压裂技术理论及应用

合集下载

水力压裂法

水力压裂法

或许所有的美国人都在受益于“水力压裂法”,尽管半数以上的人可能没有听说过这个名词。

在今时今日,美国各级政府、企业对页岩油产业的发展寄予了厚望。

美国页岩油资源极其丰富,在科罗拉多州、犹他州和怀俄明州,被锁在页岩之中的油存量达上万亿桶以上,而正是凭借“水力压裂法”,以前根本不可能企及的大量页岩油正在被开采。

这种技术方法,在测量时首先取一段基岩裸露的钻孔,用封隔器将上下两端密封起来;然后注入液体,加压直到孔壁破裂,随之记录压力随时间的变化,并用印模器或井下电视观测破裂方位。

根据记录的破裂压力、关泵压力和破裂方位,利用相应的公式算出原地应力的大小和方向。

该方法于20世纪50年代就被科学家在理论上进行论证,60年代加以完善,在分析了压裂液渗入的影响后,开始作出大量野外和室内实验工作。

由于水力压裂法操作简便,且无须水力压裂法知道岩石的弹性参量,而得到广泛应用。

由于页岩油在美国的战略资源地位和自身需求,美国已进行很多水力压裂法地应力测量,德国、日本和中国现在也已相继开展此项工作。

资料显示,目前利用此法已能在5000米深处进行测量。

[1]页岩气开发过程中所采用的水力压裂法要加入化学物质,在每次压裂完成后,要对水进行获取和重新利用。

水力压裂法向来存在争议,但是这种页岩气开采技术在争议中却得到迅速发展。

当越来越多水体污染案例同水力压裂法相关联时,美国众议院能源和商业委员会出手了。

2010年7月19日,能源和商业委员会主席亨利·韦克斯曼联手该机构下属的能源和环境小组组长爱德华·马基联名致信给美国10个主要页岩气开发商,要求它们提交水力压裂法应用全程中涉及到的化学物质细节。

8月6日,限期“交卷”。

这个要求出台的背景是,全球天然气需求旺盛,美国引领页岩气开发技术并努力让页岩气开采遍地开花。

/a4_50_59_01300000955595129844599646376_jpg.html?prd=zhengwenye_ left_neirong_tupian美国宾夕法尼亚州一页岩气开采现场取水处当前,美国页岩气开采的热门地点是纽约州和宾夕法尼亚州,这两个地方也是美国马塞卢斯页岩(Marcellus shale)的集中区域。

第1章-水力压裂

第1章-水力压裂

作用: Ø传递压力; Ø起裂和延伸裂缝; Ø携砂。
前置液
起缝、延伸裂缝、冷却


携砂液
延伸裂缝、悬砂


顶替液
顶替砂浆
对压裂液的要求: Ø与地层配伍; Ø有效悬浮和输送支撑剂; Ø滤失少; Ø摩阻低; Ø低残渣; Ø易返排; Ø热稳定性; Ø抗剪切稳定性。
一、压裂液类型
各种压裂液所占的比例
增能气 体, 25%
第一章 水力压裂
内容提要
Ø水力压裂造缝机理 Ø压裂液 Ø支撑剂 Ø水力压裂延伸模拟 Ø支撑剂输送 Ø水力压裂评价与设计 Ø压裂工艺技术
压裂:
hydraulic
分类: fracturing
水力压裂:利用地面高压泵组,以超过地层吸收能力 的排量将高粘压裂泵入井内而在井底产生高压,当 压力克服井壁附近地应力并达到岩石抗张强度时, 就在地层产生裂缝。继续泵注带有支撑剂的压裂液, 使裂缝继续延伸并在其中充填支撑剂。停泵后,由 于支撑剂对裂缝的支撑作用,在地层中形成足够长 的、有一定导流能力的填砂裂缝,从而实现油气井 增产和水井增注。
' w
0.5m A
修正:
cw
cw'
p f pa
1 2
用途:静态滤失系数 用于筛选评价压裂液
用途:动态滤 失系数为压裂 设计提供参数
2.受压裂液粘度控制的滤失系数
假设条件: Ø侵入符合达西定律; Ø活塞驱动
压裂液的实际滤失速度:
va
dL0.058Kp
dt
f L
积分求L,回代达西定律
12
v0.05K 8 f Lp0.17K ftp
牛顿型:
圆管稠度系数:
Kp

水力压裂多裂缝基础理论研究

水力压裂多裂缝基础理论研究

水力压裂多裂缝基础理论研究水力压裂技术是一种广泛应用于石油、天然气等矿产资源开采中的重要方法。

在水力压裂过程中,由于地层岩性的复杂性和压力传递的特殊性,往往会产生多裂缝现象。

多裂缝的生成、扩展和相互作用对采矿工程的稳定性和安全性具有重要影响,因此针对水力压裂多裂缝的基础理论研究具有重要意义。

本文旨在深入探讨水力压裂多裂缝的基础理论,为相关工程实践提供理论支撑。

水力压裂多裂缝的基础理论主要涉及裂缝的产生原因、特征和影响等方面。

在采矿工程中,地层岩性的不均匀性和应力分布的不确定性是导致多裂缝产生的主要原因。

裂缝的产生会导致地层中的压力重新分布,进而引发裂缝的扩展和相互作用。

多裂缝的特征主要表现在裂缝的数量、形态、大小和方向等方面。

裂缝的数量和形态受地层岩性、开采规模和压力条件等因素影响,而裂缝的大小和方向则与应力分布和地层构造有关。

多裂缝的影响主要表现在以下几个方面:多裂缝会导致地层中的压力重新分布,影响采矿工程的稳定性和安全性。

多裂缝会降低采矿效率,增加采矿成本。

多裂缝还可能引发地面塌陷等地质灾害。

因此,针对水力压裂多裂缝的基础理论研究具有重要意义。

为了深入探讨水力压裂多裂缝的基础理论,本文设计了一系列实验研究。

实验过程中,我们采用了真实地层岩样和实际施工条件,通过模拟水力压裂过程,观察和记录了多裂缝的产生、扩展和相互作用情况。

同时,我们采用了岩石力学测试仪器和压力传感器等设备,对裂缝的数量、形态、大小和方向等特征进行了详细测量。

实验结果表明,地层岩性的不均匀性和应力分布的不确定性是导致多裂缝产生的主要原因。

在采矿工程中,多裂缝的产生会导致地层中的压力重新分布,引发裂缝的扩展和相互作用。

多裂缝的数量和形态受地层岩性、开采规模和压力条件等因素影响,而裂缝的大小和方向则与应力分布和地层构造有关。

为了进一步验证水力压裂多裂缝基础理论的正确性,本文采用了数值模拟方法。

我们建立了水力压裂多裂缝的数值模型,该模型基于弹塑性力学理论,并考虑了地层岩性的不均匀性和应力分布的不确定性等因素。

水力压裂工艺技术概述与分类

水力压裂工艺技术概述与分类

水力压裂工艺技术概述与分类摘要:水力压裂是油气井增产、水井增注的一项重要技术措施。

当地面高压泵组将液体以大大超过地层吸收能力的排量注入井中时,在井底附近蹩起超过井壁附近地层的最小地应力及岩石抗张强度的压力后,即在地层中形成裂缝。

随着带有支撑剂的液体注入缝中,裂缝逐渐向前延伸,这样,在地层中形成了具有一定长度、宽度及高度的填砂裂缝。

由于压裂形成的裂缝具有很高的导流能力,使油气能够畅流入井,从而起到了增产增注的作用。

关键词:机理;裂缝;技术研究;增产;发展;探索。

一、水利压裂技术概述水力压裂技术经过50 多年的发展,在裂缝模型、压裂井动态预测、压裂液、支撑剂、压裂施工设备、应用领域等方面均取得了惊人的发展,不但成为油气藏的增产增注手段,也成为评价认识储层的重要方法。

近期水力压裂在总体优化压裂、重复压裂、大型压裂、高砂比压裂,端部脱沙压裂、CO2 泡沫压裂及特殊井(斜井、水平井、深井、超深井、小井眼井等)压裂技术方面有了进一步的完善和发展,压裂的单项技术也有了很大进展。

国内压裂酸化技术在设计软件、压裂酸化材料、施工技术指标等方面,已接近国际先进水平。

介绍了国内不同储层类型所适用的压裂技术,对更好地发挥水力压裂技术在油气田勘探与开发中的作用具有重要意义。

自1947 年美国进行第1 次水力压裂以来,经过50 多年的发展,水力压裂技术从理论研究到现场实践都取得了惊人的发展。

如裂缝扩展模型从二维发展到拟三维和全三维;压裂井动态预测模型从电模拟图版和稳态流模型发展到三维三相不稳态模型,且可考虑裂缝导流能力随缝长和时间的变化、裂缝中的相渗曲线和非达西流效应及储层的应力敏感性等因素的影响;压裂液从原油和清水发展到低、中、高温系列齐全的优质、低伤害、具有延迟交联作用的胍胶有机硼“双变”压裂液体系和清洁压裂液体系;支撑剂从天然石英砂发展到中、高强度人造陶粒,并且加砂方式从人工加砂发展到混砂车连续加砂;压裂设备从小功率水泥车发展到1000 型压裂车和2000 型压裂车;单井压裂施工从小规模、低砂液比发展到超大型、高砂液比压裂作业;压裂应用的领域从特定的低渗油气藏发展到特低渗和中高渗油气藏(有时还有防砂压裂)并举。

压裂工艺基础知识介绍

压裂工艺基础知识介绍

压裂工艺基础知识介绍目录一、压裂工艺概述 (2)1. 压裂工艺定义及重要性 (3)2. 压裂工艺发展历程 (3)3. 压裂工艺应用领域 (4)二、压裂原理与基本流程 (5)1. 压裂原理简介 (6)(1)岩石破裂理论 (7)(2)水力压裂基本原理 (8)2. 压裂基本流程 (9)(1)前期准备 (10)(2)压裂施工 (11)(3)后期评估 (13)三、压裂设备与技术参数 (14)1. 压裂设备组成 (15)(1)压裂泵 (15)(2)高压管汇 (17)(3)地面设备 (18)(4)井下工具 (19)2. 技术参数介绍 (20)(1)压力参数 (22)(2)流量参数 (23)(3)化学药剂参数 (24)四、压裂液与支撑剂 (25)1. 压裂液介绍 (27)(1)压裂液种类与特性 (28)(2)压裂液性能要求 (30)2. 支撑剂介绍 (31)(1)支撑剂种类与特性 (32)(2)支撑剂作用及选择要求 (33)五、压裂工艺优化与新技术发展 (34)一、压裂工艺概述压裂工艺是一种用于开采石油和天然气资源的地质工程技术,它通过在地层中注入高压水,使岩石发生裂缝和破碎,从而释放出地下的石油和天然气资源。

压裂工艺在全球范围内得到了广泛的应用,尤其是在美国、加拿大、中国等国家的油气田开发中发挥了重要作用。

压裂工艺的主要目的是提高油气井的产量,延长油气井的使用寿命,降低生产成本。

随着科技的发展,压裂工艺也在不断地改进和完善,以适应不同类型的油气藏和地层条件。

压裂工艺主要包括水力压裂、化学压裂和生物压裂等多种类型。

水力压裂是最早的一种压裂方法,主要利用高压水流产生的压力差来破碎岩石。

随着技术的进步,化学压裂逐渐成为主流技术,它通过向地层中注入特殊的化学剂,使岩石发生化学反应,从而产生裂缝和破碎。

生物压裂则是近年来发展起来的一种新型压裂技术,它利用微生物降解有机物的过程来产生裂缝和破碎。

压裂工艺作为一种重要的地质工程技术,为石油和天然气资源的开发提供了有效的手段。

爆燃压裂(高能气体压裂技术)

爆燃压裂(高能气体压裂技术)
直于最小主应力的油层天然裂缝相沟通, 就大大改善了油层的渗流能力,因此增产
作用是明显的,而水力压裂产生的一条裂
缝却与天然裂缝走向一致、不会沟通。
第三节 增产机理及理论研究
(2)由于高能气体压裂形成的多条径向裂 缝(2~5条)的方向是随机的,基本上都不垂 直于最小主应力方向。根据岩石的力学规律,
岩石破裂时,裂缝的方向总是垂直于最小主
用安全,可用于耐高温(小于250℃)的射孔弹或其他爆破器材中。
③411号耐热炸药:可在2l0~220℃条件下工作2h,爆轰性能好,破甲深 度深,撞击感度和摩擦感度低,有较好的安全性能,成型性能好,机械
强度高,是一种综合性能较好的耐热炸药。
第二节 国外发展概况
一、美国 1858年,美国德凯瑞首创性地提出了改造油层从而使油井增产的概念。
作用于油层可疏通油流通道,降低毛细孔道的表面张力,使原油降粘、除垢并解 堵、清蜡防蜡,抑制地层细菌的生长和聚集,从而提高油层的泄油能力。
(4)高能气体压裂处理后2h,井底还维持有足够高的温度异常。高温场可以溶解沉
积在处理层段井筒及地层渗滤面上的蜡质、胶质和沥青质沉积物,疏通渗流通道, 降低渗流阻力。温度升高后,原油粘度降低,流度也相应提高了。
二、火工材料
(1)火药
是在无外界供氧条件下,可由火花、火焰等外界能源正常引燃,迅 速进行有规律的燃烧,同时生成大量热和气体产物的混合物,通常由
氧化剂、粘结剂、可燃剂及附加剂等组成。
(2)炸药 是在一定的外界能量作用下,能发生高速的化学反应、放出大量的
热,生成气体产物并对外界做功的化合物或混合物。广义的炸药包含起
生。形成高温、高压、高频的冲击气流波,它能够将油层原生孔隙中产生堵
塞作用的机械杂质或各种盐类微粒、油层岩石剥落的微粒、胶结物中因膨胀 而堵塞孔道的松散物质绝大部分冲刷、清扫干净,基本恢复孔隙结构的 增产机理及理论研究

压裂技术理论及应用

压裂技术理论及应用
• 10 > k > 0.001 md (Gas)
• 100 > k > 0.1 md (Oil) • 储层厚,含油性好 • 隔层遮挡性好 • 泄油面积大
复杂的压裂储层特性
• • • • • • k ≥ 100mD或 k ≤ 0.1 mD (Oil) k ≤0.001 mD (Gas) 储层薄,含油性差 隔层遮挡性差 透镜体油气藏 敏感性储层
粘度大大降低,破胶化水的压裂液沿裂缝流向井底,排出地面,
携带的支撑剂随即在裂缝中沉降,在地层中形成了具有一定长度、 宽度和高度的高导流能力的支撑裂缝。改善了地层附近流体的渗 流方式和渗流条件,扩大了渗流面积,减小了渗流阻力并解除了 井壁附近的污染,从而达到增产、增注的目的。
5
6
A-07 Design
20
压裂液
压裂液是压裂工艺技术的一个重要组成部分。主要功能是 造缝并沿张开的裂缝输送支撑剂,因此液体的粘性至关重要。
成功的压裂作业要求液体除在裂缝中具有较高的粘度外,还要
能够迅速破胶;作业后能够迅速返排;能够很好地控制液体滤 失;泵送期间摩阻较低;同时还要经济可行。
最初的压裂液为油基液;20世纪50年代末,用瓜胶增稠的水基液日见普 及。1969年,首次使用了交联瓜胶液。当时仅有约10%的压裂作业使用的是 凝胶油。目前,约有85%以上的压裂施工用的是以瓜胶或羟丙基瓜胶增稠的 水基凝胶液;凝胶油作业和酸压作业各占约5%;增能气体压裂约占10%。
8
压 裂 工 艺
压裂工艺流程 压裂裂缝扩展及增产机理 压裂设计方法 压裂工艺技术 压裂测试方法
压裂施工评估方法
9
1.压裂工艺流程
压裂液罐 压裂井口
低压管汇
高压管汇

位移不连续法,压裂,诱导应力

位移不连续法,压裂,诱导应力

位移不连续法,压裂,诱导应力
位移不连续法(DDA)是一种用于模拟岩石断裂和地质构造发育过程的数值方法。

它基于岩石力学原理,通过将岩石体划分为许多小块,并考虑它们之间的位移不连续性来模拟岩石断裂的过程。

这种方法能够较好地模拟岩石体内部的应力和位移分布,对于地质构造演化和岩石断裂机制的研究具有重要意义。

压裂是一种常见的油气田开发技术,通过将高压液体(通常是水和脉动剂)注入到油气层中,使岩石发生裂缝并增加渗透性,从而促进油气的产出。

压裂技术可以有效提高油气田的产能,是目前油气开发中不可或缺的重要技术手段之一。

诱导应力是指在岩石体内部或地质构造中,由于外部作用力或构造运动等因素而引起的应力状态变化。

诱导应力可以是地质构造演化的结果,也可以是外部力学作用的影响,对于岩石的变形和断裂具有重要影响。

诱导应力的研究对于理解地质构造演化和预测地震等具有重要意义。

综上所述,位移不连续法、压裂和诱导应力是地质学和岩石力学领域中重要的概念和技术,它们在研究地质构造演化、岩石断裂
机制和油气田开发等方面具有重要的理论和应用价值。

通过深入研究和理解这些概念和技术,可以更好地指导地质资源开发和地质灾害防治工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在油藏内形成深穿透、高导流能力的裂缝,提
高油气井产量和增加勘探井可采储量,最终提
高油气田的采收率。
4
压 裂 机 理
水力压裂作业,是利用地面高压泵注设备将高粘度的流体, 以大大超过地层吸收能力的排量注入井筒,在射孔油层附近憋起
高压,当井底压力超过井壁附近地层最小主应力及岩石的抗张强
度后,在地层中形成裂缝并向前延伸。然后,利用高粘度的压裂 液携带支撑剂注入裂缝中,停止注入后,随着压裂液的快速破胶,
0089
)²t f/ b l ( n o i t art n ecn o C t n ap p o rP
0089
0089
0099
dna S dna S
0099
0
5 1 .0 0 3 .0 5 4 .0 0 6 .0 5 7 .0 0 9 .0
1 .1
2 .1
4 .1
5 .1
0099 5.0 0 5.0
粘度大大降低,破胶化水的压裂液沿裂缝流向井底,排出地面,
携带的支撑剂随即在裂缝中沉降,在地层中形成了具有一定长度、 宽度和高度的高导流能力的支撑裂缝。改善了地层附近流体的渗 流方式和渗流条件,扩大了渗流面积,减小了渗流阻力并解除了 井壁附近的污染,从而达到增产、增注的目的。
5
6
A-07 Design
21
压裂液分类
水基压裂液
由于水基液具有价廉、性良且易于控制等特 点,已成为应用最为广泛的压裂液。 用于稠化压裂液的聚合物之一是瓜胶。瓜胶 聚合物具有很强的亲水性,把瓜胶粉加入水中, 瓜胶的微粒将溶胀并与水化合,即瓜胶聚合物分 子与许多水分子缔合,在溶液中展开并延伸。从 而增加了溶液的粘度。因为瓜胶中仍有4-8%的水 不溶物,所以,在聚合物链上又引入了羟丙基, 制成羟丙基瓜胶。
1
Frac length
2 3
7 – Formation closes on proppant and a conductive path remains in the reservoir
1 2
3
4 5
6
5 4 6
7
12
7
增产机理 —— 压裂井地层流体流动状态
井筒
13
二、压 裂 设 计 方 法
压裂设计优化程序
成为常规植物胶水基压裂液体系的换代产品,。
25
清洁压裂液
以粘弹性表面活性剂(VES)
为主体的粘弹性胶束结构体系。清
洁压裂液具有良好的流变性能、滤 失性能、低损害与高导流能力特性。 同时,该清洁压裂液配制简便,将 适量的VES加在盐水中,不需要使
用交联剂、破胶剂和其它添加剂,
不存在残渣,对储层伤害小,应用 前境广阔
裂缝破裂压力、延伸压力与闭合压力、压裂液的类型、流变性、粘温粘时 性、滤失与损害等数据、支撑剂的类型及其抗压强度、导流能力与裂缝支 撑剂层渗透率等数据、泵注排量、平均砂液比、泵注程序、压裂设备功率
及其压力极限、油藏以往压裂实践及其压裂前后生产反应的资料数据。
15
2. 压裂储层特性
理想的压裂储层特性
• 10 > k > 0.001 md (Gas)
• 100 > k > 0.1 md (Oil) • 储层厚,含油性好 • 隔层遮挡性好 • 泄油面积大
复杂的压裂储层特性
• • • • • • k ≥ 100mD或 k ≤ 0.1 mD (Oil) k ≤0.001 mD (Gas) 储层薄,含油性差 隔层遮挡性差 透镜体油气藏 敏感性储层
而言,F
CD
≥2就可以满足生产需要。
18
三、压裂工艺技术
1. 压裂设计软件 FRACPRO PT、GOFEER、STIMPLAN
002 TUEN 5.0 epytkcoR 0 0029
dna S dna S dna S dna S dna S dna S dna S 0039 d n a S dna S dna S dna S dna S
26
多相压裂液
泡沫压裂液
泡沫是一种稳定的气液混合物,用表面活性剂可使这种混合物
达到稳定。降低了表面张力。当液体从作业井中返排时,泡沫 中的承压气体(氮或二氧化碳)膨胀将液体从裂缝中驱出。泡 沫加速了支撑裂缝中液体的回收率,因此是一种用于低压储层 中的理想液体。
由于体积气体的泡沫含量高达95%,所以液相最小。在水基液
页岩等储层改造中发挥了重要作用。通过压裂改造,使史 南地区、临盘基山砂岩体、正理庄油田、孤北深层气等多 个低渗透、特低渗透油气藏的储量得以探明和动用,有力 地促进了胜利油田的勘探开发。
2
一 压裂技术
二 酸化技术
3
第一部分
压 裂 技术
水力压裂技术自1947年投入现场应用以来, 经过半个多世纪的完善和发展,已经成为提高 单井产量的基本工程手段之一。压裂技术通过
储层有效渗透率、孔隙度、含油饱和度、有效厚度、储层地层压力、静态
温度;储层油水的相渗关系、流体性质(密度、粘度、压缩系数与总矿化
度等);岩石力学性质(弹性模量、泊松比、抗压强度等);储层就地应 力的垂向分布及水平主应力方位;遮挡层的岩性,厚度与就地应力值、井 的试油、开发生产与生产测试等资料数据。
压 裂 参数
20
压裂液
压裂液是压裂工艺技术的一个重要组成部分。主要功能是 造缝并沿张开的裂缝输送支撑剂,因此液体的粘性至关重要。
成功的压裂作业要求液体除在裂缝中具有较高的粘度外,还要
能够迅速破胶;作业后能够迅速返排;能够很好地控制液体滤 失;泵送期间摩阻较低;同时还要经济可行。
最初的压裂液为油基液;20世纪50年代末,用瓜胶增稠的水基液日见普 及。1969年,首次使用了交联瓜胶液。当时仅有约10%的压裂作业使用的是 凝胶油。目前,约有85%以上的压裂施工用的是以瓜胶或羟丙基瓜胶增稠的 水基凝胶液;凝胶油作业和酸压作业各占约5%;增能气体压裂约占10%。
主讲人:卢云霄
中石化胜利石油管理局井下作业公司
2010.08
1


压裂酸化技术不仅仅是提高油气井产量,更是认识地层的
重要手段之一。 通过压裂酸化改造,使许多复杂区块的
地质储量得以升级和动用,在勘探试油和油气藏开发中发 挥着日益重要的作用。
近年来压裂酸化技术得到了迅速发展,在滩坝砂、砂砾岩、
22
水基压裂液性能试验评价
水基压裂液以有机硼交联体系为主,压裂液耐温条件达到150170℃。
23
油基压裂液
重油最初用作油基压裂液,是因为它们比水基液
对含油气地层的伤害小,油基液本身固有的粘度也
使其比水更具吸引力。但是油基液较贵,而且施工
操作较难处理,所以目前仅用于已知是对水极为敏 感的地层中。
24
GR 30 NPHI 180 0 RHOB 0.3 2.2 IMPH 3 0 Rocktype 70 Shale 2400 2400 Stres s (ps i) 2375 5000 10000
Half-Length K-22 210 ft
2425
2425
2450 K-25U sand
2450
K-25U 165 ft
16
3.不同类型油气藏压裂设计原则
低渗透性油藏
需要长裂缝, 但只需要低到中等的裂缝导流能力
中渗透性油藏
需要中等长度、高的裂缝导流能力
高渗透性油藏
只需要短的裂缝,但需要超高的裂缝导流能力
17
4.压裂设计目标
wkf FCD = kL wk f = 裂缝导流能力, md-m
K = 储层渗透率, md L f = 裂缝半长, m 对于 FCD > 30 可以得到无限大的裂缝导流能力,一般
清洁压裂液
常规聚合物压裂液(植物胶)由于存在较多的残渣,仅有
30%~45%瓜尔胶聚合物返排。聚合物残留在岩石裂缝表面和支撑 裂缝内,将明显影响支撑裂缝的导流能力,阻碍流体流动,从而降 低压裂改造效果。 理想的压裂液是在满足压裂造缝和携砂能力的同时,要求压裂 液实现快速彻底破胶,降低对储层的伤害,减少储层污染。在20世 纪90年代后期,新一代的压裂液体系被开发成功,在一定程度上,
0099
001
002
003
设计软件处于世界领先技术水平
19
2.压裂液和支撑剂
在压裂施工中,压裂液的主要作用是:造缝和携砂。压裂液 与地层岩石和油藏流体要配伍并且对支撑剂渗透率伤害最小。 一般来说,压裂液体系主要包括:水基压裂液(羟丙基瓜尔 胶)、清洁压裂液、油基压裂液、泡沫压裂液(CO2或N2)以 及相应的交联剂、破胶剂和添加剂,目前胜利油田主要使用 水基压裂液。 目前胜利油田应用的压裂液以羟丙基瓜尔胶(HPG)为主,其 水不溶物含量在6.5~8%,国外羟丙基瓜尔胶(HPG)水不溶 物含量在2~4%。支撑剂包括石英砂和陶粒,目前胜利油田主 要采用陶粒支撑剂。
RG 02
)is p( s s ertS 0005 0007
)is p( s uludoM
...aemreP eroP 0 5.0
)²tf/bl( erutcarF ni tnapporP fo noitartnecnoC
)ni( eliforP htdiW
0029
0029
0029
0039
0039
0039
0.10
0.20 50
0.30 75
0.40
0.50
0.60 125
0.70 150
0.80
0.90
1.0 200
100
175
7
压裂工艺是一个复杂的系统工程,要设计
一次压裂施工并达到预期的效果,与地质分析
(控制着区块的含油分布)、岩石力学(控制
着裂缝几何形态)、流体力学(控制着液体流 动与支撑剂在裂缝中的铺置)、化学(控制着 施工的材料性能)以及机械、材料力学等多学 科有着密切的联系。
相关文档
最新文档