说明理由.22.某高中为了了解高三学生每天自主参加体育锻炼的情况,随机抽取了100名学生进行调查,其中女生有55名.下面是根据调查结果绘制的学生自主参加体育锻炼时间的频率分布直方图:将每天自主参加体育锻炼时间不低于40分钟的学生称为体育健康A 类学生,已知体育健康A 类学生中有10名女生.(Ⅰ)根据已知条件完成下面22⨯列联表,并据此资料你是否认为达到体育健康A 类学生与性别有关?非体育健康A 类学生 体育健康A 类学生 合计男生女生合计(Ⅱ)将每天自主参加体育锻炼时间不低于50分钟的学生称为体育健康A +类学生,已知体育健康A +类学生中有2名女生,若从体育健康A +类学生中任意选取2人,求至少有1名女生的概率. 附:P (20K k ≥)0.05 0.010 0.005 0k3.8416.6357.879()()()()()22n ad bc k a c b d c d a b -=++++23.据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3 000人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表: 态度调查人群 应该取消 应该保留 无所谓 在校学生 2100人 120人 y 人 社会人士500人x 人z 人已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.06. (1)现用分层抽样的方法在所有参与调查的人中抽取300人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人,然后从这6人中随机抽取2人,求这2人中恰好有1个人为在校学生的概率.24.随着手机的普及,大学生迷恋手机的现象非常严重.为了调查双休日大学生使用手机的时间,某机构采用不记名方式随机调查了使用手机时间不超过10小时的50名大学生,将50人使用手机的时间分成5组:(]0,2,(]2,4,(]4,6,(]6,8,(]8,10分别加以统计,得到下表,根据数据完成下列问题: 使用时间/时 (]0,2(]2,4(]4,6(]6,8(]8,10大学生/人51015128(1)完成频率分布直方图,并根据频率分布直方图估计大学生使用手机时间的中位数(保留小数点后两位);(2)用分层抽样的方法从使用手机时间在区间(]0,2,(]2,4,(]4,6的大学生中抽取6人,再从这6人中随机抽取2人,求这2人取自不同使用时间区间的概率.25.某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:为了研究计算的方便,工作人员将上表的数据进行了处理,2010,5t x z y =-=-得到下表2: (Ⅰ)求z 关于t 的线性回归方程;(Ⅱ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?(附:对于线性回归方程ˆˆˆybx a =+,其中1221ˆˆˆ,ni ii nii x y nx yb ay bx xnx ==-⋅==--∑∑) 26.从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则实验结束(1)求第一次实验恰好摸到1个红球和1个白球的概率; (2)记实验次数为X ,求X 的分布列及数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】将A ,B ,C 三个字捆在一起,利用捆绑法得到答案. 【详解】由捆绑法可得所求概率为242466A A 1A 15P ==. 故答案为C 【点睛】本题考查了概率的计算,利用捆绑法可以简化运算.2.B解析:B 【解析】 【分析】根据题意可知该程序运行过程中,95i =时,判断框成立,191i =时,判断框不成立,即可选出答案。
【必考题】高中必修三数学上期末一模试卷(及答案)

【必考题】高中必修三数学上期末一模试卷(及答案)一、选择题1.将A ,B ,C ,D ,E ,F 这6个字母随机排成一排组成一个信息码,则所得信息码恰好满足A ,B ,C 三个字母连在一起,且B 在A 与C 之间的概率为( ) A .112B .15C .115D .2152.我国古代数学著作《九章算术》中,其意是:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?右图是源于其思想的一个程序框图,若输出的2S =(单位:升),则输入k 的值为A .6B .7C .8D .93.如图所给的程序运行结果为41S =,那么判断框中应填入的关于k 的条件是( )A .7k ≥?B .6k ≥?C .5k ≥?D .6k >?4.2018年12月12日,某地食品公司对某副食品店某半月内每天的顾客人数进行统计得到样本数据的茎叶图如图所示,则该样本的中位数是( )A .45B .47C .48D .635.《九章算术》是我国古代的数学名著,体现了古代劳动人民的数学智慧,其中第六章“均输”中,有一竹节容量问题,某教师根据这一问题的思想设计了如图所示的程序框图,若输出m 的值为67,则输入a 的值为( )A .7B .4C .5D .116.下列赋值语句正确的是( ) A .s =a +1 B .a +1=s C .s -1=a D .s -a =17.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是()0 1nn P P k =+(1k >-),n P 为预测人口数,0P 为初期人口数,k 为预测期内年增长率,n 为预测期间隔年数.如果在某一时期有10k -<<,那么在这期间人口数 A .呈下降趋势B .呈上升趋势C .摆动变化D .不变 8.执行如图所示的程序框图,若输入的a ,b ,c 依次为()sin sin αα,()cos sin αα,()sin cos αα,其中,42ππα⎛⎫∈⎪⎝⎭,则输出的x 为( )A .()cos cos ααB .()sin sin ααC .()cos sin ααD .()sin cos αα9.已知线段MN的长度为6,在线段MN上随机取一点P,则点P到点M,N的距离都大于2的概率为()A.34B.23C.12D.1310.如图,正方形ABNH、DEFM的面积相等,23CN NG AB==,向多边形ABCDEFGH内投一点,则该点落在阴影部分内的概率为()A.1 2B.3 4C.2 7D.3 811.赵爽是我国古代数学家、天文学家大约在公元222年赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的)类比“赵爽弦图”,赵爽弦图可类似地构造如图所示的图形,它是由个3全等的等边三角形与中间的一个小等边三角形组成的一个大等边三角形,设DF=2AF,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A.B.C.D.12.执行如图的程序框图,若输出的4n=,则输入的整数p的最小值是()A.4B.5C.6D.15二、填空题t=,则输出的k=______.13.某程序框图如图所示,若输入的414.为长方形,,,为的中点,在长方形内随机取一点,取到的点到的距离大于1的概率为________.15.如图是某算法流程图,则程序运行后输出S的值为____.i=)满足16.已知某产品连续4个月的广告费i x(千元)与销售额i y(万元)(1,2,3,44115 iix ==∑,4112 iiy ==∑,若广告费用x和销售额y之间具有线性相关关系,且回归直线方程为^y bx a=+,0.6b=,那么广告费用为5千元时,可预测的销售额为___万元. 17.变量X与Y相对应的5组数据和变量U与V相对应的5组数据统计如表:X1011.311.812.513U1011.311.812.513 Y12345V54321用b1表示变量Y与X之间的回归系数,b2表示变量V与U之间的回归系数,则b1与b2的大小关系是___.18.如图是一个算法的流程图,则输出的a的值是__________.19.某公司的班车在8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是__________20.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,L,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组没有疗效的有6人,则第三组中有疗效的人数为__________.三、解答题21.一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.(Ⅰ)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;(Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.22.为了鼓励市民节约用电,某市实行“阶梯式”电价,将每户居民的月用电量分为二档,月用电量不超过200度的部分按0.5元/度收费,超过200度的部分按0.8元/度收费.某小区共有居民1000户,为了解居民的用电情况,通过抽样,获得了今年7月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图.(1)求a的值;(2)试估计该小区今年7月份用电量用不超过260元的户数;(3)估计7月份该市居民用户的平均用电费用(同一组中的数据用该组区间的中点值作代表).23.2018年中秋节到来之际,某超市为了解中秋节期间月饼的销售量,对其所在销售范围内的1000名消费者在中秋节期间的月饼购买量(单位:g)进行了问卷调查,得到如下频率分布直方图:()1求频率分布直方图中a的值;()2以频率作为概率,试求消费者月饼购买量在600g1400g~的概率;()3已知该超市所在销售范围内有20万人,并且该超市每年的销售份额约占该市场总量的5%,请根据这1000名消费者的人均月饼购买量估计该超市应准备多少吨月饼恰好能满足市场需求(频率分布直方图中同一组的数据用该组区间的中点值作代表)?24.高一某班以小组为单位在周末进行了一次社会实践活动,且每小组有5名同学,活动结束后,对所有参加活动的同学进行测评,其中A,B两个小组所得分数如下表:A组8677809488B组9183?7593其中B组一同学的分数已被污损,看不清楚了,但知道B组学生的平均分比A组学生的平均分高出1分.(1)若从B组学生中随机挑选1人,求其得分超过85分的概率;(2)从A组这5名学生中随机抽取2名同学,设其分数分别为m,n,求||8m n-≤的概率.25.甲、乙两位同学参加数学应用知识竞赛培训,现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:(Ⅰ)分别估计甲、乙两名同学在培训期间所有测试成绩的平均分;(Ⅱ)从上图中甲、乙两名同学高于85分的成绩中各选一个成绩作为参考,求甲、乙两人成绩都在90分以上的概率;(Ⅲ)现要从甲、乙中选派一人参加正式比赛,根据所抽取的两组数据分析,你认为选派哪位同学参加较为合适?说明理由.26.某手机厂商在销售某型号手机时开展“手机碎屏险”活动.用户购买该型号手机时可选购“手机碎屏险”,保费为x元,若在购机后一年内发生碎屏可免费更换一次屏幕,为了合理确定保费x的值,该手机厂商进行了问卷调查,统计后得到下表(其中y表示保费为x元时愿意购买该“手机碎屏险”的用户比例):(1)根据上面的数据计算得()()5119.2i iix x y y=--=-∑,求出y关于x的线性回归方程;(2)若愿意购买该“手机碎屏险”的用户比例超过0.50,则手机厂商可以获利,现从表格中的5种保费任取2种,求这2种保费至少有一种能使厂商获利的概率.附:回归方程$$ˆy bx a=+中斜率和截距的最小二乘估计分别为()()()121ni iiniix x y ybx x==--=-∑∑$,$a y bx=-$【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】将A ,B ,C 三个字捆在一起,利用捆绑法得到答案. 【详解】由捆绑法可得所求概率为242466A A 1A 15P ==. 故答案为C 【点睛】本题考查了概率的计算,利用捆绑法可以简化运算.2.C解析:C 【解析】分析:执行程序框图,得到输出值4k S =,令24k=,可得8k =. 详解:阅读程序框图,初始化数值1,n S k ==,循环结果执行如下:第一次:14n =<成立,2,22k k n S k ==-=; 第二次:24n =<成立,3,263k k k n S ==-=; 第三次:34n =<成立,4,3124k k k n S ==-=; 第四次:44n =<不成立,输出24kS ==,解得8k =. 故选C.点睛:解决循环结构程序框图问题的核心在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.3.B解析:B 【解析】 【分析】程序运行结果为41S =,执行程序,当6k =时,判断条件成立,当5k =时,判断条件不成立,输出41S =,即可选出答案. 【详解】根据程序框图,运行如下: 初始10,1k S ==,判断条件成立,得到11011S =+=,1019k =-=; 判断条件成立,得到11920S =+=,918k =-=; 判断条件成立,得到20828S =+=,817k =-=; 判断条件成立,得到28735S =+=,716k =-=; 判断条件成立,得到35641S =+=,615k =-=; 判断条件不成立,输出41S =,退出循环,即6k ≥符合题意. 故选:B. 【点睛】本题考查了程序框图的识别与判断,弄清进入循环体和跳出循环体的条件是解决本题的关键,考查了学生的推理能力,属于基础题.4.A解析:A 【解析】 【分析】由茎叶图确定所给的所有数据,然后确定中位数即可. 【详解】各数据为:12 20 31 32 34 45 45 45 47 47 48 50 50 61 63, 最中间的数为:45,所以,中位数为45. 本题选择A 选项. 【点睛】本题主要考查茎叶图的阅读,中位数的定义与计算等知识,意在考查学生的转化能力和计算求解能力.5.C解析:C 【解析】模拟程序框图的运行过程,如下:输入a ,23m a =-,1i =,()223349m a a =--=-;2i =,()2493821m a a =--=-; 3i =,()282131645m a a =--=-; 4i =,()2164533293m a a =--=-;输出3293m a =-,结束; 令329367a -=,解得5a =. 故选C.6.A解析:A【解析】赋值语句的格式为“变量=表达式”,“=”的左侧只能是单个变量,B 、C 、D 都不正确.选A.7.A解析:A 【解析】 【分析】可以通过n P 与0P 之间的大小关系进行判断. 【详解】当10k -<<时,()011011nk k <+<<+<,, 所以()001nn P P k P =+<,呈下降趋势. 【点睛】判断变化率可以通过比较初始值与变化之后的数值之间的大小来判断.8.C解析:C 【解析】 【分析】由框图可知程序的功能是输出三者中的最大者,比较大小即可. 【详解】由程序框图可知a 、b 、c 中的最大数用变量x 表示并输出, ∵,42ππα⎛⎫∈⎪⎝⎭∴0cos α12sin α<<<<, 又()y xsin α=在R 上为减函数,y sin x α=在()0∞+,上为增函数, ∴()sin sin αα<()cos sin αα,()sin cos αα<()sin sin αα故最大值为()cos sin αα,输出的x 为()cos sin αα故选:C 【点睛】本题主要考查了选择结构.算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.9.D解析:D 【解析】根据题意画出图形,结合图形即可得出结论.【详解】如图所示,线段MN 的长度为6,在线段MN 上随机取一点P ,则点P 到点M ,N 的距离都大于2的概率为2163P ==. 故选D .【点睛】本题考查了几何概型的概率计算问题,是基础题. 10.C解析:C【解析】【分析】由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2,分别求出阴影部分的面积及多边形ABCDEFGH 的面积,由测度比为面积比得答案.【详解】 如图所示,由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2, 则阴影部分的面积为224⨯=,多边形ABCDEFGH 的面积为2332214⨯⨯-⨯=.则向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为42147=. 故选:C.【点睛】本题主要考查了几何概型的概率的求法,关键是求出多边形ABCDEFGH 的面积,着重考查了推理与运算能力,以及数形结合的应用,属于基础题.解析:B【解析】【分析】 由题意可得,设,求得,由面积比的几何概型,可知在大等边三角形中随机取一点,则此点取自小等边三角形的概率,即可求解.【详解】 由题意可得,设,可得, 在中,由余弦定理得, 所以,,由面积比的几何概型,可知在大等边三角形中随机取一点, 则此点取自小等边三角形的概率是,故选B. 【点睛】本题主要考查了面积比的几何概型,以及余弦定理的应用,其中解答中认真审题、把在大等边三角形中随机取一点,取自小等边三角形的概率转化为面积比的几何概型是解答的关键,着重考查了推理与运算能力,属于基础题. 12.A解析:A【解析】【分析】列举出算法的每一步循环,根据算法输出结果计算出实数p 的取值范围,于此可得出整数p 的最小值.【详解】0S p =<满足条件,执行第一次循环,0021S =+=,112n =+=;1S p =<满足条件,执行第二次循环,1123S =+=,213n =+=;3S p =<满足条件,执行第二次循环,2327S =+=,314n =+=.7S p =<满足条件,调出循环体,输出n 的值为4.由上可知,37p <≤,因此,输入的整数p 的最小值是4,故选A.【点睛】本题考查算法框图的应用,解这类问题,通常列出每一次循环,找出其规律,进而对问题进行解答,考查分析问题和解决问题的能力,属于中等题.二、填空题13.【解析】【分析】根据题意执行循环结构的程序框图逐次计算即可得到答案【详解】由题意执行程序框图:可得;第一循环不满足条件;第二次循环不满足条件;第三次循环不满足条件;第四次循环不满足条件;第五次循环不 解析:【解析】【分析】根据题意,执行循环结构的程序框图,逐次计算,即可得到答案.【详解】由题意执行程序框图:可得0S =, 8k =;第一循环,不满足条件,8S =,7k =;第二次循环,不满足条件,1S =,6k =;第三次循环,不满足条件,5S =,5k =;第四次循环,不满足条件0S =,4k =;第五次循环,不满足条件4S =,3k =,第六次循环,满足条件,输出3k =.【点睛】本题主要考查了循环结构的程序框图的计算输出问题,其中解答中根据给定的程序框图,逐次循环,逐次计算,注意把握判定条件是解答的关键,着重考查了推理与运算能力,属于基础题.14.1-π12【解析】【分析】由题意得长方形的面积为S=3×2=6以O 点为原型半径为1作圆此时圆在长方形内部的部分的面积为Sn=π2再由面积比的几何概型即可求解【详解】由题意如图所示可得长方形的面积为S 解析:【解析】【分析】 由题意,得长方形的面积为,以O 点为原型,半径为1作圆,此时圆在长方形内部的部分的面积为,再由面积比的几何概型,即可求解. 【详解】 由题意,如图所示,可得长方形的面积为,以O 点为原型,半径为1作圆,此时圆在长方形内部的部分的面积为, 所以取到的点到的距离大于1的表示圆的外部在矩形内部分部分, 所以概率为.【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A 的基本事件对应的“几何度量”,再求出总的基本事件对应的“几何度量”,然后根据求解,着重考查了分析问题和解答问题的能力.15.41【解析】【分析】根据给定的程序框图计算逐次循环的结果即可得到输出的值得到答案【详解】由题意运行程序框图可得第一次循环不满足判断框的条件;第二次循环不满足判断框的条件;第三次循环不满足判断框的条件解析:41【解析】【分析】根据给定的程序框图,计算逐次循环的结果,即可得到输出的值,得到答案。
【典型题】高中必修三数学上期末第一次模拟试题(含答案)(1)

【典型题】高中必修三数学上期末第一次模拟试题(含答案)(1)一、选择题1.某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100 名学生的数学成绩,发现都在[80,150]内现将这100名学生的成绩按照[80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150]分组后,得到的频率分布直方图如图所示则下列说法正确的是()A.频率分布直方图中a的值为 0.040B.样本数据低于130分的频率为 0.3C.总体的中位数(保留1位小数)估计为123.3分D.总体分布在[90,100)的频数一定与总体分布在[100,110)的频数不相等2.我国古代数学著作《九章算术》中,其意是:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?右图是源于其思想的一个程序S (单位:升),则输入k的值为框图,若输出的2A.6 B.7 C.8 D.93.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的观众称为“阅读霸”,则下列命题正确的是()A.抽样表明,该校有一半学生为阅读霸B.该校只有50名学生不喜欢阅读C.该校只有50名学生喜欢阅读D.抽样表明,该校有50名学生为阅读霸4.袋中装有红球3个、白球2个、黑球1个,从中随机摸出2个球,则与事件“至少有1个白球”互斥但不对立的事件是()A.没有白球B.2个白球C.红、黑球各1个D.至少有1个红球5.把化为五进制数是()A.B.C.D.a=-,则输出的S=6.执行如图所示的程序框图,如果输入的1A.2B.3C.4D.57.要从其中有50个红球的1000个形状相同的球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为()A.5个B.10个C.20个D.45个8.从0,1,2,3这四个数中任取两个不同的数组成一个两位数,则这个两位数是偶数的概率为()A.27B.57C.29D.599.从1,2,3,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是 ( ).A.①B.②④C.③D.①③10.执行如图所示的程序框图,若输入x=9,则循环体执行的次数为()A.1次B.2次C.3次D.4次11.已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为( )A.92,94B.92,86C.99,86D.95,9112.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为()A.48B.60C.64D.72二、填空题13.袋中装有大小相同的总数为5个的黑球、白球若从袋中任意摸出2个球,至少得到1个白球的概率是910,则从中任意摸出2个球,得到的都是白球的概率为______.14.小明通过做游戏的方式来确定接下来两小时的活动,他随机地往边长为1的正方形内扔一颗豆子,若豆子到各边的距离都大于14,则去看电影;若豆子到正方形中心的距离大于12,则去打篮球;否则,就在家写作业则小明接下来两小时不在家写作业的概率为______.(豆子大小可忽略不计)15.某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为_________16.如图所示,在边长为1的正方形OABC中任取一点M.则点M恰好取自阴影部分的概率是.17.将红、黄、蓝、白、黑5个小球分别放入红、黄、蓝、白、黑5个盒子里,每个盒子里放且只放1个小球,则红球不在红盒内且黄球不在黄盒内的概率是______.18.为了了解2100名学生早晨到校时间,计划采用系统抽样的方法从全体学生中抽取容量为100栋样本,则分段间隔为__________.19.一组样本数据按从小到大的顺序排列为:1,0,4,x,y,14,已知这组数据的平均数与中位数均为5,则其方差为__________.20.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,L,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组没有疗效的有6人,则第三组中有疗效的人数为__________.三、解答题21.在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相同数字的概率;(2)若两人分别从甲、乙两个盒子中各摸出一球,规定:两人谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),这样规定公平吗?请说明理由.22.随着经济全球化、信息化的发展,企业之间的竞争从资源的争夺转向人才的竞争.吸引、留住培养和用好人才成为人力资源管理的战略目标和紧迫任务.在此背景下,某信息网站在15个城市中对刚毕业的大学生的月平均收入薪资和月平均期望薪资做了调查,数据如图所示.(1)若某大学毕业生从这15座城市中随机选择一座城市就业,求该生选中月平均收人薪资高于8000元的城市的概率;(2)若从月平均收入薪资与月平均期望薪资之差高于1000元的城市中随机选择2座城市,求这2座城市的月平均期望薪资都高于8000元或都低于8000元的概率.23.据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3 000人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:态度调查人群应该取消应该保留无所谓在校学生2100人120人y人社会人士500人x人z人已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.06.(1)现用分层抽样的方法在所有参与调查的人中抽取300人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人,然后从这6人中随机抽取2人,求这2人中恰好有1个人为在校学生的概率.24.高一某班以小组为单位在周末进行了一次社会实践活动,且每小组有5名同学,活动结束后,对所有参加活动的同学进行测评,其中A,B两个小组所得分数如下表:A 组 86 77 80 94 88B 组9183?7593其中B 组一同学的分数已被污损,看不清楚了,但知道B 组学生的平均分比A 组学生的平均分高出1分.(1)若从B 组学生中随机挑选1人,求其得分超过85分的概率;(2)从A 组这5名学生中随机抽取2名同学,设其分数分别为m ,n ,求||8m n -≤的概率.25.用秦九韶算法求()543383f x x x x =+-25126x x ++-,当2x =时的值.26.某医疗器械公司在全国共有100个销售点,总公司每年会根据每个销售点的年销量进行评价分析.规定每个销售点的年销售任务为一万四千台器械.根据这100个销售点的年销量绘制出如下的频率分布直方图.(1)完成年销售任务的销售点有多少个?(2)若用分层抽样的方法从这100个销售点中抽取容量为25的样本,求该五组[2,6),[6,10),____________=,[14,18),[18,22),(单位:千台)中每组分别应抽取的销售点数量.(3)在(2)的条件下,从该样本中完成年销售任务的销售点中随机选取2个,求这两个销售点不在同一组的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】由频率分布直方图得的性质求出0.030a =;样本数据低于130分的频率为:0.7;[)80,120的频率为0.4,[)120,130的频率为0.3.由此求出总体的中位数(保留1位小数)估计为:0.50.41203123.30.3-+⨯≈分;样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等,总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等. 【详解】由频率分布直方图得:()0.0050.0100.0100.0150.0250.005101a ++++++⨯=,解得0.030a =,故A 错误;样本数据低于130分的频率为:()10.0250.005100.7-+⨯=,故B 错误;[)80,120的频率为:()0.0050.0100.0100.015100.4+++⨯=, [)120,130的频率为:0.030100.3⨯=.∴总体的中位数(保留1位小数)估计为:0.50.412010123.30.3-+⨯≈分,故C 正确; 样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等, 总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等,故D 错误.故选C . 【点睛】本题考查命题真假的判断,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.因为条形分布直方图的面积表示的是概率值,中位数是位于最中间的数,故直接找概率为0.5的即可;平均数是每个长方条的中点乘以间距再乘以长方条的高,将每一个数值相加得到.2.C解析:C 【解析】分析:执行程序框图,得到输出值4k S =,令24k=,可得8k =. 详解:阅读程序框图,初始化数值1,n S k ==,循环结果执行如下:第一次:14n =<成立,2,22k k n S k ==-=; 第二次:24n =<成立,3,263k k k n S ==-=; 第三次:34n =<成立,4,3124k k k n S ==-=; 第四次:44n =<不成立,输出24kS ==,解得8k =. 故选C.点睛:解决循环结构程序框图问题的核心在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.3.A解析:A【解析】【分析】根据频率分布直方图得到各个时间段的人数,进而得到结果.【详解】根据频率分布直方图可列下表:阅读时间[0,10)[10,20)[20,30)[30,40)[40,50)[50,60](分)抽样人数10182225205(名)故选A.【点睛】这个题目考查了频率分布直方图的实际应用,以及样本体现整体的特征的应用,属于基础题.4.C解析:C【解析】分析:写出从红球3个、白球2个、黑球1个中随机摸出2个球的取法情况,然后逐一核对四个选项即可得到答案详解:从红球3个、白球2个、黑球1个中随机摸出2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共五种情况则与事件“至少有1个白球”互斥但不对立的事件是红球,黑球各一个包括1红1白,1黑1白两种情况.故选C点睛:本题主要考查了互斥事件和对立事件,是基础的概念题,只要理解其概念,结合本题列举出所有情况即可得出结果.5.B解析:B【解析】【分析】利用倒取余数法可得化为五进制数.【详解】因为所以用倒取余数法得323,故选:B. 【点睛】本题考查十进制数和五进制数之间的转化,利用倒取余数法可解决此类问题.6.B解析:B 【解析】 【详解】阅读流程图,初始化数值1,1,0a k S =-==. 循环结果执行如下:第一次:011,1,2S a k =-=-==; 第二次:121,1,3S a k =-+==-=; 第三次:132,1,4S a k =-=-==; 第四次:242,1,5S a k =-+==-=; 第五次:253,1,6S a k =-=-==; 第六次:363,1,7S a k =-+==-=, 结束循环,输出3S =.故选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.求解时,先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,如:是求和还是求项.7.A解析:A 【解析】应抽取红球的个数为5010051000⨯= ,选A. 点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .8.D解析:D 【解析】 【分析】由题意列出所有可能的结果,然后结合古典概型计算公式可得概率值. 【详解】能组成两位数有:10,12,13,20,21,23,30,31,32,总共有9种情况.其中偶数有5种情况,故组成的两位数是偶数的概率为59p =. 故选:D . 【点睛】本题主要考查古典概型计算公式,属于中等题.9.C解析:C 【解析】 【分析】 【详解】根据题意,从1,2,3,…,9中任取两数,其中可能的情况有“两个奇数”,“两个偶数”,“一个奇数与一个偶数”三种情况;依次分析所给的4个事件可得,①、恰有一个偶数和恰有一个奇数都是“一个奇数与一个偶数”一种情况,不是对立事件;②、至少有一个奇数包括“两个奇数”与“一个奇数与一个偶数”两种情况,与两个都是奇数不是对立事件;③、至少有一个奇数包括“两个奇数”与“一个奇数与一个偶数”两种情况,和“两个都是偶数”是对立事件;④、至少有一个奇数包括“两个奇数”与“一个奇数与一个偶数”两种情况,至少有一个偶数包括“两个偶数”与“一个奇数与一个偶数”两种情况,不是对立事件. 故选C.10.C解析:C 【解析】 【分析】根据程序框图依次计算得到答案. 【详解】9,5x y ==,41y x -=>;115,3x y ==,413y x -=>; 1129,39x y ==,419y x -=<;结束. 故选:C . 【点睛】本题考查了程序框图的循环次数,意在考查学生的理解能力和计算能力.11.B解析:B 【解析】由茎叶图可知,中位数为92,众数为86. 故选B.12.B解析:B【解析】【分析】由(0.00500.00750.01000.0125)201a ++++⨯=,求出a ,计算出数据落在区间[90,110)内的频率,即可求解.【详解】由(0.00500.00750.01000.0125)201a ++++⨯=,解得0.015a =,所以数据落在区间[90,110)内的频率为0.015200.3⨯=,所以数据落在区间[90,110)内的频数2000.360⨯=,故选B.【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.二、填空题13.【解析】因为袋中装有大小相同的总数为5个的黑球白球若从袋中任意摸出2个球共有10种没有得到白球的概率为设白球个数为x 黑球个数为5-x 那么可知白球共有3个黑球有2个因此可知填写为 解析:310【解析】因为袋中装有大小相同的总数为5个的黑球、白球,若从袋中任意摸出2个球,共有10种,没有得到白球的概率为110,设白球个数为x,黑球个数为5-x,那么可知白球共有3个,黑球有2个,因此可知填写为14.【解析】【分析】根据题意画出图形求出写作业所对应的区域面积利用得到结果【详解】由题意可知当豆子落在下图中的空白部分时小明在家写作业大正方形面积;阴影正方形面积空白区域面积:根据几何概型可知小明不在家 解析:5π4- 【解析】【分析】根据题意画出图形,求出写作业所对应的区域面积,利用()()1P A P A =-得到结果.【详解】由题意可知,当豆子落在下图中的空白部分时,小明在家写作业∴大正方形面积111S =⨯=;阴影正方形面积1111224S =⨯= 空白区域面积:22111244S ππ-⎛⎫=⨯-= ⎪⎝⎭ 根据几何概型可知,小明不在家写作业的概率为:2514S P S π-=-= 本题正确结果:54π- 【点睛】本题考查几何概型中的面积型,属于基础题. 15.18【解析】【分析】由题意知抽样方法为系统抽样因此若第一组抽取号码为x 则第18组抽取的号码为即可解得【详解】因为抽样方法为系统抽样因此若第一组抽取号码为x 则第18组抽取的号码为解得【点睛】本题主要考解析:18【解析】【分析】由题意知,抽样方法为系统抽样,因此,若第一组抽取号码为x ,则第18组抽取的号码为1725443x +⨯=,即可解得.【详解】因为抽样方法为系统抽样,因此,若第一组抽取号码为x ,则第18组抽取的号码为1725443x +⨯=,解得18x =.【点睛】本题主要考查了系统抽样,属于中档题.16.【解析】试题分析:根据题意正方形的面积为而阴影部分由函数与围成其面积为则正方形中任取一点点取自阴影部分的概率为则正方形中任取一点点取自阴影部分的概率为考点:定积分在求面积中的应用几何概型点评:本题考 解析:【解析】试题分析:根据题意,正方形的面积为而阴影部分由函数与围成,其面积为,则正方形中任取一点,点取自阴影部分的概率为.则正方形中任取一点,点取自阴影部分的概率为考点:定积分在求面积中的应用 几何概型点评:本题考查几何概型的计算,涉及定积分在求面积中的应用,关键是正确计算出阴影部分的面积.17.65【解析】设红球不在红盒内且黄球不在黄盒内的概率为再设红球在红盒内的概率为黄球在黄盒内的概率为红球在红盒内且黄球在黄盒内的概率为则红球不在红盒且黄球不在黄盒由古典概型概率公式可得则即故答案为解析:65【解析】设红球不在红盒内且黄球不在黄盒内的概率为P ,再设红球在红盒内的概率为1P ,黄球在黄盒内的概率为2P ,红球在红盒内且黄球在黄盒内的概率为3P ,则()1231P P P P =-+-:P 红球不在红盒且黄球不在黄盒 由古典概型概率公式可得,1234!3!,5!5!P P P ===,则()1234!3!131125!5!20P P P P ⎛⎫=-+-=-⨯-= ⎪⎝⎭,即0.65P =,故答案为0.65. 18.【解析】【分析】根据系统抽样的特征求出分段间隔即可【详解】根据系统抽样的特征得:从2100名学生中抽取100个学生分段间隔为故答案是21【点睛】该题所考查的是有关系统抽样的组距问题应用总体除以样本容解析:21【解析】【分析】根据系统抽样的特征,求出分段间隔即可.【详解】根据系统抽样的特征,得:从2100名学生中抽取100个学生,分段间隔为210021100=, 故答案是21.【点睛】 该题所考查的是有关系统抽样的组距问题,应用总体除以样本容量等于组距,得到结果,属于简单题目.19.【解析】分析:根据中位数为求出是代入平均数公式可求出从而可得出平均数代入方差公式得到方差详解中位数为这组数据的平均数是可得这组数据的方差是故答案为点睛:本题主要考查平均数与方差属于中档题样本数据的算 解析:743【解析】分析:根据1,0,4,,,14x y -中位数为5,,求出x 是6 ,代入平均数公式,可求出7y =,从而可得出平均数,代入方差公式,得到方差.详解1,0,4,,7,14x -Q 中位数为45,52x +∴=,6x ∴=,∴这组数据的平均数是10461456y -+++++=,7y =可得这组数据的方差是()17436251148163+++++=,故答案为743. 点睛:本题主要考查平均数与方差,属于中档题.样本数据的算术平均数公式为12n 1(x +x +...+x )x n=.样本方差2222121[()()...()]n s x x x x x x n =-+-++-,标准差s = 20.12【解析】分析:由频率=以及直方图可得分布在区间第一组与第二组共有20人的频率即可求出第三组中有疗效的人数得到答案详解:由直方图可得分布在区间第一组和第二组共有20人分布唉区间第一组与第二组的频率解析:12【解析】分析:由频率=频数样本容量,以及直方图可得分布在区间第一组与第二组共有20人的频率,即可求出第三组中有疗效的人数得到答案.详解:由直方图可得分布在区间第一组和第二组共有20人,分布唉区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人第三组的频率为0.36,所以第三组的人数为18人,第三组中没有疗效的有6人,第三组由疗效的有12人.点睛:1、用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法,分布表在数量表示上比较准确,直方图比较直观.2、频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.三、解答题21.(1)14(2)这样规定公平,详见解析 【解析】【分析】(1)利用列举法求得基本事件的总数,利用古典概型的概率计算公式,即可求解;(2)利用古典概型及其概率的计算公式,求得(),()P B P C 的概率,即可得到结论.【详解】由题意,设从甲、乙两个盒子中各取1个球,其数字分别为x 、y .用(,)x y 表示抽取结果,可得(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),则所有可能的结果有16种,(1)设“取出的两个球上的标号相同”为事件A ,则{(1,1),(2,2),(3,3),(4,4)}A =,事件A 由4个基本事件组成,故所求概率41()164P A ==. (2)设“甲获胜”为事件B ,“乙获胜”为事件C ,则{}(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)B =,{(1,2),(1,3),(2,3),(1,4),(2,4),(3,4)}C =. 可得63()()168P B P C ===, 即甲获胜的概率是38,乙获胜的概率也是38,所以这样规定公平. 【点睛】本题主要考查了古典概型的概率的计算及应用,其中解答中认真审题,利用列举法求得基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题题.22.(1)715(2)25 【解析】【分析】(1)记事件A 为该生选中月平均收入薪资高于8000元的城市,利用古典概型可得概率()P A ;(2)记2座城市的月平均期望薪资都高于8000元或都低于8000元为事件B ,利用古典概型可得概率()P B .【详解】(1)设该生选中月平均收入薪资高于8000元的城市为事件A ,15座城市中月平均收入薪资高于8000元的有7个, 所以7()15P A =. (2)月平均收入薪资和月平均期望薪资之差高于1000元的城市有6个,其中月平均期望薪资高于8000元的有3个,记为1A ,2A ,3A ;月平均期望薪资低于8000元的有3个,记为1B ,2B ,3B ,选取两座城市所有的可能为:12A A ,13A A ,11A B ,12A B ,13A B 23A A ,21A B ,22A B ,23A B ,31A B ,32A B ,33A B ,12B B ,13B B ,23B B ,共15种,设2座城市的月平均期望薪资都高于8000元或都低于8000元为事件B , 所以62()155P B ==. 【点睛】本题考查古典概型概率计算,考查数据处理能力,属于基础题.23.(1)22.(2)815【解析】【分析】(1)先由抽到持“应该保留”态度的人的概率为0.06,由已知条件求出x ,再求出持“无所谓”态度的人数,由此利用抽样比能求出应在“无所谓”态度抽取的人数;(2)先根据分层抽样,求出在校学生和社会人士的人数,再计算出这6人中任意选取2人的情况总数,及满足恰好1个人为在校学生的情况数,代入古典概型的概率计算公式,即可求解.【详解】 (1)由抽到持“应该保留”态度的人的概率为0.06,∴1200.063000x +=,∴60x =, ∴持“无所谓”态度的人数共有3000210050012060220----=, ∴应在“无所谓”态度抽取300220223000⨯=人, (2)由(1)知持“应该保留”态度的一共有180人, ∴在所抽取的6人中,在校学生为12064180⨯=人,分别记为1,2,3,4, 社会人士为6062180⨯=人,记为,a b , 则这6人中任意选取2人,共有15种不同情况,分别为(1,2),(1,3),(1,4),(1,)a ,(1,)b ,(2,3),(2,4),(2,)a ,(2,)b ,(3,4),(3,)a ,(3,)b ,(4,)a ,(4,)b ,(,)a b ,这2人中恰好有1个人为在校学生:(1,)a ,(1,)b ,(2,)a ,(2,)b ,(3,)a ,(3,)b ,(4,)a ,(4,)b 共8种,故这2人中恰好有1个人为在校学生的概率为8P=15. 【点睛】本题主要考查了古典概型及其概率的计算公式的应用,其中解答中正确利用列举法列举出基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.24.(1)35 (2)35【解析】【分析】(1)先设在B 组中看不清的那个同学的分数为x ,分别求得两组的平均数,再由平均数间的关系求解.(2)先求出从A 组这5名学生中随机抽取2名同学所有方法数,再用列举的方法得到满足求||8m n -≤的方法数,再由古典概型求解.【详解】(1)设在B 组中看不清的那个同学的分数为x 由题意得918375938677809488155x ++++++++-= 解得x =88所以在B 组5个分数超过85的有3个所以得分超过85分的概率是35 (2)从A 组这5名学生中随机抽取2名同学,设其分数分别为m ,n ,则所有(),m n 共有()()()()()()()()()()94,88,94,86,94,80,94,77,88,86,88,80,88,77,86,80,86,77,80,77共10个其中满足求||8m n -≤的有: ()()()()()()94,88,94,86,88,86,88,80,86,80,80,77共6个故|||8m n -≤的概率为63105= 【点睛】本题主要考查了平均数和古典概型概率的求法,还考查了运算求解的能力,属于中档题. 25.238【解析】【分析】 5432()3835126((((38)3)5)12)6f x x x x x x x x x x x =+-++-=+-++-,当2x =时,代入计算即可得出.【详解】根据秦九韶算法,把多项式改写成如下形式:()()()()()3835126x x x f x x x =+-++-,当2x =时.03v =,103814v v =+=,2123v v =⨯-142325=⨯-=,3225v v =⨯+252555=⨯+=,43212v v =⨯+55212122=⨯+=,5426v v =⨯-12226238=⨯-=,所以当2x =时,多项式()f x 的值为238.【点睛】本题考查了秦九韶算法,考查了推理能力与计算能力,属于基础题.26.(1)24;(2)见解析;(3)35【解析】【分析】(1)由频率之和等于1,列出方程()0.020.080.09241a +++⨯=,求解即可;(2)各组应抽取的销售点数量比例为2:8:9:3:3,按比例计算即可;(3)完成年销售任务的销售点,[)14,18中有3个,[)18,22中有3个,不在一组的基本事件有9个,所有的基本事件有15个,即可得到概率为93155=。
【好题】高中必修三数学上期末一模试卷(附答案)

【好题】高中必修三数学上期末一模试卷(附答案)一、选择题1.执行如图的程序框图,若输入1t =-,则输出t 的值等于( )A .3B .5C .7D .152.如图,ABC ∆和DEF ∆都是圆内接正三角形,且//BC EF ,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在ABC ∆内”,B 表示事件“豆子落在DEF ∆内”,则(|)P B A =( )A .33B .3 C .13D .233.如图,一个边长为2的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入500粒芝麻,经过统计,落在月牙形图案内的芝麻有150粒,则这个月牙图案的面积约为( )A.35B.45C.1D.654.执行如图所示的程序框图,若输入8x=,则输出的y值为()A.3B.52C.12D.34-5.若执行如图所示的程序框图,则输出S的值为( )A.10072015B.10082017C.10092019D.101020216.某工厂对一批新产品的长度(单位:mm)进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为( )A.20,22.5B.22.5,25C.22.5,22.75D.22.75,22.75 7.高二某班共有学生60名,座位号分别为01, 02, 03,···, 60.现根据座位号,用系统抽样的方法,抽取一个容量为4的样本.已知03号、18号、48号同学在样本中,则样本中还有一个同学的座位号是()A.31号B.32号C.33号D.34号8.如图,正方形ABNH、DEFM的面积相等,23CN NG AB==,向多边形ABCDEFGH内投一点,则该点落在阴影部分内的概率为()A.1 2B.3 4C.2 7D.3 89.执行如图的程序框图,如果输出的是a=341,那么判断框()A .4k <B .5k <C .6k <D .7k <10.一位学生在计算20个数据的平均数时,错把68输成86,那么由此求出的平均数与实际平均数的差为 A .B .C .D .11.从1,2,3,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是 ( ). A .①B .②④C .③D .①③12.甲、乙两位同学在高一年级的5次考试中,数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是12,x x ,则下列叙述正确的是( )A .12x x >,乙比甲成绩稳定B .12x x >,甲比乙成绩稳定C .12x x <,乙比甲成绩稳定D .12x x <,甲比乙成绩稳定二、填空题13.若正方形ABCD 的边长为4, E 为四边形上任意一点,则AE 的长度大于5的概率等于______14.已知某人连续5次投掷飞镖的环数分别是8,9,10,10,8,则该组数据的方差为______.15.一个算法的伪代码如下图所示,执行此算法,若输出的y 值为1,则输入的实数x 的值为________.16.下图是华师一附中数学讲故事大赛7位评委给某位学生的表演打出的分数的茎叶图.记分员在去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是____________.17.对具有线性相关关系的变量,x y ,有一组观测数据(,)i i x y (1,2,3,,10i =L ),其回归直线方程是3ˆ2ˆybx =+,且121012103()30x x x y y y +++=+++=L L ,则b =______. 18.执行如图所示的程序框图,输出的S 值为__________.19.把十进制数23化为二进制数是______.20.已知AOB ∆中,60AOB ∠=o ,2OA =,5OB =,在线段OB 上任取一点C ,则AOC ∆为锐角三角形的概率_________.三、解答题21.某中学高二年级的甲、乙两个班中,需根据某次数学预赛成绩选出某班的5名学生参加数学竞赛决赛,已知这次预赛他们取得的成绩的茎叶图如图所示,其中甲班5名学生成绩的平均分是83,乙班5名学生成绩的中位数是86.(1)求出x ,y 的值,且分别求甲、乙两个班中5名学生成绩的方差、,并根据结果,你认为应该选派哪一个班的学生参加决赛?(2)从成绩在85分及以上的学生中随机抽取2名.求至少有1名来自甲班的概率. 22.已知一个口袋有3个白球,1个黑球,这些球除颜色外全部相同,现将口袋中的球随机逐个取出,并依次放入编号为1,2,3,4的抽屉内. (1)求编号为2的抽屉内放黑球的概率;(2)口袋中的球放入抽屉后,随机取出两个抽屉中的球,求取出的两个球是一黑一白的概率.23.某机构组织语文、数学学科能力竞赛,每个考生都参加两科考试,按照一定比例淘汰后,按学科分别评出一二三等奖.现有某考场的两科考试数据统计如下,其中数学科目成绩为二等奖的考生有12人.(Ⅰ)求该考场考生中语文成绩为一等奖的人数;(Ⅱ)用随机抽样的方法从获得数学和语文二等奖的考生中各抽取5人,进行综合素质测试,将他们的综合得分绘成茎叶图(如图),求两类样本的平均数及方差并进行比较分析;(Ⅲ)已知该考场的所有考生中,恰有3人两科成绩均为一等奖,在至少一科成绩为一等奖的考生中,随机抽取2人进行访谈,求两人两科成绩均为一等奖的概率.24.某地区为了了解本年度数学竞赛成绩情况,从中随机抽取了n 个学生的分数作为样本进行统计,按照[)50,60,[)60,70,[)70,80,[)80,90,[]90,100的分组作出频率分布直方图如图所示,已知得分在[)70,80的频数为20,且分数在70分及以上的频数为27.(1)求样本容量n 以及x ,y 的值;(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中恰有一人得分在[)80,90内的概率.25.某手机厂商在销售某型号手机时开展“手机碎屏险”活动.用户购买该型号手机时可选购“手机碎屏险”,保费为x 元,若在购机后一年内发生碎屏可免费更换一次屏幕,为了合理确定保费x 的值,该手机厂商进行了问卷调查,统计后得到下表(其中y 表示保费为x 元时愿意购买该“手机碎屏险”的用户比例):(1)根据上面的数据计算得()()5119.2iii x x y y =--=-∑,求出y 关于x 的线性回归方程;(2)若愿意购买该“手机碎屏险”的用户比例超过0.50,则手机厂商可以获利,现从表格中的5种保费任取2种,求这2种保费至少有一种能使厂商获利的概率.附:回归方程$$ˆy bxa =+中斜率和截距的最小二乘估计分别为()()()121niii nii x x y y b x x ==--=-∑∑$,$ay bx =-$ 26.某学校高一、高二、高三的三个年级学生人数如下表高三高二高一女生100150z男生300450600按年级分层抽样的方法评选优秀学生50人,其中高三有10人. (1)求z 的值;(2)用分层抽样的方法在高一中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1名女生的概率;(3)用随机抽样的方法从高二女生中抽取8人,经检测她们的得分如下:9.4,8.6,9.2, 9.6,8.7,9.3,9.0,8.2,把这8人的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】直接根据程序框图依次计算得到答案. 【详解】模拟执行程序,可得1t =-,不满足条件0t >,0t =,满足条件()()250t t +-<, 不满足条件0t >,1t =,满足条件()()250t t +-<, 满足条件0t >,3t =,满足条件()()250t t +-<,满足条件0t >,7t =,不满足条件()()250t t +-<,退出循环,输出t 的值为7. 故选:C. 【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.2.D解析:D 【解析】如图所示,作三条辅助线,根据已知条件,这些小三角形全等,ABC ∆包含9 个小三角形,同时又在DEF ∆内的小三角形共有6 个,所以(|)P B A =6293= ,故选D. 3.D解析:D 【解析】 【分析】利用与面积有关的几何概型概率计算公式求解即可. 【详解】由题可知,正方形的面积为=22=4S ⨯正,设这个月牙图案的面积为S , 由与面积有关的几何概型概率计算公式可得,向这个正方形里随机投入芝麻,落在月牙形图案内的概率为150=4500S S P S ==正,解得65S =. 故选:D 【点睛】本题考查与面积有关的几何概型概率计算公式;属于基础题、常考题型.4.C解析:C 【解析】 【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知该程序的作用是利用循环计算y 值并输出,模拟程序的运行过程,直到达到输出条件即可. 【详解】输入8,第一次执行循环:3y =,此时5y x -=, 不满足退出循环的条件,则3x =,第二次执行循环:12y =,此时52y x -=, 满足退出循环的条件,故输出的y 值为12,故选C . 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.5.C解析:C 【解析】 【分析】首先确定流程图的功能为计数111113355720172019S =++++⨯⨯⨯⨯L 的值,然后利用裂项求和的方法即可求得最终结果. 【详解】由题意结合流程图可知流程图输出结果为111113355720172019S =++++⨯⨯⨯⨯L , 11(2)111(2)2(2)22n n n n n n n n +-⎛⎫=⨯=- ⎪+++⎝⎭Q,111113355720172019S ∴=++++⨯⨯⨯⨯L 11111111123355720172019⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L 1110091220192019⎛⎫=-=⎪⎝⎭. 本题选择C 选项. 【点睛】识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.6.C解析:C 【解析】 【分析】根据平均数的定义即可求出.根据频率分布直方图中,中位数的左右两边频率相等,列出等式,求出中位数即可.7.C解析:C 【解析】 【分析】根据系统抽样知,组距为604=15÷,即可根据第一组所求编号,求出各组所抽编号. 【详解】学生60名,用系统抽样的方法,抽取一个容量为4的样本,所以组距为604=15÷, 已知03号,18号被抽取,所以应该抽取181533+=号, 故选C.本题主要考查了抽样,系统抽样,属于中档题.8.C解析:C【解析】【分析】由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2,分别求出阴影部分的面积及多边形ABCDEFGH 的面积,由测度比为面积比得答案.【详解】 如图所示,由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2, 则阴影部分的面积为224⨯=,多边形ABCDEFGH 的面积为2332214⨯⨯-⨯=.则向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为42147=. 故选:C.【点睛】本题主要考查了几何概型的概率的求法,关键是求出多边形ABCDEFGH 的面积,着重考查了推理与运算能力,以及数形结合的应用,属于基础题.9.C解析:C【解析】由程序框图可知a=4a+1=1,k=k+1=2;a=4a+1=5,k=k+1=3;a=4a+1=21,k=k+1=4;a=4a+1=85,k=k+1=5;a=4a+1=341;k=k+1=6.要使得输出的结果是a=341,判断框中应是“k<6?”.10.B【解析】【分析】应用平均数计算方法,设出两个平均数表达式,相减,即可。
【人教版】高中数学必修三期末第一次模拟试题含答案

一、选择题1.在《九章算术》中,将四个面都为直角三角形的三棱锥称为“鳖臑”.那么从长方体八个顶点中任取四个顶点,则这四个顶点组成的几何体是“鳖臑”的概率为()A.435B.635C.1235D.18352.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰好有6个白球的概率为()A.46801010100C CC⋅B.642081010C CC⋅C.462081010C CC⋅D.64801010100C CC⋅3.将一枚质地均匀的硬币连掷三次,设事件A:恰有1次正面向上;事件B:恰有2次正面向上,则()P A B+=()A.23B.14C.38D.344.已知0.5log5a=、3log2b=、0.32c=、212d⎛⎫= ⎪⎝⎭,从这四个数中任取一个数m,使函数()32123x mx xf x=+++有极值点的概率为()A.14B.12C.34D.15.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为( )A.84 B.56 C.35 D.286.如图所示的程序框图输出的结果是()A.34 B.55 C.78 D.89 7.某程序框图如图所示,则该程序运行后输出的值是()A.3B.3C3D38.执行如下的程序框图,则输出的S是()A .36B .45C .36-D .45-9.工人月工资y (元)与劳动生产率x (千元)变化的回归直线方程为=50+80x ,下列判断不正确的是( )A .劳动生产率为1000元时,工资约为130元B .工人月工资与劳动者生产率具有正相关关系C .劳动生产率提高1000元时,则工资约提高130元D .当月工资为210元时,劳动生产率约为2000元10.某中学有学生300人,其中一年级120人,二,三年级各90人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一,二,三年级依次统一编号为1,2,…,300;使用系统抽样时,将学生统一编号为1,2,…,300,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:①7,37,67,97,127,157,187,217,247,277; ②5,9,100,107,121,180,195,221,265,299; ③11,41,71,101,131,161,191,221,251,281; ④31,61,91,121,151,181,211,241,271,299. 关于上述样本的下列结论中,正确的是( ) A .②④都不能为分层抽样 B .①③都可能为分层抽样 C .①④都可能为系统抽样 D .②③都不能为系统抽样11.已知某8个数的平均数为3,方差为2,现加入一个新数据3,此时这9个数的平均数为x ,方差为2s ,则( ) A .3x =,22s < B .3x =,22s > C .3x >,22s <D .3x >,22s >12.甲、乙两名同学在五次数学考试中的成绩统计如下面的茎叶图所示,若甲、乙两人的平均成绩分别是1x ,2x ,观察茎叶图,下列结论正确的是( )A .12x x <,乙比甲成绩稳定B .12x x >,乙比甲成绩稳定C .12x x <,甲比乙成绩稳定D .12x x >,甲比乙成绩稳定二、填空题13.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为___________.14.高三某位同学参加物理、化学、政治科目的等级考,已知这位同学在物理、化学、政治科目考试中达A 的概率分别为56、78、34,这三门科目考试成绩的结果互不影响,则这位考生至少得1个A 的概率为____15.从正方体六个面的对角线中任取两条作为一对,这对对角线所成的角为60︒的概率为________16.执行下面的程序框图,如果输入的0.02t =,则输出的n =_______________.17.如图所示的程序框图的算法思路源于宋元时期数学名著《算法启蒙》中的“松竹并生”问题.若输入的a ,b 的值分别为7,3,则输出的n 的值为____________.18.执行右边的程序框图,若,则输出的________.19.下表为生产A 产品过程中产量x (吨)与相应的生产耗能y (吨)的几组相对应数据:x34 5 6y 23.55 5.5根据上表提供的数据,得到y 关于x 的线性回归方程为0.7y x a =+,则a =__________. 20.已知下列命题:①在线性回归模型中,相关指数2R 越接近于1,表示回归效果越好; ②两个变量相关性越强,则相关系数r 就越接近于1;③在回归直线方程0.52y x ∧=-+中,当解释变量x 每增加一个单位时,预报变量y ∧平均减少0.5个单位;④两个模型中残差平方和越小的模型拟合的效果越好.⑤回归直线ˆˆˆy bx a =+恒过样本点的中心(),x y ,且至少过一个样本点;⑥若2K 的观测值满足2K ≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;⑦从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误. 其中正确命题的序号是__________.三、解答题21.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15︒,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?22.高考的成绩不仅需要平时的积累,还与考试时的状态有关系.为了了解考前学生的紧张程度与性别是否有关系,现随机抽取某校500名学生进行了调查,结果如表所示: 心情 性别 男 女 总计 正常 30 40 70 焦虑 270 160 430 总计300200500(1)根据该校调查数据,能否在犯错误的概率不超过0.01的前提下,认为“该学校学生的考前焦虑情况与性别有关”?(2)若从考前心情正常的学生中按性别用分层抽样的方法抽取7人,再从被抽取的7人中随机抽取2人,求这两人中有女生的概率.附:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d +++=. ()20P K k ≥ 0.25 0.15 0.10 0.05 0.025 0.010 0k1.3232.0722.7063.8415.0246.63523.已知底面半径为r ,高为h 的圆柱和一正方体的体积相等,试设计一个程序分别求圆柱的表面积和正方体的表面积,并画出程序框图(π=3. 14). 24.下面给出了一个问题的算法: 第一步,输入x .第二步,若x ≥4,则执行第三步,否则执行第四步. 第三步,y =2x -1,输出y . 第四步,y =x 2-2x +3,输出y . 问题:(1)这个算法解决的问题是什么? (2)当输入的x 值为多大时,输出的数值最小?25.如表为某中学近5年被卓越大学联盟录取的学生人数.记2015年的年份序号为1,2016年的年份序号为2,…,2019年的年份序号为5.(1)求y 关于x 的线性回归方程,并估计2020年该中学被卓越大学联盟录取的学生人数.(2)若在2015年和2019年被卓越大学联盟录取的学生中分层抽样7人,再从这7人中任选2人,求这2人恰好来自同一年份的概率.参考数据:521ii x=∑=55,51i ii x y =∑=2920.参考公式:b =1221ni ii nii x ynx y xnx==--∑∑,a y bx =-26.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的列联表,并根据列联表,判断是否有多少的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bc K a b c d a c b d -=++++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】本题是一个等可能事件的概率,从正方体中任选四个顶点的选法是48C ,四个面都是直角三角形的三棱锥有4×6个,根据古典概型的概率公式进行求解即可求得. 【详解】由题意知本题是一个等可能事件的概率,从长方体中任选四个顶点的选法是4870C =,以A 为顶点的四个面都是直角三角形的三棱锥有:111111111111,,,,,A A D C A A B C A BB C A BCC A DCC DD C A ------共6个.同理以1111,,,,,,B C D A B C D 为顶点的也各有6个, 但是,所有列举的三棱锥均出现2次,∴四个面都是直角三角形的三棱锥有186242⨯⨯=个, ∴所求的概率是24127035= 故选:C . 【点睛】本题主要考查了古典概型问题,解题关键是掌握将问题转化为从正方体中任选四个顶点问题,考查了分析能力和计算能力,属于中档题.2.C解析:C 【分析】根据古典概型的概率公式求解即可. 【详解】从袋中任取10个球,共有10100C 种,其中恰好有6个白球的有468020C C ⋅种即其中恰好有6个白球的概率为4620 81010C C C⋅故选:C【点睛】本题主要考查了计算古典概型的概率,属于中档题.3.D解析:D【分析】根据题意,列举出所有的基本事件,再分别找出满足事件A与事件B的事件个数,分别求出其概率,最后再相加即可.【详解】根据题意,将一枚质地均匀的硬币连掷三次,可能出现的情况有以下8种:(正正正),(正正反),(正反正),(正反反),(反正正),(反正反),(反反正),(反反反).满足事件A:恰有1次正面向上的基本事件有(正反反),(反正反),(反反正)三种,故3()8P A=;满足事件B:恰有2次正面向上的基本事件有(正正反),(正反正),(反正正)三种,故3()8P B=;因此,3()()()4P A B P A P B+=+=.故选:D.【点睛】本题主要考查利用列举法计算基本事件的个数以及求解事件发生的概率.4.B解析:B【分析】求出函数的导数,根据函数的极值点的个数求出m的范围,通过判断a,b,c,d的范围,得到满足条件的概率值即可.【详解】f′(x)=x2+2mx+1,若函数f(x)有极值点,则f′(x)有2个不相等的实数根,故△=4m2﹣4>0,解得:m>1或m<﹣1,而a=log0.55<﹣2,0<b=log32<1、c=20.3>1,0<d=(12)2<1,满足条件的有2个,分别是a,c,故满足条件的概率p21 42 ==,故选:B.【点睛】本题考查了函数的单调性、极值问题,考查导数的应用以及对数、指数的性质,是一道中档题.5.A解析:A 【分析】按照程序框图运行程序,直到满足7i ≥时输出结果即可. 【详解】按照程序框图运行程序,输入0i =,0n =,0S =, 则1i =,1n =,1S =,不满足7i ≥,循环;2i =,3n =,4S =,不满足7i ≥,循环; 3i =,6n =,10S =,不满足7i ≥,循环;4i =,10n =,20S =,不满足7i ≥,循环; 5i =,15n =,35S =,不满足7i ≥,循环; 6i =,21n =,56S =,不满足7i ≥,循环;7i =,28n =,84S =,满足7i ≥,输出84S =. 故选:A . 【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于基础题.6.B解析:B 【分析】通过不断的循环赋值,得到临界值,即可得解. 【详解】1,1,21,2,32,3,53,5,85,8,138,13,2113,21,3421,34,55x y z x y z x y z x y z x y z x y z x y z x y z ========================不满足50z ≤,输出即可, 故选:B. 【点睛】本题考查了程序框图循环结构求输出结果,考查了计算能力,属于中当题.7.D解析:D 【分析】该框图的功能是计算:234562017sinsin sin sin sin sin sin3333333πππππππ+++++++,再根据正弦函数的周期性以及特殊角的三角函数值计算可得答案. 【详解】该框图的功能是计算:234562017sinsinsin sin sin sin sin3333333πππππππ+++++++.因为7132017sinsinsin sin 3333ππππ=====28142012sinsin sin sin33332ππππ=====, 39152013sinsin sin sin03333ππππ=====,410162014sin sin sin sin 3333ππππ=====,511172015sinsin sin sin33332ππππ=====-, 612182016sinsin sin sin 03333ππππ=====, 所以234562017sin sinsin sin sin sin sin3333333πππππππ+++++++3373363360336(336()336022222=⨯+⨯+⨯+⨯-+⨯-+⨯=. 故选:D 【点睛】本题考查了程序框图的循环结构,考查了三角函数的周期性以及特殊角的三角函数值,理解程序框图的功能是解题关键,属于基础题.8.A解析:A 【分析】列出每一步算法循环,可得出输出结果S 的值. 【详解】18i =≤满足,执行第一次循环,()120111S =+-⨯=-,112i =+=; 28i =≤成立,执行第二次循环,()221123S =-+-⨯=,213i =+=; 38i =≤成立,执行第三次循环,()323136S =+-⨯=-,314i =+=;48i =≤成立,执行第四次循环,()4261410S =-+-⨯=,415i =+=;58i=≤成立,执行第五次循环,()52i=+=;101515S=+-⨯=-,516i=≤成立,执行第六次循环,()6268S=-+-⨯=,617151621i=+=;i=+=;i=≤成立,执行第七次循环,()7278211728S=+-⨯=-,718i=≤成立,执行第八次循环,()82i=+=;88S=-+-⨯=,819281836i=≤不成立,跳出循环体,输出S的值为36,故选A.98【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.9.C解析:C【解析】试题分析:根据线性回归方程=50+80x的意义,对选项中的命题进行分析、判断即可.解:根据线性回归方程为=50+80x,得;劳动生产率为1000元时,工资约为50+80×1=130元,A正确;∵=80>0,∴工人月工资与劳动者生产率具有正相关关系,B正确;劳动生产率提高1000元时,工资约提高=80元,C错误;当月工资为210元时,210=50+80x,解得x=2,此时劳动生产率约为2000元,D正确.故选C.考点:线性回归方程.10.B解析:B【分析】根据系统抽样和分层抽样的定义分别进行判断即可.【详解】若采用简单随机抽样,根据简单随机抽样的特点,1~300之间任意一个号码都有可能出现;若采用分层抽样,则1~120号为一年级,121~210为二年级,211~300为三年级.且根据分层抽样的概念,需要在1~120之间抽取4个,121~210与211~300之间各抽取3个;若采用系统抽样,根据系统抽样的概念,需要在1~30,31~60,61~90,91~ 120,121~150,151~180,181~210,211~240,241~270,271~300之间各抽一个.①项,1~120之间有 4个,121~210之间有 3个,211~300之间有 3个,并且满足系统抽样的条件,所以①项为系统抽样或分层抽样;②项,1~120之间有 4个,121~210之间有 3个,211~300之间有 3个,可能为分层抽样;③项,1~120之间有 4个,121~210之间有 3个,211~300之间有 3个,并且满足系统抽样的条件,所以③项为系统抽样或分层抽样;④项,第一个数据大于30,所以④项不可能为系统抽样,并且④项不满足分层抽样的条件.综上所述,B 选项正确. 故选:B. 【点睛】本题主要考查系统抽样和分层抽样,掌握系统抽样和分层抽样的定义是解题的关键,属于基础题.(1)系统抽样适用于总体容量较大的情况.将总体平均分成若干部分,按事先确定的规则在各部分中抽取,在起始部分抽样时采用简单随机抽样;(2)分层抽样适用于已知总体是由差异明显的几部分组成的.将总体分成互不交叉的层,然后分层进行抽取,各层抽样时采用简单随机抽样或系统抽样.11.A解析:A 【分析】由题意计算出加入新数据后的平均数,然后比较方差 【详解】()18138x x +⋯+=, ()181339x x +⋯++=, 3x ∴=,由方差的定义可知加入新数据3,样本数据会变得更加稳定 故22s < 故选A 【点睛】本题主要考查了加入数据后平均数和方差的变化,代入公式计算出结果,较为基础12.A解析:A 【解析】 【分析】根据茎叶图中的数据,即可计算出两人平均分,再根据茎叶图的分布情况可知乙成绩稳定. 【详解】 由茎叶图知, 甲的平均数是110210410511413391.65x ++++==,乙的平均数是2108115116122123116.85x ++++==,所以12x x <,从茎叶图上可以看出乙的数据比甲的数据集中,乙比甲成绩稳定故选:A.【点睛】本题考查茎叶图中两组数据的平均数和稳定程度,平均数要进行计算,稳定程度可通过计算方差或通过数据排布形状作出比较.二、填空题13.【解析】从分别写有12345的5张卡片中随机抽取1张放回后再随机抽取1张基本事件总数n=5×5=25抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(21)(31)(32)(41)(42解析:2 5【解析】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,基本事件总数n=5×5=25,抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共有m=10个基本事件,∴抽得的第一张卡片上的数大于第二张卡片上的数的概率p=2.5故答案为2 5 .14.【分析】先求对立事件概率:三门科目考试成绩都不是A再根据对立事件概率关系求结果【详解】这位考生三门科目考试成绩都不是A的概率为所以这位考生至少得1个A的概率为故答案为:【点睛】本题考查利用对立事件求解析:191 192【分析】先求对立事件概率:三门科目考试成绩都不是A,再根据对立事件概率关系求结果.【详解】这位考生三门科目考试成绩都不是A的概率为5731 (1)(1)(1)684192 ---=,所以这位考生至少得1个A的概率为1191 1192192 -=故答案为:191 192【点睛】本题考查利用对立事件求概率,考查基本分析求解能力,属基础题.15.【解析】【分析】正方体的面对角线共有12条能够数出每一条对角线和另外的8条构成8对直线所成角为60°得共有12×8对对角线所成角为60°并且容易看出有一半是重复的得正方体的所有对角线中所成角是60° 解析:811【解析】 【分析】正方体的面对角线共有12条,能够数出每一条对角线和另外的8条构成8对直线所成角为60°,得共有12×8对对角线所成角为60°,并且容易看出有一半是重复的,得正方体的所有对角线中,所成角是60°的有48对,根据古典概型概率公式求解即可. 【详解】如图,在正方体ABCD ﹣A 1B 1C 1D 1中,与上平面A 1B 1C 1D 1中一条对角线A 1C 1成60°的直线有:A 1D ,B 1C ,A 1B ,D 1C ,BC 1,AD 1,C 1D ,B 1A 共八对直线,总共12条对角线; ∴共有12×8=96对面对角线所成角为60°,而有一半是重复的;∴从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有48对. 而正方体的面对角线共有12条,所以概率为:212488C 11故答案为811【点睛】本题考查正方体面对角线的关系,考查了古典概型的概率问题,而对于本题知道96对直线中有一半是重复的是求解本题的关键.16.【解析】分析:由已知中的程序框图可知该程序的功能是利用循环结构计算并输出变量的值模拟程序运行过程分析循环变量值的变化规律即可求解答案详解:执行如图所示的程序框图:第一次循环:满足条件;第二次循环:满解析:【解析】分析:由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量n 的值,模拟程序运行过程,分析循环变量值的变化规律,即可求解答案. 详解:执行如图所示的程序框图: 第一次循环:11,,124S m n ===,满足条件; 第二次循环:11,,248S m n ===,满足条件; 第三次循环:11,,3816S m n ===,满足条件; 第四次循环:11,,41632S m n ===,满足条件; 第五次循环:11,,53264S m n ===,满足条件; 第六次循环:11,,664128S m n ===,不满足条件,推出循环,此时输出6n =; 点睛:本题主要考查了循环结构的程序框图的运行与结果出的输出问题,解题是应模拟程序框图的运行过程,以便得出正确的计算结果,同时注意判断框的条件是解答的关键,着重考查了推理与运算能力.17.3【解析】输入进入循环不满足执行循环不满足执行循环满足输出故答案为3解析:3 【解析】输入7,3,1a b n === 进入循环,21,2622a a ab b =+===,不满足a b ≤ 执行循环,6312,,21224a n n a ab b =+==+===,不满足a b ≤ 执行循环,18913,,22428a n n a ab b =+==+===,满足a b ≤,输出3n = 故答案为318.【解析】试题分析:程序执行中的数据变化为:不成立输出考点:程序框图 解析:【解析】试题分析:程序执行中的数据变化为:17,1,0,17,2,,27,3,23p n s n s n ===<==<=⨯1111167,7,,772334233478s n s =+<==+++<⨯⨯⨯⨯⨯不成立,输出111113233478288s =+++=-=⨯⨯⨯ 考点:程序框图19.【解析】分析:首先求得样本中心点然后利用回归方程的性质求得实数a 的值即可详解:由题意可得:线性回归方程过样本中心点则:解得:点睛:本题主要考查线性回归方程的性质及其应用等知识意在考查学生的转化能力和 解析:0.85【解析】分析:首先求得样本中心点,然后利用回归方程的性质求得实数a 的值即可. 详解:由题意可得:34569==42x +++,2 3.55 5.544y +++==, 线性回归方程过样本中心点9,42⎛⎫⎪⎝⎭,则:940.72a =⨯+,解得:0.85a =.点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.20.①③④⑦【分析】根据线性回归分析的概念进行分析即可【详解】在线性回归模型中相关指数越接近于1表示回归效果越好①正确;两个变量相关性越强则相关系数r 的绝对值就越接近于1②错误;③正确;两个模型中残差平解析:①③④⑦ 【分析】根据线性回归分析的概念进行分析即可. 【详解】在线性回归模型中,相关指数2R 越接近于1,表示回归效果越好,①正确;两个变量相关性越强,则相关系数r 的绝对值就越接近于1,②错误;③正确;两个模型中残差平方和越小的模型拟合的效果越好,④正确;回归直线ˆˆˆybx a =+恒过样本点的中心(),x y ,不一定过样本点,⑤错误;若2K 的观测值满足2K ≥6.635,我们有99%的把握认为吸烟与患肺病有关系,并不能说在100个吸烟的人中必有99人患有肺病,⑥错误;从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误,⑦正确.故答案为①③④⑦. 【点睛】本题考查线性回归分析的有关概念,掌握相关概念是解题基础,属于基础题.三、解答题21.乙商场中奖的可能性大. 【解析】试题分析:分别计算两种方案中奖的概率.先记出事件,得到试验发生包含的所有事件,和符合条件的事件,由等可能事件的概率公式得到. 试题如果顾客去甲商场,试验的全部结果构成的区域为圆盘的面积2R π,阴影部分的面积为224153606R R ππ⨯=, 则在甲商场中奖的概率为212166R P R ππ==; 如果顾客去乙商场,记3个白球为1a ,2a ,3a ,3个红球为1b ,2b ,3b ,记(x ,y )为一次摸球的结果,则一切可能的结果有:()12,a a ,()13,a a ,()11,a b ,()12,a b ,()13,a b ,()23,a a ,()21,a b ,()22,a b ,()23,a b ,()31,a b ,()32,a b ,()33,a b ,()12,b b ,()13,b b ,()23,b b ,共15种, 摸到的是2个红球有()12,b b ,()13,b b ,()23,b b ,共3种,则在乙商场中奖的概率为231155P ==, 又12p p <,则购买该商品的顾客在乙商场中奖的可能性大. 22.(1)能;(2)67【分析】(1)根据题意,计算可得2K 的观测值,结合独立性检验的知识分析可得答案.(2)根据题意,分析可得抽取7人,其中有3名男生,4名女生.由组合数公式计算可得”从7人中任意抽取2人”和”抽取的两人中有女生”的选法数目,由古典概型公式计算可得答案. 【详解】解:(1)根据题意,由22⨯列联表可得:2K的观测值2500(3016027040)300009.967 6.63543070300200301k ⨯⨯-⨯==≈>⨯⨯⨯ 故能在犯错误的概率不超过0.01的前提下,认为该学校学生的考前焦虑情况与性别有关. (2)根据题意,若从考前心情正常的学生中按性别用分层抽样的方法抽取7人,其中有3名男生,4名女生.从7人中任意抽取2人,有2721C =种情况.其中抽取的两人中有女生的抽法有211443+18C C C =种选法.故其概率186217P ==. 【点睛】本题考查了独立性检验,考查了古典概型.在进行独立性检验时,一般步骤为:假设无关,画列联表,求2K 的值,下结论.这里正确计算出2K 的近似值是关键.对于求古典概型概率问题,可列出所有的基本事件,也可以用排列组合的思想计算个数.23.见解析;【解析】试题分析: 先利用INPUT语句输入半径以及高的值,再分别赋值圆柱的表面积和正方体的表面积,最后输出圆柱的表面积和正方体的表面积试题程序如下:INPUT“r,h=”;r,hS=3. 14*r^2m=2*3. 14*r*hS1=2*S+mV=3. 14*r^2*ha=V^(1/3)S2=6*a^2PRINT“圆柱、正方体的表面积分别为”;S1,S2END程序框如图所示.点睛:24.(1)见解析(2)当输入的x 的值为1时,输出的数值最小. 【解析】试题分析:本题考查了一个条件分支结构的算法,可分为4x ≥和4x <,执行不同的计算,即可得到结论. 试题(1)这个算法解决的问题是求分段函数()()221x 4y x 23x 4x x ⎧-≥⎪=⎨-+<⎪⎩的函数值的问题. (2)本问的实质是求分段函数最小值的问题. 当x≥4时,y =2x -1≥7;当x<4时,y =x 2-2x +3=(x -1)2+2≥2. ∴函数最小值为2,当x =1时取到最小值. ∴当输入x 的值为1时,输出的数值最小.点睛:本题主要考查了一个条件分支结构的算法的应用问题,解答中涉及到分段函数的性质,其中程序填空是重点考查的题型,这种试题考试的重点:①分支条件;②循环的条件;③变量的赋值;④变量的输出,其中前两个是考试的重点,正确理解算法的流程,读懂题意是解答的关键.25.(1)3759y x =+;281;(2)1121. 【分析】(1)由题意计算平均数,代入公式求出回归系数,写出线性回归方程,再利用线性回归方程计算6x =时的值即可;(2)由分层抽样求出抽取的人数,再利用概率公式求出对应的概率即可. 【详解】(1)由表格可求()11234+5=35x =+++,()1100130170200+250=1705y =+++,且521i i x=∑=55,51i i i x y =∑=2920, 所以12221292053170375553n i ii n i i x y nx y xnx b ==--⨯⨯==-⨯-=∑∑,17037359a y bx =-=-⨯=, 所以y 关于x 的线性回归方程为3759y x =+,当6x =时,37659281y =⨯+=,所以2020年该中学被卓越大学联盟录取的学生人数约为281;(2)由分层抽样可知7人中有10072100250⨯=+ 人来自2015年,有25075100250⨯=+人来自2019年,从中随机抽取两人共有21种结果,抽取的两人恰好来自同一年的有11种,所以所求概率为1121P =. 【点睛】本题主要考查线性回归方程和古典概型求概率,属于中档题.26.(1)概率分别为:43100,27100,21100,9100;(2)350;(3)填表见解析;有95%的把握认为锻炼的人次与该市的空气质量有关.【分析】(1)用频率估计概率,从而得到估计该市一天的空气质量等级为1,2,3,4的概率; (2)利用频率分布直方图估计样本平均值的方法可得得答案;(3)完善列联表,由公式计算卡方的值,从而查表即可,【详解】解:(1)该市一天的空气质量等级为1的概率为:2162543100100++=; 该市一天的空气质量等级为2的概率为:5101227100100++=; 该市一天的空气质量等级为3的概率为:67821100100++=; 该市一天的空气质量等级为4的概率为:7209100100++=; (2)由题意可得:一天中到该公园锻炼的平均人次的估计值为:1000.203000.355000.45350x =⨯+⨯+⨯=;(3)根据所给数据,可得下面的22⨯列联表,由表中数据可得:2 5.820 3.841()()()()70305545K a b c d a c b d ==≈>++++⨯⨯⨯, 所以有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查了独立性检验与频率估计概率,估计平均值的求法,属于中档题.。
【人教版】高中数学必修三期末第一次模拟试卷(及答案)

一、选择题1.若数列{a n }满足a 1=1,a 2=1,a n +2=a n +a n +1,则称数列{a n }为斐波那契数列,斐波那契螺旋线是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形中画一个圆心角为90°的扇形,连起来的弧线就是斐波那契螺旋线,如图所示的7个正方形的边长分别为a 1,a 2,…,a 7,在长方形ABCD 内任取一点,则该点不在任何一个扇形内的概率为( )A .1103156π-B .14π-C .17126π-D .681237π-2.现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这个10个数中随机抽取一个数,则它小于8的概率是( ) A .710B .35C .12D .253.某校从高一(1)班和(2)班的某次数学考试(试卷满分为100分)的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)班成绩更好的概率为( )A .1636B .1736C .12D .19364.关于圆周率π,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学每人随机写下一个x ,y 都小于1的正实数对()x y ,,再统计其中x ,y 能与1构成钝角三角形三边的数对()x y ,的个数m ,最后根据统计个数m 估计π的值.如果统计结果是34m =,那么可以估计π的值为( ) A .237B .4715C .1715D .53175.执行下面的程序框图,如果输入的a=4,b=6,那么输出的n=( )A.3 B.4 C.5 D.6n=,则输出的n=()6.运行下图所示的程序框图,如果输入的2020A.6 B.7 C.63 D.647.被称为宋元数学四大家的南宋数学家秦九韶在《数书九章》一书中记载了求解三角形面积的公式,如图是利用该公式设计的程序框图,则输出的k的值为()A .4B .5C .6D .78.执行如图所示的程序框图,若输出的值为﹣1,则判断框①中可以填入的条件是( )A .n ≥999B .n ≤999C .n <999D .n >9999.已知x ,y 取值如下表:x0 1 4 5 6 8 y 1.31.85.66.17.49.3从所得的散点图分析可知:y 与x 线性相关,且 1.03y x a =+,则a =( ) A .1.53B .1.33C .1.23D .1.1310.高二某班共有学生60名,座位号分别为01, 02, 03,···, 60.现根据座位号,用系统抽样的方法,抽取一个容量为4的样本.已知03号、18号、48号同学在样本中,则样本中还有一个同学的座位号是( ) A .31号B .32号C .33号D .34号11.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是( )A .90.5B .91.5C .90D .9112.下列说法:①设有一个回归方程35y x =-,变量x 增加一个单位时,y 平均增加5个单位;②线性回归直线ˆybx a =+必过必过点(),x y ;③在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;其中错误的个数是( ) A .0B .1C .2D .3二、填空题13.疫情防控期间,口罩的需求量很大,某地区有A .B 两家小型口罩加工厂,A 厂每天生产口罩4万到6万只,B 厂每天生产口罩3万到5万只.某药店预计购进至少10万只口罩,那么,他可以去该地区购买到所需口罩的概率是________.14.如图,C 是以AB 为直径的半圆周上一点,已知在半圆内任取一点,该点恰好在ABC 内部的概率为1π,则ABC 的较小的内角为________.15.两个男生一个女生并列站成一排,其中两男生相邻的概率为_____ 16.根据如图所示的伪代码可知,输出的结果为______.17.运行如图所示的程序,输出结果为___________.18.一个算法的程序框图如图所示,则该算法运行后输出的结果为________.19.对具有线性相关关系的变量,x y ,有一组观测数据(,)i i x y (1,2,3,,10i =),其回归直线方程是3ˆ2ˆybx =+,且121012103()30x x x y y y +++=+++=,则b =______. 20.下表为生产A 产品过程中产量x (吨)与相应的生产耗能y (吨)的几组相对应数据:x34 5 6y 23.555.5根据上表提供的数据,得到y 关于x 的线性回归方程为0.7y x a =+,则a =__________.三、解答题21.改革开放40年来,体育产业蓬勃发展反映了“健康中国”理念的普及.下图是我国2006年至2016年体育产业年增加值及年增速图.其中条形图为体育产业年增加值(单位:亿元),折线图为体育产业年增长率(%).(Ⅰ)从2007年至2016年随机选择1年,求该年体育产业年增加值比前一年的体育产业年增加值多500亿元以上的概率;(Ⅱ)从2007年至2016年随机选择3年,设X 是选出的三年中体育产业年增长率超过20%的年数,求X 的分布列与数学期望;(Ⅲ)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明)22.从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下: 分组(重量)[80,85)[85,90)[90,95)[95,100)频数(个)5102015(1) 根据频数分布表计算苹果的重量在[90,95)的频率;(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.23.如图,已知单位圆221x y +=与x 轴正半轴交于点P ,当圆上一动点Q 从P 出发沿逆时针旋转一周回到P 点后停止运动.设OQ 扫过的扇形对应的圆心角为xrad ,当02x π<<时,设圆心O 到直线PQ 的距离为y ,y 与x 的函数关系式()y f x =是如图所示的程序框图中的①②两个关系式.(1)写出程序框图中①②处的函数关系式;(2)若输出的y值为12,求点Q的坐标.24.利用海伦公式编写一个计算三边长为,,a b c的三角形面积的程序.[海伦公式为:1()()();()2S p p a p b p c p a b c=---=++].25.为了解某市家庭用电量的情况,该市统计局调查了100户居民去年一年的月均用电量,发现他们的用电量都在50kW·h至350kW·h之间,进行适当分组后,画出频率分布直方图如图所示.(I)求a的值;(Ⅱ)求被调查用户中,用电量大于250kW·h的户数;(III)为了既满足居民的基本用电需求,又提高能源的利用效率,市政府计划采用阶梯定价,希望使80%的居民缴费在第一档(费用最低),请给出第一档用电标准(单位:kW·h)的建议,并简要说明理由.26.某养殖基地为满足市场需要,逐年加大对养殖基地的资金投入,技术分析员对4年来的年资金投入量x (单位:万元)与相应的年市场销售额y (单位:万元)作了初步的调研统计,得到数据如表:(1)求根据年资金投入量预报年市场销售额的的回归方程; (2)预报年资金投入量为7.5万元时年市场销售额;(3)若年市场销售额不低于100万,那么年资金投入量至少要多少?(保留两位小数)其中,()()()121nii i nii xx y yb xx==--=-∑∑,a bx y =-+.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由题意求得数列{}n a 的前8项,求得长方形ABCD 的面积,再求出6个扇形的面积和,由测度比是面积比得答案. 【详解】由题意可得,数列{}n a 的前8项依次为:1,1,2,3,5,8,13,21.∴长方形ABCD 的面积为1321273⨯=.6个扇形的面积之和为222222(1235813)684ππ+++++=.∴所求概率681273P π=-. 故选:D . 【点睛】本题考查几何概型概率的求法,考查扇形面积公式的应用,是基础题.2.B解析:B 【分析】先由题意写出成等比数列的10个数,然后找出小于8的项的个数,代入古典概率的计算公式即可求解 【详解】解:由题意()13n n a -=-成等比数列的10个数为:1,3-,2(3)-,39(3)(3)-⋯-其中小于8的项有:1,3-,3(3)-,5(3)-,7(3)-,9(3)-共6个数 这10个数中随机抽取一个数, 则它小于8的概率是63105P ==. 故选:B . 【点睛】本题主要考查了等比数列的通项公式及古典概率的计算公式的应用,属于基础试题3.C解析:C 【分析】由题意从(1)班、(2)班的样本中各取一份,(2)班成绩更好即(2)班成绩比(1)班成绩高,用列举法列出所有可能结果,由此计算出概率. 【详解】根据题意,两次取出的成绩一共有36种情况;分别为()67,68、()67,72、()67,73、()67,85、()67,89、()67,93 ()76,68、()76,72、()76,73、()76,85、()76,89、()76,93()78,68、()78,72、()78,73、()78,85、()78,89、()78,93 ()82,68、()82,72、()82,73、()82,85、()82,89、()82,93 ()85,68、()85,72、()85,73、()85,85、()85,89、()85,93 ()92,68、()92,72、()92,73、()92,85、()92,89、()92,93满足条件的有18种,故183126p ==, 故选C 【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.4.B解析:B 【分析】由试验结果知120对0~1之间的均匀随机数,x y ,满足0101x y ≤<⎧⎨≤<⎩,面积为1,两个数能与1构成钝角三角形三边的数对(,)x y ,满足221x y +<且0101x y ≤<⎧⎨≤<⎩, 1x y +>,面积为142π-,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,二者相等即可估计π的值. 【详解】由题意,120名同学随机写下的实数对()x y ,落在由0101x y <<⎧⎨<<⎩的正方形内,其面积为1.两个数能与1构成钝角三角形应满足2211x y x y +>⎧⎨+<⎩且0101x y <<⎧⎨<<⎩, 此为一弓形区域,其面积为142π-.由题意134421120π-=,解得4715π=,故选B . 【点睛】本题考查了随机模拟法求圆周率的问题,也考查了几何概率的应用问题,是综合题.5.B解析:B 【解析】试题分析:模拟执行程序, 可得4,6,0,0a b n s ====,执行循环体,2,4,6,6,1a b a s n =====,不满足条件16s >,执行循环体,2,6,4,10,2a b a s n =-====, 不满足条件16s >,执行循环体,2,4,6,16,3a b a s n =====, 不满足条件16s >,执行循环体,2,6,4,20,4a b a s n =-====,不满足条件16s >,退出循环, 输出n 的值为4,故选B. 考点:1、程序框图;2、循环结构.6.A解析:A 【分析】根据题中所给的框图,模拟执行程序框图,求得结果. 【详解】输入2020100n =>,且不是奇数,赋值1010100n =>,且不是奇数, 赋值505100n =>,且是奇数,赋值252100n =>,且不是奇数, 赋值126100n =>,且不是奇数,赋值63100n =<, 赋值()2log 6316n =+=,输出6. 故选:A 【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有计算程序框图的输出结果,属于简单题目.7.B解析:B 【分析】模拟程序运行,依次计算可得所求结果 【详解】当4a =,3b =,2c =时,12S =<,2k =; 当5a =,4b =,3c =时,612S =<,3k =; 当6a =,5b =,4c =时,27124S =<,4k =;当7a =,6b =,5c =时,12S =>,5k =; 故选B 【点睛】本题考查程序运算的结果,考查运算能力,需注意1k k =+所在位置8.C解析:C 【分析】分析循环结构中求和式子的特点,可到最终结果:2lg(1)S n =-+,当1S =-时计算n 的值,此时再确定判断框的内容. 【详解】由图可得:2lg1lg 2lg 2lg3...lg lg(1)S n n =+-+-++-+,则2lg(1)1S n =-+=-,所以999n =,因为此时需退出循环,所以填写:999n <.故选C. 【点睛】lglg lg(1)1nn n n =-++,通过将除法变为减法,达到简便运算的目的. 9.D解析:D 【解析】分析:首先根据题中所给的表中的数据,计算得出样本中心点的坐标,利用回归直线必过样本中心点,代入求得结果. 详解:依题意得,1(014568)46x =⨯+++++=,1(1.3 1.8 5.6 6.17.49.3) 5.256y =+++++=,因为回归直线必过样本中心点(,)x y ,即点(4,5.25),所以有5.25 1.034ˆa=⨯+,解得ˆ 1.13a =,故选D.点睛:该题考查的是有关回归直线的有关问题,涉及到的知识点有回归直线一定过样本中心点,计算得出相应坐标的平均值,求得样本中心点的坐标,代入求得结果.10.C解析:C 【解析】 【分析】根据系统抽样知,组距为604=15÷,即可根据第一组所求编号,求出各组所抽编号. 【详解】学生60名,用系统抽样的方法,抽取一个容量为4的样本,所以组距为604=15÷, 已知03号,18号被抽取,所以应该抽取181533+=号, 故选C. 【点睛】本题主要考查了抽样,系统抽样,属于中档题.11.A解析:A 【分析】共有8个数据,中位数就是由小到大中间两数的平均数,求解即可. 【详解】根据茎叶图,由小到大排列这8个数为84,85,89,90,91,92,93,95, 所以中位数为90+91=90.52,故选A. 【点睛】本题主要考查了中位数,茎叶图,属于中档题.12.C解析:C 【解析】分析:利用回归方程和独立性检验对每一个命题逐一判断.详解:对于①,一个回归方程35y x =-,变量x 增加一个单位时,y 应平均减少5个单位,所以该命题是错误的;对于②,线性回归直线ˆybx a =+必过必过点(),x y ,是正确的;对于③,在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,并不能说明他有99%的可能患肺病,所以该命题是错误的. 故答案为:C.点睛:本题主要考查回归方程和独立性检验,意在考查学生对这些知识的掌握水平和分析推理能力.二、填空题13.【分析】设A 厂每天生产口罩x 万只B 厂每天生产口罩y 万只则画出可行域计算正方形与三角形面积利用几何概型求即可【详解】设A 厂每天生产口罩x 万只B 厂每天生产口罩y 万只则可行域面积为因为药店预计购进至少10解析:18【分析】设A 厂每天生产口罩x 万只, B 厂每天生产口罩y 万只,则4635x y ≤≤⎧⎨≤≤⎩,画出可行域,计算正方形与三角形面积,利用几何概型求即可. 【详解】设A 厂每天生产口罩x 万只, B 厂每天生产口罩y 万只,则4635x y ≤≤⎧⎨≤≤⎩,可行域面积为224⨯=,因为药店预计购进至少10万只,所以10x y +≥,满足条件的阴影部分面积为111122⨯⨯=, 所以可以去该地区购买到所需口罩的概率是11248=,故答案为:18.【点睛】本题主要考查几何概型求概率,考查了线性规划的应用,属于中档题.14.【分析】由几何概型中的面积型圆的面积公式三角形的面积公式及直角三角形的射影定理可得:设则又不妨设即所以得:所以所以得解【详解】过作设则由在半圆内任取一点该点恰好在内部的概率为则则即又不妨设即所以得: 解析:12π【分析】由几何概型中的面积型、圆的面积公式,三角形的面积公式及直角三角形的射影定理可得:设2AB a =,则22a S π=半圆,||2aCD =,又2||||||CD AD BD =⨯, 不妨设||||AD BD <,即CBA CAB ∠<∠,所以得:23||BD a +=,所以||tan 23||CD CBA BD ∠==-,所以12CBA π∠=,得解. 【详解】 过C 作CD AB ⊥,设2AB a =, 则22a S π=半圆,由在半圆内任取一点,该点恰好在ABC ∆内部的概率为1π, 则212ABC S a ∆=, 则211||||22AB CD a =, 即||2aCD =, 又2||||||CD AD BD =⨯,不妨设||||AD BD <,即CBA CAB ∠<∠, 所以得:23||BD +=, 所以||tan 23||CD CBA BD ∠== 所以12CBA π∠=,故答案为:12π.【点睛】本题考查了几何概型中的面积型、圆的面积公式,三角形的面积公式及直角三角形的射影定理,属中档题.15.【分析】基本事件总数n 两名男生相邻包含的基本事件个数m4由此能求出两名男生相邻的概率【详解】两名男生和两名女生随机站成一排照相基本事件总数n 两名男生相邻包含的基本事件个数m4则两名男生相邻的概率为p解析:23【分析】基本事件总数n 336A ==,两名男生相邻包含的基本事件个数m 2222A A ==4,由此能求出两名男生相邻的概率. 【详解】两名男生和两名女生随机站成一排照相,基本事件总数n 336A ==,两名男生相邻包含的基本事件个数m 2222A A ==4则两名男生相邻的概率为p 23m n ==. 故答案为:23【点睛】本题考查概率的求法,考查古典概率、排列组合等基础知识,考查运算求解能力,是基础题.16.72【分析】模拟程序的运行依次写出每次循环得到的的值可得当时不满足条件退出循环输出的值为72【详解】模拟程序的运行可得满足条件执行循环体满足条件执行循环体;满足条件执行循环体;满足条件执行循环体;不解析:72 【分析】模拟程序的运行,依次写出每次循环得到的S i ,的值,可得当9i = 时不满足条件8i <,退出循环,输出S 的值为72. 【详解】模拟程序的运行,可得10,i S ==, 满足条件8i <,执行循环体,39;i S ==,满足条件8i <,执行循环体,524i S ==, ; 满足条件8i <,执行循环体,745i S ==, ; 满足条件8i <,执行循环体,9i =,72S =; 不满足条件8i <,退出循环,输出S 的值为72, 故答案为72 【点睛】本题考查循环结构的程序框图的应用,当循环的次数不多或有规律时,常采用模拟执行程序的方法解决,属于基础题.17.【详解】试题分析:第一次运行条件成立;第二次运行条件成立;第三次运行条件成立;第四次运行条件不成立;输出故答案应填:1考点:算法及程序语言解析:1【详解】试题分析:第一次运行,5,4s n ==条件14s <成立;第二次运行,9,3s n ==条件14s <成立;第三次运行,12,2s n ==条件14s <成立;第四次运行,14,1s n ==条件14s <不成立;输出1n =,故答案应填:1. 考点:算法及程序语言.18.1320【分析】由题意结合所给的流程图执行程序确定其输出值即可【详解】程序运行如下:首先初始化数据:第一次循环满足执行;第二次循环满足执行;第三次循环不满足跳出循环输出故答案为【点睛】识别运行程序框解析:1320 【分析】由题意结合所给的流程图执行程序,确定其输出值即可. 【详解】 程序运行如下:首先初始化数据:12,1i S ==,第一次循环,满足10i ≥,执行12,111S S i i i =⨯==-=; 第二次循环,满足10i ≥,执行132,110S S i i i =⨯==-=; 第三次循环,不满足10i ≥,跳出循环,输出1320S =. 故答案为1320. 【点睛】识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.19.【解析】【分析】由题意求得样本中心点代入回归直线方程即可求出的值【详解】由已知代入回归直线方程可得:解得故答案为【点睛】本题考查了线性回归方程求出横坐标和纵坐标的平均数写出样本中心点将其代入线性回归解析:16- 【解析】 【分析】由题意求得样本中心点,代入回归直线方程即可求出b 的值 【详解】 由已知,()12101210330x x x y y y +++=+++=()12101310x x x x ∴=⨯+++=()12101110y y y y =⨯+++=代入回归直线方程可得:3132b =+ 解得16b =-故答案为16- 【点睛】本题考查了线性回归方程,求出横坐标和纵坐标的平均数,写出样本中心点,将其代入线性回归方程即可求出结果20.【解析】分析:首先求得样本中心点然后利用回归方程的性质求得实数a 的值即可详解:由题意可得:线性回归方程过样本中心点则:解得:点睛:本题主要考查线性回归方程的性质及其应用等知识意在考查学生的转化能力和 解析:0.85【解析】分析:首先求得样本中心点,然后利用回归方程的性质求得实数a 的值即可. 详解:由题意可得:34569==42x +++,2 3.55 5.544y +++==, 线性回归方程过样本中心点9,42⎛⎫⎪⎝⎭,则:940.72a =⨯+,解得:0.85a =.点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.三、解答题21.(Ⅰ)25;(Ⅱ)详见解析;(Ⅲ)从2008年或2009年开始连续三年的体育产业年增长率方差最大.从2014年开始连续三年的体育产业年增加值方差最大. 【分析】(Ⅰ)由题意利用古典概型计算公式可得满足题意的概率值;(Ⅱ)由题意首先确定X 可能的取值,然后结合超几何概型计算公式得到分布列,然后求解其数学期望即可;(Ⅲ)由题意结合方差的性质和所给的图形确定方差的最大值即可. 【详解】(Ⅰ)设A 表示事件“从2007年至2016年随机选出1年,该年体育产业年增加值比前一年的体育产业年增加值多500亿元以上”.由题意可知,2009年,2011年,2015年,2016年满足要求,故42()105P A ==. (Ⅱ)由题意可知,X 的所有可能取值为0,1,2,3,且36310C 1(0)=C 6P X ==;1246310C C 1(1)=C 2P X ==;2146310C C 3(2)=C 10P X ==;34310C 1(3)=C 30P X ==.所以X 的分布列为:X0 1 2 3P1612310 130故X 的期望11316()01236210305E X =⨯+⨯+⨯+⨯=. (Ⅲ)从2008年或2009年开始连续三年的体育产业年增长率方差最大.从2014年开始连续三年的体育产业年增加值方差最大. 【点睛】本题主要考查统计图表的识别,超几何概型计算公式,离散型随机变量的分布列与期望的计算,古典概型计算公式等知识,意在考查学生的转化能力和计算求解能力. 22.(1) 0.4(2)1个 (3) 31()62P A == 【解析】试题分析:(1)用苹果的重量在[90,95)的频数除以样本容量,即为所求. (2)根据重量在[80,85)的频数所占的比例,求得重量在[80,85)的苹果的个数. (3)用列举法求出所有的基本事件的个数,再求出满足条件的事件的个数,即可得到所求事件的概率. 试题(1)重量在[)90,95的频率为:;(2)若采用分层抽样的方法从重量在[)80,85和[)95,100的苹果中共抽取4个,则重量在[)80,85的个数为:;(3)设在[)80,85中抽取的一个苹果为x ,在[)95,100中抽取的三个苹果分别为,,a b c ,从抽出的4个苹果中,任取2个共有,,,,,6种情况.其中符合 “重量在[)80,85和[)95,100中各有一个”的情况共有(,),(,),(,)x a x b x c 3种;设“抽出的4个苹果中,任取2个,重量在[)80,85和[)95,100中各有一个”为事件A ,则事件A 的概率31()62P A ==. 考点:1、古典概型及其概率计算公式;2、分层抽样方法.【方法点晴】本题考查古典概型问题,用列举法计算可以列举出基本事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想.本题还考查分层抽样的定义和方法,利用了总体中各层的个体数之比等于样本中对应各层的样本数之比,属于基础题. 23.(1)cos 2x y =,cos 2x y =-.(2) 1(,22-. 【详解】分析:(1)利用三角函数的定义与性质求出两种情况下y 与x 的函数关系式,即可得结果;(2)0x π<≤时,1cos 22x =,得23x π=,此时点Q的坐标为12⎛- ⎝⎭;当2x ππ<<时,1cos 22x -=,得43x π=,此时点Q的坐标为1,2⎛- ⎝⎭. 详解:(1)当0x π<≤时,cos2x y =;当2x ππ<<时,cos cos 22x x y π⎛⎫=-=- ⎪⎝⎭;综上可知,函数解析式为()(](),0,2,,22x cos x f x x cos x πππ⎧∈⎪⎪=⎨⎪-∈⎪⎩所以框图中①②处应填充的式子分别为cos 2x y =,cos 2xy =-. (2)若输出的y 值为12,则 0x π<≤时,1cos 22x =,得23x π=,此时点Q的坐标为12⎛- ⎝⎭; 当2x ππ<<时,1cos22x -=,得43x π=,此时点Q的坐标为1,2⎛- ⎝⎭. 点睛:本题主要考查条件语句以及算法的应用,属于中档题 .算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可. 24.见解析 【解析】试题分析:先输入三角形的三条边长a ,b ,c ,再计算2a b cp ++=,然后计算S =,最后输出S 的值.试题根据题意,所求的程序如下: INPUT a ,b ,c p =(a +b +c )/2S =SQR(p *(p –a )*(p –b )*(p –c )) PRINT S END25.(I )0.006;(Ⅱ)18;(III )245.5 kW·h. 【分析】(1)根据频率和为1计算出a 的值;(2)根据频率分布直方图计算出“用电量大于250kW·h”的频率,再将该频率乘以对应的总户数即可得到结果;(3)根据频率分布直方图计算出频率刚好为0.8时对应的月用电量,由此可得到第一档用电标准. 【详解】(1)因为()0.00240.00360.00440.00240.0012501a +++++⨯=,所以0.006a =; (2)根据频率分布直方图可知:“用电量大于250kW·h”的频率为()0.00240.0012500.18+⨯=,所以用电量大于250kW·h 的户数为:1000.1818⨯=, 故用电量大于250kW·h 有18户; (3)因为前三组的频率和为:()0.00240.00360.006500.60.8++⨯=<, 前四组的频率之和为()0.00240.00360.0060.0044500.820.8+++⨯=>, 所以频率为0.8时对应的数据在第四组,所以第一档用电标准为:0.80.620050245.50.22-+⨯≈kW·h. 故第一档用电标准为245.5 kW·h. 【点睛】本题考查频率分布直方图的综合应用,主要考查利用频率分布直方图进行相关计算,对学生读取图表信息和计算能力有一定要求,难度一般. 26.(1)9.49.1y x =+;(2)79.6万元;(3)9.67万元. 【分析】(1)根据表中数据分别求得ˆ,,x y b,写出回归直线方程. (2)将x =7.5代入(1)的回归直线方程求解. (3)解不等式9.49.1100x +≥即可.【详解】(1)由表中数据得,23453.54x+++==,26394954424y+++==,∴()()()41421ˆ9.4i iiiix x y ybx x==--==-∑∑,429.4 3.59.1a yb x=-⋅=-⨯=,∴回归方程为9.49.1y x=+.(2)年资金投入量为7.5万元时,9.47.59.179.6y=⨯+=(万元);(3)由题意得:9.49.1100x+≥,解得90.99.4 x≥.∵90.99.679.4≈,∴若年市场销售额超过100万,那么年资金投入量至少要9.67万元.【点睛】本题主要考查回归方程的求法及应用,还考查了运算求解的能力,属于中档题.。
【人教版】高中数学必修三期末一模试卷(附答案)(1)

一、选择题1.某同学用“随机模拟方法”计算曲线ln y x =与直线,0x e y ==所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[]1,e 上的均匀随机数i x 和10个区间[]0,1上的均匀随机数()*,110i y i N i ∈≤≤,其数据如下表的前两行. x 2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22 y 0.84 0.25 0.98 0.15 0.01 0.60 0.59 0.88 0.84 0.10 lnx0.900.010.640.200.920.770.640.670.310.80由此可得这个曲边三角形面积的一个近似值是 A .()215e + B .()215e - C .()315e + D .()315e - 2.甲、乙两人约定某天晚上6:00~7:00之间在某处会面,并约定甲早到应等乙半小时,而乙早到无需等待即可离去,那么两人能会面的概率是( ) A .58B .13C .18D .383.若数列{a n }满足a 1=1,a 2=1,a n +2=a n +a n +1,则称数列{a n }为斐波那契数列,斐波那契螺旋线是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形中画一个圆心角为90°的扇形,连起来的弧线就是斐波那契螺旋线,如图所示的7个正方形的边长分别为a 1,a 2,…,a 7,在长方形ABCD 内任取一点,则该点不在任何一个扇形内的概率为( )A .1103156π-B .14π-C .17126π-D .681237π-4.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .4135.运行如图所示的程序框图,若输出S 的值为129,则判断框内可填入的条件是( )A .4?k <B .5?k <C .6?k <D .7?k <6.如图所示的程序框图输出的结果是( )A .34B .55C .78D .897.执行如图所示的程序框图,若输入x =9,则循环体执行的次数为( )A .1次B .2次C .3次D .4次8.在如图算法框图中,若6a =,程序运行的结果S 为二项式5(2)x +的展开式中3x 的系数的3倍,那么判断框中应填入的关于k 的判断条件是( )A .3k <B .3k >C .4k <D .4k >9.采用系统抽样的方法从400人中抽取20人做问卷调查,为此将他们随机编号为1,2,3…,400.适当分组后在第一组采用随机抽样的方法抽到的号码为5,则抽到的20人中,编号落入区间[201,319]内的人员编号之和为( ) A .600B .1225C .1530D .185510.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差11.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的观众称为“阅读霸”,则下列命题正确的是( ) A .抽样表明,该校有一半学生为阅读霸 B .该校只有50名学生不喜欢阅读 C .该校只有50名学生喜欢阅读 D .抽样表明,该校有50名学生为阅读霸12.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x (万元)8.28.610.011.311.9支出y (万元)6.27.58.0 8.59.8根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元B .11.8万元C .12.0万元D .12.2万元二、填空题13.采用简单随机抽样从含10个个体的总体中抽取一个容量为4的样本,若个体a 前两次未被抽到,则第三次被抽到的概率为_____.14.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为________.15.农历戊戌年即将结束,为了迎接新年,小康、小梁、小谭、小刘、小林每人写了一张心愿卡,设计了一个与此心愿卡对应的漂流瓶.现每人随机的选择一个漂流瓶将心愿卡放入,则事件“至少有两张心愿卡放入对应的漂流瓶”的概率为___16.若下面程序中输入的n值为2017,则输出的值为__________.17.如图是某算法流程图,则程序运行后输出S的值为____.18.执行如图所示的程序框图,若输出的结果是5,则判断框内的取值范围是________________.19.已知样本数据为40,42,40,a ,43,44,且这个样本的平均数为43,则该样本的标准差为_________.20.能够说明“若甲班人数为m ,平均分为a ;乙班人数为n n m ≠(),平均分为b ,则甲乙两班的数学平均分为2a b+”是假命题的一组正整数a ,b 的值依次为_____. 三、解答题21.高铁和航空的飞速发展不仅方便了人们的出行,更带动了我国经济的巨大发展,据统计,在2018年这一年内从A 市到B 市乘坐高铁或飞机出行的成年人约为50万人次.为了解乘客出行的满意度,现从中随机抽取100人次作为样本.得到下表(单位:人次):(1)在样本中任取1个,求这个出行人恰好不是青年人的概率;(2)在2018年从A 市到B 市乘坐高铁的所有成年人中,随机选取2人次,记其中老年人出行的人次为X .以频率作为概率.求X 的分布列和数学期望;(3)如果甲将要从A 市出发到B 市,那么根据表格中的数据,你建议甲是乘坐高铁还是 飞机?并说明理由.22.某公司结合公司的实际情况针对调休安排展开问卷调查,提出了A ,B ,C 三种放假方案,调查结果如下:支持A 方案支持B 方案支持C 方案35岁以下 20 40 80 35岁以上(含35岁)101040(1)在所有参与调查的人中,用分层抽样的方法抽取n 个人,已知从“支持A 方案”的人中抽取了6人,求n 的值;(2)在“支持B 方案”的人中,用分层抽样的方法抽取5人看作一个总体,从这5人中任意选取2人,求恰好有1人在35岁以上(含35岁)的概率.23.如图,在边长为4的正方形ABCD 的边上有一点P ,沿着折线BCDA 由点B (起点)向点A (终点)运动.设点P 运动的路程为x ,APB △的面积为y ,求y 与x 之间的函数关系式,并画出程序框图.24.编写一个程序,求11111 (35799)s =+++++的值,并画出程序框图,要求用两种循环结构编写.25.学校食堂统计了最近5天到餐厅就餐的人数x (百人)与食堂向食材公司购买所需食材(原材料)的数量y (袋),得到如下统计表:第一天 第二天 第三天 第四天 第五天 就餐人数x (百人) 13 9 8 10 12 原材料y (袋)3223182428(1)根据所给的5组数据,求出关于的线性回归方程ˆˆybx a =+; (2)已知购买食材的费用C (元)与数量y (袋)的关系为()()40020,036380,36y y x N C y y y N ⎧-<<∈⎪=⎨≥∈⎪⎩,投入使用的每袋食材相应的销售单价为700元,多余的食材必须无偿退还食材公司,据悉下周一大约有1500人到食堂餐厅就餐,根据(1)中求出的线性回归方程,预测食堂应购买多少袋食材,才能获得最大利润,最大利润是多少?(注:利润L =销售收入-原材料费用)参考公式:()()()1122211nniii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-参考数据:511343i ii x y==∑,521558i i x ==∑,5213237i i y ==∑26.近年来,国家对西部发展出台了很多优惠政策,为了更有效促进发展,需要对一种旧能源材料进行技术革新,为了了解此种材料年产量x (吨)对价格y (万元/吨)和年利润z (万元)的影响,有关部门对近五年此种材料的年产量和价格统计如表,若 5.5y =.x1 2 3 4 5y8764c(1)求表格中c的值;(2)求y关于x的线性回归方程y bx a=+;(3)若每吨该产品的成本为2万元,假设该产品可全部卖出,预测当年产量为多少时,年利润z取得最大值?参考公式:1221ni iiniix y nx ybx nx==-=-∑∑,a y bx=-.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】由题意可得ACBABCD=10S nS∆曲线矩形,n为阴影部分的点的个数,即满足y<lnx,共6个点,即ACBABCD6=101S SS e∆=-曲线矩形,所以S=()315e-,选D.2.D解析:D【分析】由题意知本题是一个几何概型,试验包含的所有事件是{(,)|01x y xΩ=,01}y,写出满足条件的事件是{(,)|01A x y x=,01y,12y x-≤,}x y≤,算出事件对应的集合表示的面积,根据几何概型概率公式得到结果.【详解】解:由题意知本题是一个几何概型,设甲到的时间为x,乙到的时间为y,则试验包含的所有事件是{(,)|01x y x Ω=,01}y , 事件对应的集合表示的面积是1S =,满足条件的事件是{(,)|01A x y x =,01y ,12y x -≤,}x y ≤, 则()1,1B ,1,12C ⎛⎫⎪⎝⎭,10,2D ⎛⎫ ⎪⎝⎭, 则事件A 对应的集合表示的面积是111131122228⨯⨯-⨯⨯=,根据几何概型概率公式得到33818P ==; 所以甲、乙两人能见面的概率38P =. 故选:D .【点睛】本题主要考查几何概型的概率计算,要解决此问题,一般要通过把试验发生包含的事件所对应的区域求出,根据集合对应的图形面积,用面积的比值得到结果.3.D解析:D 【分析】由题意求得数列{}n a 的前8项,求得长方形ABCD 的面积,再求出6个扇形的面积和,由测度比是面积比得答案. 【详解】由题意可得,数列{}n a 的前8项依次为:1,1,2,3,5,8,13,21.∴长方形ABCD 的面积为1321273⨯=.6个扇形的面积之和为222222(1235813)684ππ+++++=.∴所求概率681273P π=-. 故选:D . 【点睛】本题考查几何概型概率的求法,考查扇形面积公式的应用,是基础题.4.C解析:C 【分析】由题意求出AB =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即AB =,所以AB =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.5.C解析:C 【分析】最常用的方法是列举法,即依次执行循环体中的每一步,直到循环终止,但在执行循环体时要明确循环终止的条件是什么,什么时候要终止执行循环体. 【详解】0S =,1k =;110121S -=+⨯=,2k =;211225S -=+⨯=, 3k =;3153217S -=+⨯=,4k =;41174249S -=+⨯=, 5k =;514952129S -=+⨯=,6k =,此时输出S ,即判断框内可填入的条件是“6?k <”.故选:C . 【点睛】本题考查循环结构程序框图. 解决程序框图填充问题的思路(1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、执行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.6.B解析:B 【分析】通过不断的循环赋值,得到临界值,即可得解. 【详解】1,1,21,2,32,3,53,5,85,8,138,13,2113,21,3421,34,55x y z x y z x y z x y z x y z x y z x y z x y z ========================不满足50z ≤,输出即可, 故选:B. 【点睛】本题考查了程序框图循环结构求输出结果,考查了计算能力,属于中当题.7.C解析:C 【分析】根据程序框图依次计算得到答案. 【详解】9,5x y ==,41y x -=>;115,3x y ==,413y x -=>; 1129,39x y ==,419y x -=<;结束. 故选:C . 【点睛】本题考查了程序框图的循环次数,意在考查学生的理解能力和计算能力.8.C解析:C 【分析】根据二项式(2+x )5展开式的通项公式,求出x 3的系数,模拟程序的运行,可得判断框内的条件. 【详解】∵二项式5(2)x +展开式的通项公式是5152r r r r T C x -+=⋅⋅,令3r =,3233152T C x +∴=⋅⋅,332356(4)21408x x C x∴⨯⋅⋅=,∴程序运行的结果S 为120, 模拟程序的运行,由题意可得 k=6,S=1不满足判断框内的条件,执行循环体,S=6,k=5 不满足判断框内的条件,执行循环体,S=30,k=4 不满足判断框内的条件,执行循环体,S=120,k=3此时,应该满足判断框内的条件,退出循环,输出S 的值为120. 故判断框中应填入的关于k 的判断条件是k <4? 故选:C 【点睛】本题考查了二项式展开式的通项公式的应用问题,考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于中档题.9.C解析:C 【分析】根据系统抽样所得的编号为等差数列,再用等差数列的求和公式求解即可. 【详解】由系统抽样的定义可知,在区间[201,319]内抽取的编号数构成以205为首项,公差为20的等差数列,并且项数为6,所以6(61)62052015302⨯-⨯+⨯=. 故选:C 【点睛】本题考查系统抽样的知识,考查数据处理能力和应用意识.10.A解析:A 【分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案. 【详解】设9位评委评分按从小到大排列为123489x x x x x x ≤≤≤≤≤.则①原始中位数为5x ,去掉最低分1x ,最高分9x ,后剩余2348x x x x ≤≤≤,中位数仍为5x ,∴A 正确. ②原始平均数1234891()9x x x x x x x =+++++,后来平均数234817x x x x x '=+++()平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确③()()()222219119S x x x x x x ⎡⎤=-+-++-⎣⎦()()()222223817s x x x x x x ⎡⎤'=-'+-'++-'⎢⎥⎣⎦由②易知,C 不正确.④原极差91=x -x ,后来极差82=x -x 可能相等可能变小,D 不正确. 【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.11.A解析:A 【分析】根据频率分布直方图得到各个时间段的人数,进而得到结果. 【详解】根据频率分布直方图可列下表: 阅读时间(分) [0,10)[10,20)[20,30) [30,40) [40,50) [50,60]抽样人数(名)10 18 22 25 20 5抽样100名学生中有50名为阅读霸,占一半,据此可判断该校有一半学生为阅读霸. 故选A. 【点睛】这个题目考查了频率分布直方图的实际应用,以及样本体现整体的特征的应用,属于基础题.12.B解析:B 【解析】 试题分析:由题,,所以.试题 由已知,又因为ˆˆˆybx a =+,ˆˆˆ0.76,b a y bx ==- 所以,即该家庭支出为万元.考点:线性回归与变量间的关系.二、填空题13.【详解】第一-次没有抽到且第二次没有抽到第三次被抽到的概率是解析:110【详解】第一-次没有抽到且第二次没有抽到第三次被抽到的概率是14.【分析】利用对立事件的概率公式计算即可【详解】解:设至少有一种新产品研发成功的事件为事件事件为事件的对立事件则事件为一种新产品都没有成功因为甲乙研发新产品成功的概率分别为和则再根据对立事件的概率之间 解析:1315【分析】利用对立事件的概率公式,计算即可, 【详解】解:设至少有一种新产品研发成功的事件为事件m ,事件n 为事件m 的对立事件,则事件n 为一种新产品都没有成功,因为甲乙研发新产品成功的概率分别为23和35. 则()232(1)(1)3515p n =--=,再根据对立事件的概率之间的公式可得()()213111515P m P n =-=-=, 故至少有一种新产品研发成功的概率1315. 故答案为:1315. 【点睛】本题主要考查了对立事件的概率,考查学生的计算能力,属于基础题.15.【解析】【分析】基本事件总数事件至少有两张心愿卡放入对应的漂流瓶包含的基本事件个数由此能求出事件至少有两张心愿卡放入对应的漂流瓶的概率【详解】为了迎接新年小康小梁小谭小刘小林每人写了一张心愿卡设计了 解析:31120【解析】 【分析】基本事件总数55n A =,事件“至少有两张心愿卡放入对应的漂流瓶”包含的基本事件个数21335255m C C C C =++,由此能求出事件“至少有两张心愿卡放入对应的漂流瓶”的概率.为了迎接新年,小康、小梁、小谭、小刘、小林每人写了一张心愿卡, 设计了一个与此心愿卡对应的漂流瓶.现每人随机的选择一个漂流瓶将心愿卡放入,基本事件总数55120n A ==,事件“至少有两张心愿卡放入对应的漂流瓶”包含的基本事件个数2133525531m C C C C =++=,∴事件“至少有两张心愿卡放入对应的漂流瓶”的概率为31120m p n ==, 故答案为31120. 【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.16.【分析】根据程序框图的算法功能可知该程序是计算的值再根据裂项相消法即可求出【详解】根据程序框图的算法功能可知该程序是计算的值所以故答案为:【点睛】本题主要考查程序框图的算法功能的理解以及数列求和属于 解析:20172018【分析】根据程序框图的算法功能可知,该程序是计算111112233420172018++++⨯⨯⨯⨯的值,再根据裂项相消法即可求出. 【详解】根据程序框图的算法功能可知,该程序是计算111112233420172018++++⨯⨯⨯⨯的值. 所以111112233420172018++++⨯⨯⨯⨯111111112017122334201720182018⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故答案为:20172018. 【点睛】本题主要考查程序框图的算法功能的理解以及数列求和,属于基础题.常见的数列求和方法有:公式法,裂项相消法,分组求和法,倒序相加求和法,并项求和法,错位相减法等,根据数列的特征选择对应的方法是解题的关键.17.41【分析】根据给定的程序框图计算逐次循环的结果即可得到输出的值得到答案【详解】由题意运行程序框图可得第一次循环不满足判断框的条件;第二次循环不满足判断框的条件;第三次循环不满足判断框的条件;第四次【分析】根据给定的程序框图,计算逐次循环的结果,即可得到输出的值,得到答案. 【详解】由题意,运行程序框图,可得第一次循环,1n =,不满足判断框的条件,1415S =+⨯=; 第二次循环,2n =,不满足判断框的条件,54213S =+⨯=; 第三次循环,3n =,不满足判断框的条件,134325S =+⨯=; 第四次循环,4n =,不满足判断框的条件,254441S =+⨯=; 第五次循环,5n =,满足判断框的条件,输出41S =, 故答案为41. 【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;注意输入框、处理框、判断框的功能,不可混用,着重考查了分析问题和解答问题的能力,属于基础题.18.【详解】试题分析:若输出的结果是5那么说明循环运行了4次因此判断框内的取值范围是考点:程序框图 解析:【详解】试题分析:若输出的结果是5,那么说明循环运行了4次,.因此判断框内的取值范围是.考点:程序框图.19.【分析】由平均数的公式求得再利用方差的计算公式求得即可求解【详解】由平均数的公式可得解得所以方差为所以样本的标准差为【点睛】本题主要考查了样本的平均数与方差标准差的计算着重考查了运算与求解能力属于基 221【分析】由平均数的公式,求得49a =,再利用方差的计算公式,求得2283s =,即可求解. 【详解】由平均数的公式,可得1(4042404344)436a +++++=,解得49a =, 所以方差为2222222128[(4043)(4243)(4043)(4943)(4343)(4443)]63s =-+-+-+-+-+-=,所以样本的标准差为s = 【点睛】本题主要考查了样本的平均数与方差、标准差的计算,着重考查了运算与求解能力,属于基础题.20.是不相等的正整数即可【解析】∵甲班人数为平均分为乙班人数为平均分为∴甲乙两班的数学平均分为∵∴当时∴该命题是假命题时应满足是不相等的正整数故答案为:是不相等的正整数解析:,a b 是不相等的正整数即可 【解析】∵甲班人数为m ,平均分为a ,乙班人数为()n n m ≠,平均分为b ∴甲、乙两班的数学平均分为ma nbm n++ ∵m n ≠∴当a b =时,2ma nb a bm n ++=+ ∴该命题是假命题时,应满足,a b 是不相等的正整数故答案为:,a b 是不相等的正整数三、解答题21.(1)2950(2)见解析(3)乘坐高铁,见解析 【分析】(1)根据分层抽样的特征可以得知,样本中出行的老年人、中年人、青年人人次分别为19,39,42,即可按照古典概型的概率计算公式计算得出;(2)依题意可知X 服从二项分布,先计算出随机选取1人次,此人为老年人概率是151755=,所以1~(2,)5X B ,即2211()()(1)55k kk P x k C -==-,即可求出X 的分布列和数学期望;(3)可以计算满意度均值来比较乘坐高铁还是飞机. 【详解】(1)设事件:“在样本中任取1个,这个出行人恰好不是青年人”为M , 由表可得:样本中出行的老年人、中年人、青年人人次分别为19,39,42, 所以在样本中任取1个,这个出行人恰好不是青年人的概率193929()10050P M +==;(2)由题意,X 的所有可能取值为:0,1,2,因为在2018年从A 市到B 市乘坐高铁的所有成年人中,随机选取1人次,此人 为老年人概率是151755=, 所以022116(0)(1)525P X C ==⨯-=, 12118(1)(1)5525P X C ==⨯⨯-=,22211(2)()525P X C ==⨯=,所以随机变量X 的分布列为:故()0122525255E X =⨯+⨯+⨯=; (3)从满意度的均值来分析问题如下: 由表可知,乘坐高铁的人满意度均值为:521012511011652121115⨯+⨯+⨯=++,乘坐飞机的人满意度均值为:410145702241475⨯+⨯+⨯=++,因为11622155>, 所以建议甲乘坐高铁从A 市到B 市. 【点睛】本题主要考查分层抽样的应用、古典概型的概率计算、以及离散型随机变量的分布列和期望的计算,解题关键是对题意的理解,概率模型的判断,属于中档题. 22.(1)40n =(2)25【分析】(1)根据分层抽样按比例抽取,列出方程,能求出n 的值;(2)35岁以下有4人,35岁以上(含35岁) 有1人.设将35岁以下的4人标记为1,2, 3, 4, 35岁以上(含35岁) 的1人记为a , 利用列举法能求出恰好有1人在35岁以上(含35岁) 的概率. 【详解】(1)根据分层抽样按比例抽取,得:61020204080101040n=++++++,解得40n =.(2)35岁以下:540450⨯=(人),35岁以上(含35岁):510150⨯=(人)设将35岁以下的4人标记为1,2,3,4,35岁以上(含35岁)的1人记为a,()()()()()()()()()(){}1,2,1,3, 1,4,1,,2,3,2,4,2,,3,4,3,,4,a a a aΩ=,共10个样本点.设A:恰好有1人在35岁以上(含35岁)()()()(){}1,,2,,3,,4,A a a a a=,有4个样本点,故()42105P A==.【点睛】本题考查概率的求法,分层抽样、古典概型、列举法等基础知识,考查运算求解能力,属于中档题.23.()()()()204848212812x xy xx x⎧≤≤⎪=≤≤⎨⎪-≤≤⎩;程序框图见解析;【解析】试题分析:根据题意可得到面积函数是一个分段函数,写出函数后,利用条件分支结构写出程序框图即可.试题由题意可得y=.程序框图如图:点睛:本题考查分段函数的算法写法,属于中档题,注意当分段函数为两段时,需要一个分支结构,如果分段函数三段时,需要两个分支结构才能完成,特别在写算法程序时,注意分支结构的连接,是与否的处理一定要细心.24.程序图见解析.【解析】【分析】求和程序设置一个计数变量,一个累加变量,根据结束条件设置成直到型或当型. 【详解】【点睛】本题考查循环结构,考查基本分析能力.25.(1) 2.51y x =-;(2)食堂购买36袋食,能获得最大利润,最大利润为11520元. 【分析】(1)本题首先可根据题中所给数据求出x 、y ,然后根据51522155i ii ii x y x yb xx==-⋅=-∑∑求出b ,最后根据a y bx =-求出a ,即可得出结果;(2)本题首先可根据 2.51y x =-得出预计需要购买食材36.5袋,然后分为36y <、36y ≥两种情况进行讨论,分别求出最大值后进行比较,即可得出结果.【详解】(1)由所给数据可得:1398101210.45x ++++==,3223182428255y ++++==, 515222151343510.425 2.5558510.45i ii i i x y x y b x x==-⋅-⨯⨯===-⨯-∑∑,25 2.510.41a y bx =-=-⨯=-, 故y 关于x 的线性回归方程为 2.51y x =-.(2)因为 2.51y x =-,所以当15x =时36.5y =,即预计需要购买食材36.5袋, 因为()()40020,036380,36y y x N C y y y N ⎧-<<∈⎪=⎨≥∈⎪⎩, 所以当36y <时,利润()7004002030020L y y y =--=+,此时当35y =时,max 300352010520L =⨯+=,当36y ≥时,由题意可知,剩余的食材只能无偿退还,此时当36y 时,700363803611520L =⨯-⨯=,当37y =时,利润70036.53803711490L =⨯-⨯=,综上所述,食堂应购买36袋食,才能获得最大利润,最大利润为11520元.【点睛】本题考查线性回归直线方程,考查回归方程的应用,考查学生的数据处理能力以及运算求解能力.考查分类讨论思想,属于中档题.26.(1)2.5;(2) 1.49.7y x =-+;(3)年产量约为3.5吨时,年利润z 取得最大值.【分析】(1)由均值概念求得c ;(2)根据所给数据计算系数即得;(3)利用(2)中回归直线方程作出预估值进行计算利润后,再由二次函数性质得最大值.【详解】(1)8764 5.55c y ++++==,解得 2.5c =; (2)1234535x ++++==, 5118275 2.568.5ii i x y ==⨯+⨯++⨯=∑, 1222222168.553 5.5 1.4(125)53n i ii n i i x y nx y b xnx ==--⨯⨯===-+++-⨯-∑∑,5.5(1.4)39.7a y bx =-=--⨯=,所以回归直线方程为 1.49.7y x =-+.(3)由(2)2(2)(1.49.7) 1.49.7z y x x x x x =-=-+=-+,所以9.7 3.52( 1.4)x =-≈⨯-(吨)利润最大. 【点睛】本题考查线性回归直线方程,考查回归方程的实际应用.考查学生的数据处理能力,运算求解能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【典型题】高中必修三数学上期末第一次模拟试卷(及答案)一、选择题1.在区间[]0,1上随机取两个数x ,y ,记P 为事件“23x y +≤”的概率,则(P = ) A .23B .12C .49 D .292.已知一组数据的茎叶图如图所示,则该组数据的平均数为( )A .85B .84C .83D .813.如果数据121x +、221x +、L 、21n x +的平均值为5,方差为16,则数据:153x -、253x -、L 、53n x -的平均值和方差分别为( )A .1-,36B .1-,41C .1,72D .10-,1444.大学生小明与另外3名大学生一起分配到某乡镇甲、乙丙3个村小学进行支教,若每个村小学至少分配1名大学生,则小明恰好分配到甲村小学的概率为( ) A .112B .12C .13D .165.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的观众称为“阅读霸”,则下列命题正确的是( ) A .抽样表明,该校有一半学生为阅读霸 B .该校只有50名学生不喜欢阅读 C .该校只有50名学生喜欢阅读 D .抽样表明,该校有50名学生为阅读霸6.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元7.执行如图所示的程序框图,如果输入的1a =-,则输出的S =A .2B .3C .4D .58.已知具有线性相关的两个变量,x y 之间的一组数据如下表所示:x0 1 2 3 4 y 2.24.34.54.86.7若,x y 满足回归方程 1.5ˆˆyx a =+,则以下为真命题的是( ) A .x 每增加1个单位长度,则y 一定增加1.5个单位长度 B .x 每增加1个单位长度,y 就减少1.5个单位长度 C .所有样本点的中心为(1,4.5) D .当8x =时,y 的预测值为13.59.“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为8元,被随机分配为1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于3元的概率是 ( ) A .310B .25C .12D .3510.如图,正方形ABNH 、DEFM 的面积相等,23CN NG AB ==,向多边形ABCDEFGH内投一点,则该点落在阴影部分内的概率为()A.1 2B.3 4C.2 7D.3 811.要从其中有50个红球的1000个形状相同的球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为()A.5个B.10个C.20个D.45个12.如图,在圆心角为直角的扇形OAB中,分别以,OA OB为直径作两个半圆,在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.21π-B.122π-C.2πD.1π二、填空题13.某市有A、B、C三所学校,各校有高三文科学生分别为650人,500人,350人,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,进行成绩分析,则应从B校学生中抽取______人.14.某同学同时掷两颗骰子,得到点数分别为a,b,则双曲线2222x y1a b-=的离心率e5>的概率是______.15.执行如图所示的程序框图若输人x的值为3,则输出y的值为______.16.已知四棱锥P ABCD -的所有顶点都在球O 的球面上,PA ⊥底面ABCD ,底面ABCD 为正方形, 2.PA AB ==现在球O 的内部任取一点,则该点取自四棱锥P ABCD-的内部的概率为______.17.下图给出了一个程序框图,其作用是输入x 的值,输出相应的y 值.若要使输入的x 值与输出的y 值满足关系式y=-2x+4,则这样的x 值___个.18.执行如图所示的程序框图,若输入n 的值为8,则输出的s 的值为_____.19.对具有线性相关关系的变量,x y ,有一组观测数据(,)i i x y (1,2,3,,10i =L ),其回归直线方程是3ˆ2ˆybx =+,且121012103()30x x x y y y +++=+++=L L ,则b =______. 20.执行如图所示的程序框图,若1ln 2a =,22b e =,ln 22c =(其中e 是自然对数的底),则输出的结果是__________.三、解答题21.现有8名马拉松比赛志愿者,其中志愿者1A ,2A ,3A 通晓日语,1B ,2B ,3B 通晓俄语,1C ,2C 通晓英语,从中选出通晓日语、俄语和英语的志愿者各1名,组成一个小组.()1列出基本事件;()2求1A 被选中的概率;()3求1B 和1C 不全被选中的概率.22.近期,某公交公司分别推出支付宝和徽信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x 表示活动推出的天数,y 表示每天使用扫码支付的人次(单位:十人次),统计数据如表l 所示: 表1根据以上数据,绘制了如右图所示的散点图.(1)根据散点图判断,在推广期内,(c,d均为大于零的常数)哪一个适宜作为扫码支付的人次y关于活动推出天数x的回归方程类型?(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表1中的数据,求y关于x的回归方程,并预测活动推出第8天使用扫码支付的人次;参考数据:其中参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:.23.随着经济的发展,轿车已成为人们上班代步的一种重要工具.现将某人三年以来每周开车从家到公司的时间之和统计如图所示.6.5,7.5(时)内的频率;(1)求此人这三年以来每周开车从家到公司的时间之和在[)(2)求此人这三年以来每周开车从家到公司的时间之和的平均数(每组取该组的中间值作代表);(3)以频率估计概率,记此人在接下来的四周内每周开车从家到公司的时间之和在[)4.5,6.5(时)内的周数为X ,求X 的分布列以及数学期望.24.全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续n 天监测空气质量指数(AQI ),数据统计如下: 空气质量指数(3/g m μ)0-50 51-100 101-150 151-200 201-250 空气质量等级 空气优 空气良 轻度污染中度污染 重度污染 天数2040m105(1)根据所给统计表和频率分布直方图中的信息求出,n m 的值,并完成频率分布直方图;(2)在空气质量指数分别为51-100和151-200的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件A “两天空气都为良”发生的概率.25.近年来,某地大力发展文化旅游创意产业,创意维护一处古寨,几年来,经统计,古寨的使用年限x (年)和所支出的维护费用y (万元)的相关数据如图所示,根据以往资料显示y 对x 呈线性相关关系.(1)求出y 关于x 的回归直线方程y bx a =+$$$;(2)试根据(1)中求出的回归方程,预测使用年限至少为几年时,维护费用将超过10万元?参考公式:对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归方程y bx a =+$$$的斜率和截距的最小二乘估计分别为$1221,ni ii xynx b ay bx xy nx=--==--∑∑$$. 26.口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.(Ⅰ)求甲赢且编号的和为6的事件发生的概率; (Ⅱ)这种游戏规则公平吗?试说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由题意结合几何概型计算公式求解满足题意的概率值即可. 【详解】如图所示,01,01x y ≤≤≤≤表示的平面区域为ABCD , 平面区域内满足23x y +≤的部分为阴影部分的区域APQ ,其中2,03P ⎛⎫ ⎪⎝⎭,20,3Q ⎛⎫⎪⎝⎭, 结合几何概型计算公式可得满足题意的概率值为1222233119p ⨯⨯==⨯. 本题选择D 选项.【点睛】数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.2.A解析:A 【解析】 【分析】利用茎叶图、平均数的性质直接求解. 【详解】由一组数据的茎叶图得: 该组数据的平均数为:1(7581858995)855++++=. 故选:A . 【点睛】本题考查平均数的求法,考查茎叶图、平均数的性质等基础知识,考查运算求解能力,是基础题.3.A解析:A 【解析】 【分析】计算出数据1x 、2x 、L 、n x 的平均值x 和方差2s 的值,然后利用平均数和方差公式计算出数据153x -、253x -、L 、53n x -的平均值和方差. 【详解】设数据1x 、2x 、L 、n x 的平均值为x ,方差为2s , 由题意()()()()121221212121215n n x x x x x x x nn++++++++=+=+=L L,得2x =,由方差公式得()()()()()()22212212121212121n x x x x x x n⎡⎤⎡⎤⎡⎤+-+++-++++-+⎣⎦⎣⎦⎣⎦L ()()()2221224416n x x x x x x s n⎡⎤-+-++-⎢⎥⎣⎦===L ,24s ∴=. 所以,数据153x -、253x -、L 、53n x -的平均值为()()()12535353n x x x n-+-+-L ()1235535321n x x x x n+++=-=-=-⨯=-L,方差为()()()()()()22212535353535353n x x x x x x n⎡⎤⎡⎤⎡⎤---+---++---⎣⎦⎣⎦⎣⎦L()()()2221229936n x x x x x x s n⎡⎤-+-++-⎢⎥⎣⎦===L .故选:A. 【点睛】本题考查平均数与方差的计算,熟练利用平均数与方差的公式计算是解题的关键,考查计算能力,属于中等题.4.C解析:C 【解析】 【分析】基本事件总数n 2343C A ==36,小明恰好分配到甲村小学包含的基本事件个数m 322332A C A =+=12,由此能求出小明恰好分配到甲村小学的概率.【详解】解:大学生小明与另外3名大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教, 每个村小学至少分配1名大学生,基本事件总数n 2343C A ==36,小明恰好分配到甲村小学包含的基本事件个数m 322332A C A =+=12,∴小明恰好分配到甲村小学的概率为p 121363m n ===. 故选C . 【点睛】本题考查概率的求法,考查古典概率、排列组合等基础知识,考查运算求解能力,是基础题.5.A解析:A 【解析】 【分析】根据频率分布直方图得到各个时间段的人数,进而得到结果. 【详解】根据频率分布直方图可列下表:故选A.【点睛】这个题目考查了频率分布直方图的实际应用,以及样本体现整体的特征的应用,属于基础题.6.A解析:A 【解析】 【分析】由已知求得 x , y ,进一步求得$ a,得到线性回归方程,取16x =求得y 值即可. 【详解】8.38.69.911.1512.1 10x +++=+=, 5.97.88.18.49.858y ++++==.又 0.78b=$,∴$ 80.78100.2a y bx --⨯===$. ∴$ 0.780.2y x =+.取16x =,得$ 0.78160.212.68y ⨯+==万元,故选A .【点睛】本题主要考查线性回归方程的求法,考查了学生的计算能力,属于中档题.7.B解析:B 【解析】 【详解】阅读流程图,初始化数值1,1,0a k S =-==. 循环结果执行如下:第一次:011,1,2S a k =-=-==; 第二次:121,1,3S a k =-+==-=; 第三次:132,1,4S a k =-=-==; 第四次:242,1,5S a k =-+==-=; 第五次:253,1,6S a k =-=-==; 第六次:363,1,7S a k =-+==-=, 结束循环,输出3S =.故选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.求解时,先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,如:是求和还是求项.8.D解析:D 【解析】 【分析】利用回归直线过样本点中心可求回归方程,根据该方程可得正确的选项. 【详解】由$$1.5y x a=+,得x 每增一个单位长度,y 不一定增加1.5,而是大约增加1.5个单位长度,故选项,A B 错误; 由已知表格中的数据,可知0123425x ++++==,2.2 4.3 4.5 4.8 6.74.55y ++++==,Q 回归直线必过样本的中心点()2,4.5,故C 错误;又4.5 1.52 1.5ˆˆa a =⨯+⇒=,∴回归方程为$1.5 1.5y x =+, 当8x =时,y 的预测值为1.58 1.513.5⨯+=,故D 正确, 故选:D. 【点睛】本题考查线性回归方程的性质及应用,注意回归直线过(),x y ,本题属于基础题.9.D解析:D 【解析】 【分析】甲、乙二人抢到的金额之和包含的基本事件的总数2510n C ==,甲、乙二人抢到的金额之和不低于3元包含基本事件有6个,由此能求出甲、乙二人抢到的金额之和不低于3元的概率. 【详解】由题意,所发红包的总金额为8元,被随机分配为1.72元、1.83元、2.28元、1.55元、0.62元、5分,供甲、乙等5人抢,每人只能抢一次, 甲乙二人抢到的金额之和包含的基本事件的总数为2510n C ==,甲乙二人抢到的金额之和不低于3元包含的基本事件有6个,分别为(1.72,1.83),(1.72,2.28),(1.72,1.55),(1.83,2.28),(1.83,1.55),(2.28,1.55)所以甲乙二人抢到的金额之和不低于3元的概率为63105p ==,故选D. 【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中正确理解题意,找出基本事件的总数和不低于3元的事件中所包含的基本事件的个数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.10.C解析:C 【解析】 【分析】由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2,分别求出阴影部分的面积及多边形ABCDEFGH 的面积,由测度比为面积比得答案. 【详解】 如图所示,由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等, 设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2, 则阴影部分的面积为224⨯=,多边形ABCDEFGH 的面积为2332214⨯⨯-⨯=. 则向多边形ABCDEFGH 内投一点, 则该点落在阴影部分内的概率为42147=. 故选:C.【点睛】本题主要考查了几何概型的概率的求法,关键是求出多边形ABCDEFGH 的面积,着重考查了推理与运算能力,以及数形结合的应用,属于基础题.11.A解析:A 【解析】应抽取红球的个数为5010051000⨯= ,选A. 点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .12.A解析:A 【解析】试题分析:设扇形OAB 半径为,此点取自阴影部分的概率是112π-,故选B.考点:几何概型.【方法点晴】本题主要考查几何概型,综合性较强,属于较难题型.本题的总体思路较为简单:所求概率值应为阴影部分的面积与扇形的面积之比.但是,本题的难点在于如何求阴影部分的面积,经分析可知阴影部分的面积可由扇形面积减去以为直径的圆的面积,再加上多扣一次的近似“椭圆”面积.求这类图形面积应注意切割分解,“多还少补”.二、填空题13.40【解析】【分析】设应从B 校抽取n 人利用分层抽样的性质列出方程组能求出结果【详解】设应从B 校抽取n 人某市有ABC 三所学校各校有高三文科学生分别为650人500人350人在三月进行全市联考后准备用分解析:40 【解析】 【分析】设应从B 校抽取n 人,利用分层抽样的性质列出方程组,能求出结果. 【详解】设应从B 校抽取n 人,Q 某市有A 、B 、C 三所学校,各校有高三文科学生分别为650人,500人,350人,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,120n650500350500∴=++,解得n 40=.故答案为:40. 【点睛】本题考查应从B 校学生中抽取人数的求法,考查分层抽样的性质等基础知识,考查运算求解能力,是基础题.14.【解析】【分析】基本事件总数由双曲线的离心率得利用列举法求出双曲线的离心率包含的基本事件有6个由此能求出双曲线的离心率的概率【详解】某同学同时掷两颗骰子得到点数分别为ab 基本事件总数双曲线的离心率解 解析:16【解析】 【分析】基本事件总数n 6636=⨯=,由双曲线2222x y 1a b -=的离心率e 5>,得b 2a >,利用列举法求出双曲线2222x y 1a b -=的离心率e 5>()a,b 有6个,由此能求出双曲线2222x y 1a b-=的离心率e 5>【详解】某同学同时掷两颗骰子,得到点数分别为a ,b , 基本事件总数n 6636=⨯=,Q双曲线2222x y 1a b-=的离心率e >ca a∴=>,解得b 2a >,∴双曲线2222x y 1a b-=的离心率e >()a,b 有:()1,3,()1,4,()1,5,()2,5,(1,6),()2,6,共6个,则双曲线2222x y 1a b-=的离心率e >61p 366==. 故答案为16. 【点睛】本题考查概率的求法,考查古典概型、列举法、双曲线性质等基础知识,考查运算求解能力,是基础题.对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可.15.63【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y 的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】解:模拟程序的运行可得x=3y=7不满足条件|解析:63 【解析】 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】解:模拟程序的运行,可得 x=3 y=7不满足条件|x-y|>31,执行循环体,x=7,y=15 不满足条件|x-y|>31,执行循环体,x=15,y=31 不满足条件|x-y|>31,执行循环体,x=31,y=63 此时,满足条件|x-y|>31,退出循环,输出y 的值为63. 故答案为63. 【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.16.【解析】【分析】根据条件求出四棱锥的条件和球的体积结合几何概型的概率公式进行求解即可【详解】四棱锥扩展为正方体则正方体的对角线的长是外接球的直径即即则四棱锥的条件球的体积为则该点取自四棱锥的内部的概解析:9π【解析】 【分析】根据条件求出四棱锥的条件和球的体积,结合几何概型的概率公式进行求解即可. 【详解】四棱锥P ABCD -扩展为正方体, 则正方体的对角线的长是外接球的直径,即2R =,即R =则四棱锥的条件1822233V =⨯⨯⨯=,球的体积为343π⨯=, 则该点取自四棱锥P ABCD -的内部的概率8P ==,【点睛】本题主要考查几何概型的概率的计算,结合条件求出四棱锥和球的体积是解决本题的关键.本题考查了几何概型概率的求法;在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.17.2【解析】【分析】分析程序中各变量各语句的作用再根据流程图所示的顺序可知:该程序的作用是计算分段函数的函数值并输出【详解】该题考查的是有关程序框图的问题在解题的过程中注意对框图进行分析明确框图的作用解析:2 【解析】 【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数2,224,251,5x x y x x x x⎧⎪≤⎪=-<≤⎨⎪⎪>⎩的函数值,并输出.【详解】该题考查的是有关程序框图的问题,在解题的过程中,注意对框图进行分析,明确框图的作用,根据题意,建立相应的等量关系式,求得结果.根据题意,可知该程序的作用是计算分段函数2,224,251,5x x y x x x x⎧⎪≤⎪=-<≤⎨⎪⎪>⎩的函数值,依题意得2224x x x ≤⎧⎨=-+⎩或252424x x x <≤⎧⎨-=-+⎩或5124x x x>⎧⎪⎨=-+⎪⎩,解得1x =-±x 的值有两个, 故答案是:2. 【点睛】该题考查的是有关程序框图的问题,在解题的过程中,注意分析框图的作用,之后建立相应的等量关系式,求得结果,从而得到满足条件的x 的个数.18.8【解析】【分析】根据程序框图知该程序的功能是计算并输出变量的值模拟程序的运行过程即可求解【详解】当时满足循环条件当时满足循环条件当时满足循环条件;当时不满足循环条件跳出循环输出故填【点睛】本题主要解析:8 【解析】 【分析】根据程序框图知,该程序的功能是计算并输出变量s 的值,模拟程序的运行过程即可求解. 【详解】当2i =时,满足循环条件,2,4,2s i k ===, 当4i =时,满足循环条件,4,6,3s i k === , 当6i =时,满足循环条件,8,8,4s i k ===; 当8i =时,不满足循环条件,跳出循环,输出8s =. 故填8. 【点睛】本题主要考查了程序框图,循环结构,属于中档题.19.【解析】【分析】由题意求得样本中心点代入回归直线方程即可求出的值【详解】由已知代入回归直线方程可得:解得故答案为【点睛】本题考查了线性回归方程求出横坐标和纵坐标的平均数写出样本中心点将其代入线性回归解析:16-【解析】 【分析】由题意求得样本中心点,代入回归直线方程即可求出b 的值由已知,()12101210330x x x y y y L L +++=+++=()12101310x x x x ∴=⨯+++=L ()12101110y y y y L =⨯+++= 代入回归直线方程可得:3132b =+ 解得16b =-故答案为16- 【点睛】本题考查了线性回归方程,求出横坐标和纵坐标的平均数,写出样本中心点,将其代入线性回归方程即可求出结果20.(注:填也得分)【解析】分析:执行如图所示的程序框图可知该程序的功能是输出三个数的大小之中位于中间的数的数值再根据指数函数与对数函数的性质得到即可得到输出结果详解:由题意执行如图所示的程序框图可知该解析:ln 22(注:填c 也得分). 【解析】分析:执行如图所示的程序框图可知,该程序的功能是输出,,a b c 三个数的大小之中,位于中间的数的数值,再根据指数函数与对数函数的性质,得到b c a <<,即可得到输出结果.详解:由题意,执行如图所示的程序框图可知,该程序的功能是输出,,a b c 三个数的大小之中,位于中间的数的数值, 因为212ln 2,,ln 22a b c e ===,则221ln 21132ln 2e <<<<,即b c a <<, 所以此时输出ln 22c =. 点睛:识别算法框图和完善算法框图是近年高考的重点和热点.解决这类问题:首先,要明确算法框图中的顺序结构、条件结构和循环结构;第二,要识别运行算法框图,理解框图解决的问题;第三,按照框图的要求一步一步进行循环,直到跳出循环体输出结果,完成解答.近年框图问题考查很活,常把框图的考查与函数和数列等知识考查相结合.三、解答题21.(1)见解析;(2)13;(3)56【分析】()1利用列举法能求出基本事件;()2用M 表示“1A 被选中”,利用列举法求出M 中含有6个基本事件,由此能求出1A 被选中的概率;()3用N 表示“1B 和1C 不全被选中”,则N 表示“1B 和1C 全被选中”,利用对立事件概率计算公式能求出1B 和1C 不全被选中的概率. 【详解】()1现有8名马拉松比赛志愿者,其中志愿者1A ,2A ,3A 通晓日语,1B ,2B ,3B 通晓俄语,1C ,2C 通晓英语,从中选出通晓日语、俄语和英语的志愿者各1名,组成一个小组. 基本事件空间()111{,,A B C Ω=,()112,,A B C ,()121,,A B C ,()122,,A B C ,()131,,A B C ,()132,,A B C ,()211,,A B C , ()212,,A B C ,()221,,A B C ,()222,,A B C ,()231,,A B C , ()232,,A B C ,()311,,A B C ,()312,,A B C ,()321,,A B C ,()322,,A B C ,()331,,A B C ,()332,,}A B C ,共18个基本事件. ()2由于每个基本事件被选中的机会相等,∴这些基本事件是等可能发生的,用M 表示“1A 被选中”,则()111{,,M A B C =,()112,,A B C ,()121,,A B C ,()122,,A B C ,()131,,A B C ,()132,,}A B C ,含有6个基本事件,1A ∴被选中的概率()61183P M ==. ()3用N 表示“1B 和1C 不全被选中”,则N 表示“1B 和1C 全被选中”, ()111{,,N A B C Q =,()211,,A B C ,()311,,}A B C ,含有3个基本事件,1B ∴和1C 不全被选中的概率()351186P N =-=. 【点睛】本题考查基本事件、古典概型概率的求法,考查列举法、对立事件概率计算公式等基础知识,考查运算求解能力,是基础题.对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可. 22.(1)(2)【解析】 【分析】(1) 根据散点图判断,适宜;(2),两边同时取常用对数得:,根据公式得到均值和系数即可得到公式,再代入x=8可得到估计值. 【详解】(1)根据散点图判断,适宜作为扫码支付的人数关于活动推出天数的回归方程类型; (2),两边同时取常用对数得:;设,,把样本中心点代入,得: ,,,关于的回归方程式:;把代入上式,; 活动推出第天使用扫码支付的人次为;【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与Y 之间的关系,这条直线过样本中心点.线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的, 线性回归方程得到的预测值是预测变量的估计值,不是准确值. 23.(1)0.35;(2)7;(3)分布列见解析;数学期望65. 【解析】 【分析】(1)用1减去频率直方图中位于区间[)3.5,6.5和[]7.5,10.5的矩形的面积之和可得出结果;(2)将各区间的中点值乘以对应的频率,再将所得的积全部相加即可得出所求平均数; (3)由题意可知34,10X B ⎛⎫⎪⎝⎭:,利用二项分布可得出随机变量X 的概率分布列,并利用二项分布的均值可计算出随机变量X 的数学期望. 【详解】(1)依题意,此人这三年以来每周开车从家到公司的时间之和在[)6.5,7.5(时)内的频率为10.030.10.20.190.090.040.35------=; (2)所求平均数为40.0350.160.270.3580.1990.09100.047x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=(时);(3)依题意,34,10X B ⎛⎫ ⎪⎝⎭:.()47240101010000P X ⎛⎫=== ⎪⎝⎭,()314371029110102500P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭,()2224371323210105000P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()33437189310102500P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()438141010000P X ⎛⎫=== ⎪⎝⎭. 故X 的分布列为X0 1234P240110000 102925001323500018925008110000故()4105E X =⨯=. 【点睛】本题考查频率分布直方图中频率和平均数的计算,同时也考查了二项分布的概率分布列和数学期望的计算,考查计算能力,属于中等题. 24.(1)答案见解析;(2)35. 【解析】【试题分析】(1)借助题设中提供的频率分布直方图,算出0-50的频率为0.004500.2⨯=,进而求出样本容量200.2100n =÷=,从而求出25m =,最后完成频率分布直方图;(2)先运用分层抽样的方法求出空气质量指数为51-100和151200-的监测天数中分别抽取4天和1天,即将空气质量指数为51-100的4天分别记为,,,a b c d ;将空气质量指数为151-200的1天记为e ,算出从中任取2天的基本事件数为10种和其中事件A “两天空气都为良”包含的基本事件数为6种,进而算得事件A “两天都为良”发生的概率是()63105P A ==: (1)由频率分布直方图可知0-50的频率为0.004500.2⨯=, 所以200.2100n =÷=,从而25m =, 频率分布直方图补充如下图所示.。