-简谐运动的图像
简谐运动图象和公式教科ppt课件

一、简谐运动的图像
(3)从振动图象中分析有关物理量
从简谐运动的图像我们可以了解到物体在振动时的许多物 理量。比如,参看下图的振动图像可确定:
7
1.振幅A:图像的峰值。 2.周期T:相邻两个位移为正的最大值或负的最
大值之间的时间间。 3.任一时刻t的位移x:对应于图像上某一点的
坐标(t,x)。
8
22
课堂练习 1、右图中是甲乙两弹簧振子的振动图象,两
振动振幅之比为( 2∶1 ), 频率之比为( 1∶1 ),
甲和乙的相差为( )
2
23
练习:
已知:A=3cm,T=8s,规定向右方向为正 方向,从平衡位置O(向B)开始计时, 试:大致画出它的振动图像?
24
从平衡位置O(向B)开始计时
从B 开始计时
1、振动图象(如图)
2、x-t图线是一 条质点做简谐
运动时,位移
随时间变化的
图象,不是轨
迹。
3、振动图象是 正弦曲线还是 余弦曲线,这 决定于t=0 时刻的选择。
4
一、简谐运动的图像
(2)简谐运动图象描述的振动物理量
1、直接描述量: ①振幅A;②周期T;③任意时刻的位移x。
5
一、简谐运动的图像
2、间接描述量 ①频率f=1/T ② x-t图线上任一点的切线的斜率等于v。
选修3-4 第一章 机械振动 §1.3 简谐运动的图象和公式
1
温故知新——简谐运动的描述
1、如何反映简谐运动的强弱和振动快慢? 振幅(A) 周期和频率 2、单摆的周期与哪些因素有关?
与单摆的质量和振幅无关,与摆长有关
想一想还可怎么描述简谐运动? 2
3
一、简谐运动的图像
高中物理1.3简谐运动的图像优秀课件

(2)作出振动图像。
例3、以下图为某简谐运动图像,那么以下说法正确的选项 是
A、质点在10s内走过的路程为40m位移为0 B、t=0.7s时,质点的位移为正,且正在向平衡位置运动
C、t=1.2s时,质点的速度方向与加速度方向都和x轴正向相反 D、t=1.2s到t=1.5s质点的动能在增大,弹簧弹力对质点做功
t+ 叫做相位 ,叫做初相。
两振动的相位之差称为相位差。
反相:两振动步调相反; 〔相位差为1800的奇数倍〕
同相:两振动步调相同。 〔相位差为1800的偶数倍〕
两振动起始位置不同、起始振动方向不同,那么两振动 的相位不同。
例2、某简谐运动的振幅为8cm,f=0.5Hz零时刻的位移为 4cm,且振子沿x轴负方向运动。
四、简谐运动的表达式
xAsi nt ()
2 2f
xATsin2(t)
T
xAsi2 n f(t)
A——物体做简谐运动的振幅; ω——物体做简谐运动的角〔圆〕频率;教材P12 开展空间 t+—— 叫简谐运动的相位.表示简谐运动所处的状态 叫初相,即t=0时的相位.
五、简谐运动的相位、相位差
在简谐运动方程 xAsint中 ( )
–0.5
•读:A、T、各时刻位移x •判:①各时刻F、a、速度v的方向
②某段时间内x、F、a、v、Ek、Ep的变化情况
•求:某段时间内振子的路程
例1、如下图,是某简谐振动图象,试由图象判断以下说法哪些
正确:( CD)G
A、振幅是5m
B、频率是0.8s
C、0.4s末摆球速度为负,振动加速度为零
D、0.6s末摆球的加速度为正,速度为零
例4
简谐运动的描述ppt课件

简谐运动的描述
目录
CONTENTS
1
简谐运动的表达式
2
描述简谐运动的物理量
3
简谐运动的周期性和对称性
4
简谐运动振幅与路程的关系
有些物体的振动可以近似为简谐运
动,做简谐运动的物体在一个位置附近
不断地重复同样的运动。如何描述简谐
运动的这种独特性呢?
知识回顾:
简谐运动的位移图像是一条正弦曲线。
全振动的特点:①位移和速度都会到初状态 ②路程等于4A
②周期:做简谐运动的物体完成一次全振动所需要的时间,用T表示,
单位:s.
③ 频率:单位时间内完成全振动的次数,用f表示,单位:Hz.
周期T与频率f的关系是T=
知道即可:弹簧振子的周期由哪些因素决定?
周期公式: T 2
m
k
弹簧振子周期(固有周期)和频率由振动系统本身的因素决定(振子的质量m和弹
②若△ = 2 − 1<0,振动2的相位比1落后△ 。
4.同相与反相:
(1)同相:相位差为零
△ = 2( = 0,1,2, … )
(2)反相:相位差为
△ = (2 + 1)( = 0,1,2, … )
A与B同相
A与C反相
A与D异相
相位差90°
=( + )
一、简谐运动的表达式
相位
x A sin(t )
振幅
圆频率
初相位
二、描述简谐运动的物理量
=( + )
1.振幅:(1)定义:振动物体离开平衡位置的最大距离。
振幅
O
振幅
(2)物理意义:振幅是描述振动强弱的物理量。
物理人教版(2019)选择性必修第一册2.2简谐运动的描述(共16张ppt)

二、周期和频率
= ( + )
2.周期:做简谐运动的物体完成一次全振动所需要的时间,称为周期T,单位:s。
3.频率:物体完成全振动的次数与所用时间之比叫作频率f,数值等于单位时间内
完成的全振动的次数。单位:赫兹(Hz)。1Hz=1s-1。
4.意义:周期和频率都是表示物体振动快慢的物理量,周期越小,频率越大, 表
若 Δ = 2- 1=π+2nπ,则图像2与图像1反相, = ( + )
若 Δ = 2-1>0,则图像2比图像1超前Δ;
若 Δ = 2-1<0,则图像2比图像1落后Δ;
Δ 一般取-π到π
四、简谐运动的描述
物理语言
振幅A
示振动越快。
5.周期和频率的关系:T=1/f。
二、周期和频率
做一做:测量小球振动的周期
如图,弹簧上端固定,下端悬挂钢球。把钢球从平衡位置向
下拉一段距离 A,放手让其运动,A 就是振动的振幅。给你
一个停表,怎样测出振子的振动周期T?
Q1:如何取一个全振动?将振动的最低/最高点作为计时起点是
否合适?
Q2:测一次全振动的时间作为周期,误差大吗?如何减小?
= ( + )
1.定义:振动物体离开平衡位置的最大距离
2.符号:A
3.标量
4.意义:表示振动的强弱
对同一个振动系统,振幅越大,振动系统能量越大
5.振动物体运动范围是振幅的两倍
6.区分位移、路程、振幅
①振子的位移大小等于其偏离平衡位置的距离,时刻在变化;
但振幅是不变的。
②位移是矢量,振幅是标量,它等于最大位移的数值。
1.定义:物理学中把(ωt+φ)叫作相位。
单摆简谐运动的图像PPT课件

能力·思维· 方法
【例3】将某一在北京准确的摆钟,移到南 极长城站,它是走快了还是慢了?若此钟在 北京和南极的周期分别为T北、T南,一昼夜 相差多少?应如何调整?
能力·思维·
方法
【解析】单摆周期公式T= 2
l ,由于北京和南极
g
的重力加速度g北、g南不相等,且g北<g南,因此
周期关系为:T北>T南.
(5)单摆的等时性:在小振幅摆动时,单摆的 振动周期跟振幅和振子的质量都没关系.
要点·疑点· 考点
2.简谐运动图像
(1)物理意义:表示振动物体的位移随时间变化 的规律.注意振动图像不是质点的运动轨迹.
(2)特点:简谐运动的图像是正弦(或余弦)曲线 .
要点·疑点·
考点
(3)作图:以横轴表示时间,纵轴表示位移.如 图7-2-2所示.
能力·思维·
方法
【例1】如图7-2-4所示,一块涂有 碳黑的玻璃板,质量为2kg,在拉 力F的作用下,由静止开始竖直向 上做匀变速运动,一个装有水平振 针的振动频率为5Hz的固定电动音 叉在玻璃板上画出了图示曲线,量 得OA=1cm,OB=4cm,OC=9cm,求外 力的大小.(g=10m/s2)
说明在南极振动一次时间变短了,所以在南极摆 钟变慢了.
设此钟每摆动一次指示时间为t0s,在南极比在 北京每天快(即示数少)△ts.
能力·思维· 方法
则在北京(24×60×60/T北)t0=24×60×60①
在南极(24×60×60/T南)t0=24×60×60-△t②
由①②两式解得△t=24×60×60(T北-T南)/T南.
为使该钟摆在南极走时准确,必须将摆长加长.
摆钟是单摆做简谐运动的一个典型应用,其快慢 不同是由摆钟的周期变化引起的,分析时应注意:
简谐运动的描述课件

详细描述
能量图是用来描述简谐运动时振子的能量随时间变化的 图像。这个图像通常以时间为横坐标,以振子的能量为 纵坐标。在能量图中,我们可以看到振子的能量是如何 随时间变化的,以及在运动过程中能量的转换和损耗。
05
简谐运动的实例分析
单摆的简谐运动
定义
单摆是一种理想的物理模型,由一根固定在一端的轻杆或 细线,另一端悬挂质量块组成。
《简谐运动的描述课件》
2023-10-30
目录
• 简谐运动概述 • 简谐运动的基本概念 • 简谐运动的公式与计算 • 简谐运动的图像描述 • 简谐运动的实例分析 • 简谐运动的总结与展望
01
简谐运动概述
简谐运动的定义
简谐运动的定义
简谐运动是指物体在一定范围内周期性地来回运动,其运动轨迹呈现为正弦 或余弦函数的形状。这种运动是自然界中最简单、最基本的周期性运动之一 。
高阶效应
对于一些高阶的振动系统,除了振幅和频率的变化外,还需要考虑高阶效应的影响。高阶 效应会导致系统的响应呈现出更为复杂的特性。
未来对简谐运动的研究方向与价值
研究方向
未来对简谐运动的研究方向主要包括:研究更为复杂 的振动系统,例如多自由度振动系统和耦合振动系统 ;研究更为精细的振动模型,例如包含更多影响因素 和非线性效应的模型;研究更为高效的求解方法,例 如能够处理大规模数据和复杂情况的数值方法。
加速度与速度
加速度
在简谐运动中,振子的速度会不断变化,因此加速度也会不断变化。加速度是描述速度变化快慢的物 理量。
速度
在简谐运动中,振子的位置不断变化,因此速度也会不断变化。速度是描述物体运动快慢的物理量。
位移与回复力
位移
在简谐运动中,振子的位置会不断变化, 这种变化称为位移。位移是描述物体位置 变化的物理量。
《简谐运动的图像》课件

简谐运动是一种重要的物理现象,它在各个领域都有广泛的应用。这个PPT 课件将带您深入了解简谐运动的图像展示和应用实例。
简谐运动简介
1 什么是简谐运动
简谐运动是一种物体以 固定频率和振幅围绕平 衡位置做周期性往复运 动的现象。
2 简谐运动的特点
3 简谐运动的实例
具有周期性、振幅恒定、 频率恒定和相位关系确 定等特点。
ห้องสมุดไป่ตู้ 总结
简谐运动的图像展示了物体随时间的变化规律,可以通过不同的图像形式更好地理解和分析简谐运动的 特点和应用。简谐运动在机械、声学、光学等领域中发挥了重要作用,对我们的生活和科学研究带来了 巨大影响。
简谐振动的加速度图像
简谐振动的加速度随时间的变化可以通过图像 呈现出来。
应用实例
单摆的简谐运动
单摆的摆动运动可以近似看作简谐运动,例 如钟摆。
声波的简谐振动
声波是一种机械波,可以看作是分子在空气 中的简谐振动。
弹簧的简谐振动
弹簧的振动实际上是一种简谐振动,广泛应 用于各种机械设备。
光波的简谐性质
光波具有波动性,并且可以通过干涉和衍射 现象来解释光的简谐性质。
弹簧振子、摆锤、声波 等都可以视为简谐运动。
简谐运动图像展示
椭圆轨迹的简谐运动图像
简谐运动在行星轨道运动中以椭圆轨迹的形式 展现。
余弦函数和正弦函数简谐运动图像
余弦函数和正弦函数可以精确描述简谐运动的 位置随时间的变化。
简谐振动的位移和速度图像
简谐振动的位移和速度随时间的变化可以由图 像直观地表示。
简谐运动的图像和公式课件

答案 (1)5 2 cm -5 2 cm
π π (2)x=10sin2t+2
π cm 2
一、简谐运动的图像
(1)白纸不动时,甲同学画出的轨迹是怎样的? (2)乙同学匀速向右拖动白纸时,甲同学画出的轨迹又是怎 样的? 答案 (1)是一条垂直于OO′的直线.
返回
(2)轨迹如图,类似于正弦曲线.
一、简谐运动的图像
2.绘制简谐运动的x-t图像
如图2所示,使漏斗在竖直平面内做小角度摆动, 并垂直于摆动平面匀速拉动薄板,则细沙在薄板 上形成曲线.若以振子的平衡位置为坐标原点,沿 着振动方向建立x轴,垂直于振动方向建立t轴,
5.相位差
φ2),则相位差为Δφ= 当Δφ= 当Δφ= 0 π =
若两个简谐运动的表达式为x1=A1sin (ωt+φ1),x2=A2sin (ωt+ . 时,两振动质点振动步调一致. (ωt+φ2)-(ωt+φ1) φ2-φ1 时,两振动质点振动步调完全相反.
典例精析 一、对简谐运动的图像的理解
T
x=Asin
2π t+φ或 x=Asin (2πft+φ). T
二、简谐运动的表达式及相位差
返回
4.ωt+φ代表了做简谐运动的质点在 t时刻处在一个运动周期中的
哪个状态,所以ωt+φ代表简谐运动的相位;其中φ是t=0时的相 位,称为初相位或初相.相位是一个角度,单位是 或 弧度 度 .
4
1
中正确的是( )
2
3
4
1.(对简谐运动的图像的理解)关于简谐运动的图像,下列说法 BCD A.表示质点振动的轨迹,是正弦或余弦曲线 B.由图像可判断任一时刻质点相对平衡位置的位移方向 C.表示质点的位移随时间变化的规律 D.由图像可判断任一时刻质点的速度方向 解析 振动图像表示质点的位移随时间的变化规律,不是运 动轨迹,A错,C对; 由图像可以判断某时刻质点的位移和速度方向,B、D正确.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简谐运动的图像知识要点:一、简谐运动的图像1、坐标轴:横轴表示时间,纵轴表示位移。
具体作法:以平衡位置为坐标原点,以横轴表示,以纵轴表示质点对平衡位置的位移,根据实验数据在坐标平面上画出各个点,并用平滑曲线将各点连接起来,即得到简谐运动的位移——时间图像。
(通常称之为振动图像)2、简谐运动图像的特点:理论和实验都证明,所有简谐运动的振动图像都是正弦或余弦曲线。
3、简谐运动图像的物理意义:表示做简谐运动的质点的位移随时间变化的规律,即位移——时间函数图像。
注意:切不可将振动图像误解为物体的运动轨迹。
处理振动图像问题时,一定要把图像还原为质点的实际振动过程分析。
二、从简谐运动图像可获取的信息1、任一时刻振动质点离开平衡位置的位移:纵坐标值。
2、振幅A:图像中纵坐标的最大值。
3、周期T:两相邻的位移和速度始终完全相同的两状态间的时间间隔。
4、任一时刻的速度大小及方向:图线上该时刻对应的斜率大小反映速度大小,斜率正、负反映速度方向。
斜率大时速度大,斜率为正时速度为正,斜率为负值时速度为负。
5、任一时刻加速度(回复力)方向:与位移方向相反,总是指向平衡位置,即时间轴。
6、某一段时间内位移、回复力、加速度、速度、动能及势能的变化情况:当振动质点向平衡位置方向运动时,速度、动能均增大,而位移、回复力、加速度、势能均减小,否则相反。
典型例题:例1、如图9-15所示为某质点简谐运动的振动图像,根据图像回答:⑴振幅、周期;⑵具有正向最大速度的时刻;⑶具有正向最大加速度的时刻;⑷在3~4s内,质点的运动情况;⑸1~4s内质点通过的路程。
解析:⑴由图像可知振幅A=10cm,周期T=4s。
⑵物体在平衡位置时有最大速度,顺着时间轴向后看,看它下一时刻的位移,就知道它向哪个方向运动,故可知t=0,4s,8s,…4ns(n为非负整数)时,具有正向最大速度。
⑶物体在最大位移处时具有最大加速度,由于加速度与位方向相反,故只胡当质点位为负时,加速度方为正,故可知t=3s,7s,11s,…(4n+3)s(n为非负整数)时,具有正向最大加速度。
⑷在3~4s内物体由负向最大位移处返回平衡位置,加速度逐渐减小,速度逐渐增大,加速度和速度方向均为正,物体做加速度逐渐减小的加速运动。
⑸1~4s内质点通过的路程s=3A=30cm。
例2、一弹簧振子做简谐运动,周期为T,则()A.若t时刻和(t+Δt)时刻振子运动位移的大小相等,方向相同,则Δt一定等于T 的整数倍;B .若t 时刻和(t +Δt )时刻振子运动位移的大小相等,方向相反,则Δt 一定等于T/2的整数倍;C .若Δt =T ,则在t 时刻和(t +Δt )时刻振子运动的加速度一定相等;D .若Δt =T/2,则在t 时刻和(t +Δt )时刻弹簧的长度一定相等。
解析:设弹簧振子的振动图像如图9-16所示,B 、C 两点的位移大小相等、方向相同,但B 、C 两点的时间间隔Δt ≠T ,故A 选项错误。
B 、C 两点的速度大小相等、方向相反,但Δt ≠T/2,故B 选项错误。
A 、D 两点间的间隔Δt =T ,A 、D 两点的位移大小和方向均相等,所 以A 、D 两点的加速度一定相等,C 选项正确。
A 、C 两点的时间间隔Δt =T/2,A 点与C在A 点弹簧的伸长的,在C 点弹簧是压缩的,所以在A 、C 两点,弹 图9-16 簧的形变量大小相同,而弹簧的长度不相等,D 选项错误。
故正确选项为C 。
例3、一个质点经过平衡位置O ,在A 、B 间做简谐运动如图9-17(a),它的振动图像如图9-17(b)所示,设向右为正方向,则OB =_______cm , 第0.2s 末质点的速度方向_______,加速度大小_______;第0.4s 末质 点加速度方向是_______;第0.7s 时,质点位置在_______区间,质点 从O 运动到B 再到A 需时间t =_______s ,在4s 内完成______次全振 动。
解析:从图像上看出振幅是5cm ,所以OB =5cm 。
图9-17根据正方向的规定及振动图像知,质点从位置B 开始计时,第0.2s 末,质点回到平衡位置O ,向负方向运动,所以此时速度方向从O 指向A ,位移为0,由a =-kx/m ,得a =0。
第0.4s 末质点到达A 点位移为负,回复力应为正,此时加速度方向由A 指向O 。
第0.7s 时,位移为正,质点在OB 之间。
从图线读出T =0.8s ,从O 经B 到A 需时间t =3T/4=0.6s 。
f =1/T =1.25Hz ,4s 内完成全振动n =1.25×4=5次。
例4、甲、乙两弹簧振子,振动图像如图9-18所示,则可知( ) A .两弹簧振子完全相同; B .两弹簧振子所受回复力最大值之比F 甲︰F 乙=2︰1; C .振子甲速度为零时,振子乙速度最大;D .振子的振动频率之比f 甲︰f 乙=1︰2。
解析:从图像中可以看出,两弹簧振子周期之比T 甲︰T 乙=2︰1, 图9-18得频率之比f 甲︰f 乙=1︰2。
D 正确。
弹簧振子周期与振子质量、弹簧劲度系数k 有关,周期不同,说明两弹簧振子不同,A 错误。
由于弹簧的劲度系数k 不一定相同,所以两振子受回复力(F =-kx)的最大值之比F 甲︰F 乙不一定为2︰1,所以B 错误。
对简谐运动进行分析可知,在振子到达平衡位置时位移为零,速度最大;在振子到达最大位移处时,速度为零。
从图像中可以看出,在振子甲到达最大位移处时,振子乙恰到达平衡位置,所以C 正确。
故正确选项为CD 。
同步训练知识掌握1、简谐运动图像是一条__________或__________,它表示振动质点的__________________的规律。
-102、简谐运动的图像是横坐标和纵坐标分别表示振动物体的( )A .时间t ,振幅A ;B .时间t ,对平衡位置的位移x ;C .对平衡位置的位移x ,时间t ;D .时间t ,周期T 。
3、利用振动图像可以求出振动物体的⑴振幅,⑵周期,⑶频率,⑷任意时刻的位移,⑸质量,⑹重力加速度等六个物理量中的哪一些( )A .只能求出⑴、⑵、⑷;B .只能求出⑴、⑵、⑶、⑷;C .只能求出⑷;D .六个物理量都可求出。
4、如图9-19是某质点作简谐运动的图像,则质点振幅是______cm ,周期是______s ,频率为______Hz 。
5、上题图中,下列说法正确的是( )A .振动图像是从平衡位置开始计时;B .2s 末速度为负方向,加速度最大;C .3s 末,质点速度为零,加速度为正的最大;D .5s 末速度为最大值,而加速度为零。
图9-19能力提高 6、如图9-20所示某质点的振动图像( )A .t 1和t 2时刻质点的速度相同;B .从t 1到t 2时间速度方向与加速度方向相同;C .从t 2到t 3时间内速度变大,而加速度变小;D .t 1和t 3时刻质点的加速度相同。
图9-207、上题图中,t 1和t 2时刻这个质点的( )A .加速度相同;B .位移相同;C .速度相同;D .回复力不同。
8、如图9-21所示,是某简谐运动的图像,试由图像判断 下列说法正确的是( )A .振幅是3m ;B .周期是8s ;C .4s 末振动质点一速度为负,加速度为零;D .第14s 末振动质点的加速度为正,速度最大。
图9-219、如图9-22(a)所示,一个弹簧振子在A 、B 间做简谐运动,O 为平衡位置,以某时间作计时起点(t =0),经1/4周期,振子具有正方向的最大加速度,在图9-22(b)所示的几个图9-22(a) 图9-22(b)10、如图9-23所示为某一质点的振动图像,由图可知在 t 1和t 2两个时刻,质点振动的速度v 1、v 2与加速度a 1、a 2的关系为( ) A .v 1<v 2,方向相同; B .v 1<v 2,方向相反; C .a 1>a 2,方向相同;D .a 1>a 2,方向相反。
图9-2311、悬挂在竖直方向的弹簧振子,振周期为2.0s ,振子从最低位 置向上运动时开始计时,在一个周期内的振动图像如图9-24所示,关于这个图像,下列说法中正确的是( ) A .在t =1.0s 时速度为零,加速度为负的最大值;B .在t =1.2s 时速度为正,加速度为负;C .在t =1.5s 时速度为负的最大值,加速度为零; 图9-24D .在t =1.7s 时速度为负,加速度为负12、如图9-25所示画出了弹簧振子在一个周期内的振动图像,则在此后的半个周期内( )A .振子速度方向不变,加速度方向不变;B .振子速度方向不变,加速度方向改变;C .振子速度方向改变,加速度方向不变;D .振子速度方向改变,加速度方向改变。
拔高挑战13、图9-26是一个质点的振动图像,从图中可以知道( ) A .在t =0时,质点位移为零,速度和加速度也为零;B .在t =4s 时,质点的速度最大,方向沿x 轴的负方向;C .在t =3s 时,质点振幅为-5cm ,周期为4s ; D .无论何时,质点的振幅都是5cm ,周期都是4s 。
14、图9-27为一简谐运动图像,由图可知,振动质点的 频率是_______Hz ,质点需经过_______s ,通过的路程为0.84m ;在图中画出B 、D 时刻质点的运动 方向。
15、如图9-28所示,弹簧振子处于两挡板之间,小球可看成质点,弹簧的自然长度等于两挡板间的宽度,今向左压缩弹簧2cm后放手,小球在运动过程中与右挡板相碰撞,并以原速率弹回,不计碰撞时间,已知无右挡板时弹簧振子周期为0.4s ,从放手 图9-28开始计时,取向右为正方向,画出小球的振动图像。
16、如图9-29所示,一块涂有碳黑的玻璃板,质量为2kg ,在拉力F 作 用下由静止开始在竖直方向上做匀变速直线运动,一个装有指针的振动频率为5Hz 的电动音叉在玻璃板上,画出了如图示的曲线,量 得OA =1cm ,OB =4cm ,OC =9cm ,试求外力F 多大?图9-29答案:1、正弦曲线,余弦曲线,位移随时间变化;2、B ;3、B ;4、2,4,0.25;5、AC ;6、CD ;7、D ;8、BC ;9、D ;10、AD ;11、AC ;12、C ;13、D ;14、0.125,84,B 时刻向上,D 时刻向下;15、见图9-30所示;16、24N 。