(完整)2019-2020年高考数学压轴题集锦——导数及其应用(一).doc

合集下载

2020高考数学《导数压轴题》

2020高考数学《导数压轴题》

2020高考数学《导数压轴题》1.已知函数 $f(x)=e^x(1+aln x)$,设 $f'(x)$ 为 $f(x)$ 的导函数。

1) 设 $g(x)=e^xf(x)+x^2-x$ 在区间 $[1,2]$ 上单调递增,求 $a$ 的取值范围;2) 若 $a>2$ 时,函数 $f(x)$ 的零点为 $x$,函数$f'(x)$ 的极小值点为 $x_1$,求证:$x>x_1$。

2.设函数 $f(x)=\frac{x^2-2x+3}{x-1}$,$x\in R$。

1) 求证:当 $x\ge 1$ 时,$f(x)\ge 2$ 恒成立;2) 讨论关于 $x$ 的方程 $f(x)=k$ 的根的个数。

3.已知函数 $f(x)=-x^2+ax+a-e^{-x}+1$,$a\in R$。

1) 当 $a=1$ 时,判断 $g(x)=e^xf(x)$ 的单调性;2) 若函数 $f(x)$ 无零点,求 $a$ 的取值范围。

4.已知函数 $f(x)=\frac{ax+b}{x-1}$,$x\in R$。

1) 求函数 $f(x)$ 的单调区间;2) 若存在 $f(f(x))=x$,求整数 $a$ 的最小值。

5.已知函数 $f(x)=e^{-ln x+ax}$,$a\in R$。

1) 当 $a=-e+1$ 时,求函数 $f(x)$ 的单调区间;2) 当 $a\ge -1$ 时,求证:$f(x)>0$。

6.已知函数 $f(x)=e^x-x^2-ax-1$。

1) 若函数 $f(x)$ 在定义域内单调递增,求实数 $a$ 的范围;2) 设函数 $g(x)=xf(x)-e^x+x^3+x$,若 $g(x)$ 至多有一个极值点,求 $a$ 的取值集合。

7.已知函数 $f(x)=x-1-ln x-a(x-1)^2$,$a\in R$。

1) 讨论函数 $f(x)$ 的单调性;2) 若对 $\forall x\in (0,+\infty)$,$f(x)\ge 0$,求实数$a$ 的取值范围。

(集锦)2019-2020年高考数学导数及其应用压轴题

(集锦)2019-2020年高考数学导数及其应用压轴题

(集锦)2019-2020年高考数学导数及其应用压轴题(打印版,附详解答案)1.已知函数xa x x f +=ln )(.(1)若函数)(x f 有零点,求实数a 的取值范围;(2)证明:当ea 2≥时,x e x f ->)(.2.已知函数2()ln f x x a x =-(a R ∈),()F x bx =(b R ∈).(1)讨论()f x 的单调性;(2)设2a =,()()()g x f x F x =+,若12,x x (120x x <<)是()g x 的两个零点,且1202x x x +=,试问曲线()y g x =在点0x 处的切线能否与x 轴平行?请说明理由.3.已知函数32()f x x mx nx =++(,m n R ∈)(1)若()f x 在1x =处取得极大值,求实数m 的取值范围;(2)若'(1)0f =,且过点(0,1)P 有且只有两条直线与曲线()y f x =相切,求实数m 的值.4.已知函数2()x f x x e =,3()2g x x =.(1)求函数()f x 的单调区间;(2)求证:x R ∀∈,()()f x g x ≥5.已知函数f (x )=xx ln ﹣ax +b 在点(e ,f (e ))处的切线方程为y =﹣ax +2e .(Ⅰ)求实数b 的值;(Ⅱ)若存在x ∈[e ,e 2],满足f (x )≤41+e ,求实数a 的取值范围.6.已知函数21()ln 12f x x ax bx =-++的图像在1x =处的切线l 过点11(,)22.(1)若函数()()(1)(0)g x f x a x a =-->,求()g x 的最大值(用a 表示);(2)若4a =-,121212()()32f x f x x x x x ++++=,证明:1212x x +≥.7.已知函数()ln a f x x x x=+,32()3g x x x =--,a R ∈.(1)当1a =-时,求曲线()y f x =在1x =处的切线方程;(2)若对任意的121,[,2]2x x ∈,都有12()()f x g x ≥成立,求实数a 的取值范围.8.设函数2)(--=ax e x f x (1)求)(x f 的单调区间;(2)若k a ,1=为整数,且当0>x 时,1)(1<'+-x f x x k 恒成立,其中)(x f '为)(x f 的导函数,求k 的最大值.9.设函数2()ln(1)f x x b x =++.(1)若对定义域内的任意x ,都有()(1)f x f ≥成立,求实数b 的值;(2)若函数()f x 的定义域上是单调函数,求实数b 的取值范围;(3)若1b =-,证明对任意的正整数n ,33311111()123n k f k n=<++++∑ .10.已知函数1()(1)ln x f x a e x a a=-+-(0a >且1a ≠),e 为自然对数的底数.(Ⅰ)当a e =时,求函数()y f x =在区间[]0,2x ∈上的最大值;(Ⅱ)若函数()f x 只有一个零点,求a 的值.11.已知函数1()f x x x=-,()2ln g x a x =.(1)当1a ≥-时,求()()()F x f x g x =-的单调递增区间;(2)设()()()h x f x g x =+,且()h x 有两个极值12,x x ,其中11(0,]3x ∈,求12()()h x h x -的最小值.12.已知函数f (x )=ln x +x 2﹣2ax +1(a 为常数).(1)讨论函数f (x )的单调性;(2)若存在x 0∈(0,1],使得对任意的a ∈(﹣2,0],不等式2me a (a +1)+f (x 0)>a 2+2a +4(其中e 为自然对数的底数)都成立,求实数m 的取值范围.13.已知函数f (x )=a x +x 2﹣x ln a (a >0,a ≠1).(1)求函数f (x )在点(0,f (0))处的切线方程;(2)求函数f (x )单调增区间;(3)若存在x 1,x 2∈[﹣1,1],使得|f (x 1)﹣f (x 2)|≥e ﹣1(e 是自然对数的底数),求实数a 的取值范围.14.已知函数1()ln f x x x=-,()g x ax b =+.(1)若函数()()()h x f x g x =-在()0,+∞上单调递增,求实数a 的取值范围;(2)若直线()g x ax b =+是函数1()ln f x x x=-图像的切线,求a b +的最小值;(3)当0b =时,若()f x 与()g x 的图像有两个交点1122(,),(,)A x y B x y ,求证:2122x x e >15.某工艺品厂要设计一个如图1所示的工艺品,现有某种型号的长方形材料如图2所示,其周长为4m ,这种材料沿其对角线折叠后就出现图1的情况.如图,ABCD (AB >AD )为长方形的材料,沿AC 折叠后AB '交DC 于点P ,设△ADP 的面积为2S ,折叠后重合部分△ACP 的面积为1S .(Ⅰ)设AB x =m ,用x 表示图中DP 的长度,并写出x 的取值范围;(Ⅱ)求面积2S 最大时,应怎样设计材料的长和宽?(Ⅲ)求面积()122S S +最大时,应怎样设计材料的长和宽?16.已知()()2ln x f x e x a =++.(1)当1a =时,求()f x 在()0,1处的切线方程;(2)若存在[)00,x ∈+∞,使得()()20002ln f x x a x <++成立,求实数a 的取值范围.17.已知函数()()()2ln 1f x ax x xa R =--∈恰有两个极值点12,x x ,且12x x <.(1)求实数a 的取值范围;(2)若不等式12ln ln 1x x λλ+>+恒成立,求实数λ的取值范围.18.已知函数f (x )=(ln x ﹣k ﹣1)x (k ∈R )(1)当x >1时,求f (x )的单调区间和极值.(2)若对于任意x ∈[e ,e 2],都有f (x )<4ln x 成立,求k 的取值范围.(3)若x 1≠x 2,且f (x 1)=f (x 2),证明:x 1x 2<e 2k .19.已知函数()21e 2x f x a x x =--(a ∈R ).(Ⅰ)若曲线()y f x =在点()()0,0f 处的切线与y 轴垂直,求a 的值;(Ⅱ)若函数()f x 有两个极值点,求a 的取值范围;(Ⅲ)证明:当1x >时,1e ln x x x x>-.20.已知函数()()321233f x x x x b b R =-++Î.(1)当0b =时,求()f x 在[]1,4上的值域;(2)若函数()f x 有三个不同的零点,求b 的取值范围.21.已知函数2ln 21)(2--=x ax x f .(1)当1=a 时,求曲线)(x f 在点))1(,1(f 处的切线方程;(2)讨论函数)(x f 的单调性.22.已知函数1()ln sin f x x x θ=+在[1,]+∞上为增函数,且(0,)θπ∈.(Ⅰ)求函数()f x 在其定义域内的极值;(Ⅱ)若在[1,]e 上至少存在一个0x ,使得0002()e kx f x x ->成立,求实数k 的取值范围.参考答案1.(1)函数x a x x f +=ln )(的定义域为),0(+∞.由x a x x f +=ln )(,得221)(xa x x a x x f -=-='.①当0≤a 时,0)(>'x f 恒成立,函数)(x f 在),0(+∞上单调递增,又+∞→+∞→<=+=)(,,01ln )1(x f x a a f ,所以函数)(x f 在定义域),0(+∞上有1个零点.②当0>a 时,则),0(a x ∈时,),(;0)(+∞∈<'a x x f 时,0)(>'x f .所以函数)(x f 在),0(a 上单调递减,在),(+∞a 上单调递增.当1ln )]([min +==a x f a x .当01ln ≤+a ,即e a 10≤<时,又01ln )1(>=+=a a f ,所以函数)(x f 在定义域),0(+∞上有2个零点.综上所述实数a 的取值范围为]1,(e -∞.另解:函数x a x x f +=ln )(的定义域为),0(+∞.由xa x x f +=ln )(,得x x a ln -=.令x x x g ln )(-=,则)1(ln )(+-='x x g .当)1,0(e x ∈时,0)(>'x g ;当),1(+∞∈e x 时,0)(<'x g .所以函数)(x g 在1,0(e 上单调递增,在),1(+∞e 上单调递减.故e x 1=时,函数)(x g 取得最大值ee e e g 11ln 1)1(=-=.因+∞→+∞→)(,xf x ,两图像有交点得e a 1≤,综上所述实数a 的取值范围为]1,(e -∞.(2)要证明当e a 2≥时,x e x f ->)(,即证明当e a x 2,0≥>时,x e xa x ->+ln ,即x xe a x x ->+ln .令a x x x h +=ln )(,则1ln )(+='x x h .当e x 10<<时,0)(<'x f ;当ex 1>时,0)(>'x f .所以函数)(x h 在)1,0(e 上单调递减,在),1(+∞e 上单调递增.当e x 1=时,a ex h +-=1)]([min .于是,当e a 2≥时,ea e x h 11)(≥+-≥.①令x xe x -=)(ϕ,则)1()(x e xe e x x x x -=-='---ϕ.当10<<x 时,0)(>'x f ;当1>x 时,0)(<'x f .所以函数)(x ϕ在)1,0(上单调递增,在),1(+∞上单调递减.当1=x 时,ex 1)]([min =ϕ.于是,当0>x 时,e x 1)(≤ϕ.②显然,不等式①、②中的等号不能同时成立.故当ea 2≥时,x e x f ->)(.2.(Ⅰ)0,22)(2>-=-='x xa x x a x x f (1)当0≤a 时,0)(>'x f ,)(x f 在()上+∞,0单调递增,(2)当0>a 时,20)(a x x f =='得有⎪⎪⎭⎫ ⎝⎛+∞⎪⎪⎭⎫ ⎝⎛>,22,0)(0a a x f a ,单调增区间是的单调减区间是时,所以(Ⅱ)bxx x x g +-=ln 2)(2假设)(x g y =在0x 处的切线能平行于x 轴.∵()0,22)(>+-='x b xx x g 由假设及题意得:0ln 2)(11211=+-=bx x x x g 0ln 2)(22222=+-=bx x x x g 1202x x x += 022)(000=+-='b x x x g ④由-得,()()()0ln ln 221212221=-+---x x b x x x x即0212`12ln2x x x x x b --=由④⑤得,()1121212122222ln 1x x x x x x x x x x --==++令12x t x =,12,01x x t <∴<< .则上式可化为122ln +-=t t t ,设函数()()10122ln <<+--=t t t t t h ,则()()()()011141222>+-=+-='t t t t t t h ,所以函数()122ln +--=t t t t h 在(0,1)上单调递增.于是,当01t <<时,有()()01=<h t h ,即22ln 01t t t --<+与⑥矛盾.所以()y f x =在0x 处的切线不能平行于x 轴.3.(Ⅰ)nmx x x f ++='23)(2()02301=++='n m f 得由.01242>-=∆n m ∴()3032-≠>+m m ,得到①∵()()()32313223)(2++-=+-+='m x x m mx x x f ∴⎪⎭⎫⎝⎛+-==='32110)(m x x x f 或,得由题3,1321-<>⎪⎭⎫⎝⎛+-m m 解得②由①②得3-<m (Ⅱ)()02301=++='n m f 得由所以()m mx x x f 2323)(2+-+='因为过点)1,0(且与曲线)(x f y =相切的直线有且仅有两条,令切点是()00,y x P ,则切线方程为()()000x x x f y y -'=-由切线过点)1,0(,所以有()()0001x x f y -'=-∴()()[]()0020020302323231x m mx x x m mx x -+-+=++--整理得0122030=++mx x .01220300有两个不同的实根的方程所以,关于=++mx x x ()()需有两个零点,则令x h mx x x h 1223++=()mxx x h 262+='所以()3000mx x x h m -==='≠或得,且()03,00=⎪⎭⎫⎝⎛-=m h h 或由题,()03,10=⎪⎭⎫⎝⎛-=m h h 所以又因为0133223=+⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-m m m 所以3-=m 解得,即为所求4.(Ⅰ)()xx e e x xe x f xx x 22)(22+=+='∴()()()上单调递减;在时,0,2,002-<'<<-x f x f x()()()().,02,,002上单调递增和在时,或+∞-∞->'>-<x f x f x x ()()()+∞-∞--,020,2)(,和,,单调递增区间是的单调递减区间是所以x f (Ⅱ)显然0≤x 时有)()(x g x f ≥,只需证0>x 时)()(x g x f ≥,由于02≥x xe x x 20≥>时,只需证()+∞∈-=,0,2)(x x e x h x 令2)(-='x e x h 2ln ,0)(=='x x h 得 ()()02ln ln 22ln 222ln 22ln )(2ln min >-=-=-==∴e e h x h ()恒成立0)(,,0>+∞∈∴x h x 所以当0>x 时,)()(x g x f >.综上R x ∈∀,()()f xg x ≥5.解:(Ⅰ)f (x )=﹣ax+b ,x ∈(0,1)∪(1,+∞),求导,f′(x )=﹣a ,则函数f (x )在点(e ,f (e ))处切线方程y ﹣(e ﹣ex+b )=﹣a (x ﹣e ),即y=﹣ax+e+b ,由函数f (x )在(e ,f (e ))处的切线方程为y=﹣ax+2e ,比较可得b=e ,实数b 的值e ;(Ⅱ)由f (x )≤+e ,即﹣ax+e≤+e ,则a≥﹣在[e ,e 2],上有解,设h (x )=﹣,x ∈[e ,e 2],求导h′(x )=﹣==,令p (x )=lnx ﹣2,()()()()0,,2ln ,0,2ln ,0>'+∞∈<'∈∴x h x x h x ()()()上单调递增上单调递减,在,在+∞∴,2ln 2ln 0x h∴x 在[e ,e 2]时,p′(x )=﹣=<0,则函数p (x )在[e ,e 2]上单调递减,∴p (x )<p (e )=lne ﹣2<0,则h′(x )<0,及h (x )在区间[e ,e 2]单调递减,h (x )≥h (e 2)=﹣=﹣,∴实数a 的取值范围[﹣,+∞].6.(1)由'1()f x ax b x=-+,得'(1)1f a b =-+,l 的方程为1(1)(1)(1)2y a b a b x --++=-+-,又l 过点11(,)22,∴111(1)(1)(1)222a b a b --++=-+-,解得0b =.∵21()()(1)ln (1)12g x f x a x x a x =--=-+-+,∴2'1()(1)1(1)1()1(0)a x x ax a x a g x ax a a x x x--+-+-+=-+-==>,当1(0,x a∈时,'()0g x >,()g x 单调递增;当1(,)x a∈+∞时,'()0g x <,()g x 单调递减.故2max 111111()()ln()(1)1ln 22g x g a a a a a a a a==-+-+=-.(2)证明:∵4a =-,∴2212121211221212()()3ln 21ln 213f x f x x x x x x x x x x x x x ++++=++++++++,212121212ln()2()22x x x x x x x x =++++-+=,∴2121212122()ln()x x x x x x x x +++=-令12(0)x x m m =>,()ln m m m ϕ=-,'1()m m mϕ-=,令'()0m ϕ<得01m <<;令'()0m ϕ>得1m >.∴()m ϕ在(0,1)上递减,在(1,)+∞上递增,∴()(1)1m ϕϕ≥=,∴212122()1x x x x +++≥,120x x +>,解得:1212x x +≥.7.(1)当1a =-时,1()ln f x x x x =-,(1)1f =-,'21()ln 1f x x x=++,'(1)2f =,从而曲线()y f x =在1x =处的切线为2(1)1y x =--,即23y x =-.(2)对任意的121,[,2]2x x ∈,都有12()()f x g x ≥成立,从而min max ()()f x g x ≥对32()3g x x x =--,'2()32(32)g x x x x x =-=-,从而()y g x =在12[,]23递减,2[,2]3递增,max 1()max{(),(2)}12g x g g ==.又(1)f a =,则1a ≥.下面证明当1a ≥时,ln 1a x x x +≥在1[,2]2x ∈恒成立.1()ln ln a f x x x x x x x =+≥+,即证1ln 1x x x +≥.令1()ln h x x x x =+,则'21()ln 1h x x x=+-,'(1)0h =.当1[,1]2x ∈时,'()0h x ≤,当[1,2]x ∈时,'()0h x ≥,从而()y h x =在1[,1]2x ∈递减,[1,2]x ∈递增,min ()(1)1h x h ==,从而1a ≥时,ln 1a x x x +≥在1[,2]2x ∈恒成立.8.(1)函数f (x )=e x -ax -2的定义域是R ,f ′(x )=e x -a ,若a ≤0,则f ′(x )=e x -a ≥0,所以函数f (x )=e x -ax -2在(-∞,+∞)上单调递增若a >0,则当x ∈(-∞,ln a )时,f ′(x )=e x -a <0;当x ∈(ln a ,+∞)时,f ′(x )=e x -a >0;所以,f (x )在(-∞,ln a )单调递减,在(ln a ,+∞)上单调递增(2)由于a=1,1)1)((1)(1'+<--⇔<+-x e x k x f x x k x x e x k e x xx +-+<∴>-∴>11.01,0 令x e x x g x +-+=11)(,min )(x g k <∴,22')1()2(1)1(1)(---=+---=x x x xx e x e e e xe x g 令01)(,2)('>-=--=xxe x h x e x h ,)(x h ∴在),0(+∞单调递增,且)(,0)2(,0)1(x h h h ∴><在),0(+∞上存在唯一零点,设此零点为0x ,则)2,1(0∈x 当),0(00x x ∈时,0)('<x g ,当),(00+∞∈x x 时,0)('>x g 000min 11)()(0x e x x g x g x +-+==∴,由)3,2(1)(,20)(0000'0∈+=∴+=⇒=x x g x ex g x ,又)(0x g k < 所以k 的最大值为29.(1)由01>+x ,得1->x .∴()x f 的定义域为()+∞-,1.因为对x ∈()+∞-,1,都有()()1f x f ≥,∴()1f 是函数()x f 的最小值,故有()01='f .,022,12)(/=+∴++=bx b x x f 解得4-=b .经检验,4-=b 时,)(x f 在)1,1(-上单调减,在),1(+∞上单调增.)1(f 为最小值.(2)∵,12212)(2/+++=++=x bx x x b x x f 又函数()x f 在定义域上是单调函数,∴()0≥'x f 或()0≤'x f 在()+∞-,1上恒成立.若()0≥'x f ,则012≥++x bx 在()+∞-,1上恒成立,即x x b 222--≥=2121(22++-x 恒成立,由此得≥b 21;若()0≤'x f ,则012≤++x bx 在()+∞-,1上恒成立,即x x b 222--≤=2121(22++-x 恒成立.因21)21(22++-x 在()+∞-,1上没有最小值,∴不存在实数b 使()0≤'x f 恒成立.综上所述,实数b 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21.(3)当1-=b 时,函数()()1ln 2+-=x x x f .令()()()1ln 233+-+-=-=x x x x x f x h ,则()()1131123232+-+-=+-+-='x x x x x x x h .当()+∞∈,0x 时,()0<'x h ,所以函数()x h 在()+∞,0上单调递减.又()00=h ,∴当[)+∞∈,0x 时,恒有()()00=<h x h ,即()321ln x x x <+-恒成立.故当()+∞∈,0x 时,有()3x x f <.而*∈N k ,()+∞∈∴,01k .取k x 1=,则有311kk f <⎪⎭⎫ ⎝⎛.33311312111n k f nk +⋅⋅⋅+++<⎪⎭⎫⎝⎛∑=.所以结论成立.10.解:(Ⅰ)当a e =时,1()(1)xf x e e x e=-+-,'()xf x e e =-,令'()0f x =,解得1x =,(0,1)x ∈时,'()0f x <;(1,2)x ∈时,'()0f x >,∴{}max ()max (0),(2)f x f f =,而1(0)1f e e =--,21(2)3f e e e=--,即2max 1()(2)3f x f e e e==--.(Ⅱ)1()(1)ln xf x a e x a a=-+-,'()ln ln ln ()x xf x a a e a a a e =-=-,令'()0f x =,得log a x e =,则①当1a >时,ln 0a >,所以当log a x e =时,()f x 有最小值min 1()(log )ln a f x f e e a a==--,因为函数()f x 只有一个零点,且当x →-∞和x →+∞时,都有()f x →+∞,则min 1()ln 0f x e a a =--=,即1ln 0e a a+=,因为当1a >时,ln 0a >,所以此方程无解.②当01a <<时,ln 0a <,x (,log )a e -∞log a e (log ,)a e +∞'()f x -+()f x ↘极小值↗所以当log a x e =时,()f x 有最小值min 1()(log )ln a f x f e e a a==--,因为函数()f x 只有一个零点,且当x →-∞和x →+∞时,都有()f x →+∞,所以min 1()ln 0f x e a a =--=,即1ln 0e a a+=(01a <<)(*)设1()ln (01)g a e a a a =+<<,则2211'()e ae g a a a a -=-=,令'()0g a =,得1a e=,当10a e <<时,'()0g a <;当1a e>时,'()0g a >;所以当1a e =时,min 11()(ln 0g a g e e e e ==+=,所以方程(*)有且只有一解1a e =.综上,1a e=时函数()f x 只有一个零点.11.(1)由题意得F (x)=x --2a ln x .x 0,=,令m (x )=x 2-2ax+1,①当时F(x)在(0,+单调递增;②当a 1时,令,得x 1=,x 2=x(0,)()()+-+∴F (x)的单增区间为(0,),()综上所述,当时F (x)的单增区间为(0,+)当a 1时,F (x)的单增区间为(0,),()(2)h (x )=x -2a ln x ,h /(x)=,(x >0),由题意知x 1,x 2是x 2+2ax+1=0的两根,∴x 1x 2=1,x 1+x 2=-2a,x 2=,2a=,-=-=2()令H (x )=2(),H /(x )=2()lnx=当时,H/(x)<0,H(x)在上单调递减,H(x)的最小值为H()=,即-的最小值为.12.解:(I)f(x)=lnx+x2﹣2ax+1,f'(x)=+2x﹣2a=,令g(x)=2x2﹣2ax+1,(i)当a≤0时,因为x>0,所以g(x)>0,函数f(x)在(0,+∞)上单调递增;(ii)当0<a时,因为△≤0,所以g(x)>0,函数f(x)在(0,+∞)上单调递增;(iii)当a>时,x在(,)时,g(x)<0,函数f(x)单调递减;在区间(0,)和(,+∞)时,g(x)>0,函数f(x)单调递增;(II)由(I)知当a∈(﹣2,0],时,函数f(x)在区间(0,1]上单调递增,所以当x∈(0,1]时,函数f(x)的最大值是f(1)=2﹣2a,对任意的a∈(﹣2,0],都存在x0∈(0,1],使得不等式a∈(﹣2,0],2me a(a+1)+f(x0)>a2+2a+4成立,等价于对任意的a∈(﹣2,0],不等式2me a(a+1)﹣a2+﹣4a﹣2>0都成立,记h(a)=2me a(a+1)﹣a2+﹣4a﹣2,由h(0)>0得m>1,且h(﹣2)≥0得m≤e2,h'(a)=2(a+2)(me a﹣1)=0,∴a=﹣2或a=﹣lnm,∵a∈(﹣2,0],∴2(a+2)>0,①当1<m<e2时,﹣lnm∈(﹣2,0),且a∈(﹣2,﹣lnm)时,h'(a)<0,a∈(﹣lnm,0)时,h'(a)>0,所以h(a)最小值为h(﹣lnm)=lnm﹣(2﹣lnm)>0,所以a∈(﹣2,﹣lnm)时,h(a)>0恒成立;②当m=e2时,h'(a)=2(a+2)(e a+2﹣1),因为a∈(﹣2,0],所以h'(a)>0,此时单调递增,且h(﹣2)=0,所以a∈(﹣2,0],时,h(a)>0恒成立;综上,m的取值范围是(1,e2].13.解:(1)∵f(x)=a x+x2﹣xlna,∴f′(x)=a x lna+2x﹣lna,∴f′(0)=0,f(0)=1即函数f(x)图象在点(0,1)处的切线斜率为0,∴图象在点(0,f(0))处的切线方程为y=1;(3分)(2)由于f'(x)=a x lna+2x﹣lna=2x+(a x﹣1)lna>0①当a>1,y=2x单调递增,lna>0,所以y=(a x﹣1)lna单调递增,故y=2x+(a x﹣1)lna单调递增,∴2x+(a x﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0故函数f(x)在(0,+∞)上单调递增;②当0<a<1,y=2x单调递增,lna<0,所以y=(a x﹣1)lna单调递增,故y=2x+(a x﹣1)lna单调递增,∴2x+(a x﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0故函数f(x)在(0,+∞)上单调递增;综上,函数f(x)单调增区间(0,+∞);(8分)(3)因为存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,所以当x∈[﹣1,1]时,|(f(x))max﹣(f(x))min|=(f(x))max﹣(f(x))min≥e﹣1,(12分)由(2)知,f(x)在[﹣1,0]上递减,在[0,1]上递增,所以当x∈[﹣1,1]时,(f(x))min=f(0)=1,(f(x))max=max{f(﹣1),f(1)},而f(1)﹣f(﹣1)=(a+1﹣lna)﹣(+1+lna)=a﹣﹣2lna,记g(t)=t﹣﹣2lnt(t>0),因为g′(t)=1+﹣=(﹣1)2≥0所以g(t)=t﹣﹣2lnt在t∈(0,+∞)上单调递增,而g(1)=0,所以当t>1时,g(t)>0;当0<t<1时,g(t)<0,也就是当a>1时,f(1)>f(﹣1);当0<a<1时,f(1)<f(﹣1)(14分)①当a>1时,由f(1)﹣f(0)≥e﹣1⇒a﹣lna≥e﹣1⇒a≥e,②当0<a<1时,由f(﹣1)﹣f(0)≥e﹣1⇒+lna≥e﹣1⇒0<a≤,综上知,所求a的取值范围为a∈(0,]∪[e,+∞).(16分)14.(1)解:h (x )=f (x )﹣g (x )=1ln x ax b x ---,则211()h x a x x'=+-,∵h (x )=f (x )﹣g (x )在(0,+∞)上单调递增,∴对∀x >0,都有211()0h x a x x '=+-≥,即对∀x >0,都有211a x x≤+,.…………2分∵2110x x+>,∴0a ≤,故实数a 的取值范围是(],0-∞;.…………3分(2)解:设切点为0001,ln x x x ⎛⎫-⎪⎝⎭,则切线方程为()002000111ln y x x x x x x ⎛⎫⎛⎫--=+- ⎪ ⎪⎝⎭⎝⎭,即00220000011111ln y x x x x x x x x ⎛⎫⎛⎫⎛⎫=+-++- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,亦即02000112ln 1y x x x x x ⎛⎫=++-- ⎪⎝⎭,令010t x =>,由题意得220011a t t x x =+=+,002ln 1ln 21b x t t x =--=---,令2()ln 1a b t t t t ϕ+==-+--,则()()2111()21t t t t ttϕ+-'=-+-=,.…………6分当()0,1t ∈时,()()0,t t ϕϕ'<在()0,1上单调递减;当()1,t ∈+∞时,()()0,t t ϕϕ'>在()1,+∞上单调递增,∴()()11a b t ϕϕ+=≥=-,故a b +的最小值为﹣1;.…………7分(3)证明:由题意知1111ln x ax x -=,2221ln x ax x -=,两式相加得()12121212ln x x x x a x x x x +-=+两式相减得()21221112lnx x x a x x x x x --=-即212112ln 1x x a x x x x +=-∴()21211212122112ln1ln x x x x x x x x x x x x x x ⎛⎫ ⎪+ ⎪-=++- ⎪⎪⎝⎭,即1212212122112()ln ln x x x x x x x x x x x x ⎛⎫++-= ⎪-⎝⎭,.9分不妨令120x x <<,记211x t x =>,令()21()ln (1)1t F t t t t -=->+,则()221()0(1)t F t t t -'=>+,∴()21()ln 1t F t t t -=-+在()1,+∞上单调递增,则()21()ln (1)01t F t t F t -=->=+,∴()21ln 1t t t ->+,则2211122()lnx x x x x x ->+,∴1212212122112()ln ln 2x x x x x x x x x x x x ⎛⎫++-=> ⎪-⎝⎭,又1212121212122()ln ln ln x x x x x x x x x x +-<==∴2>,即1>,.…………10分令2()ln G x x x =-,则0x >时,212()0G x x x'=+>,∴()G x 在()0,+∞上单调递增.又1ln ln 210.8512e =+-≈<,∴ln 1ln G =>>->,即2122x x e >..…………12分15.(Ⅰ)由题意,AB x =,2-BC x =,2,12x x x >-∴<<Q .…………1分设=DP y ,则PC x y =-,由△ADP ≌△CB'P ,故PA=PC=x ﹣y ,由PA 2=AD 2+DP 2,得()()2222x y x y -=-+即:121,12y x x ⎛⎫=-<< ⎪⎝⎭..…………3分(Ⅱ)记△ADP 的面积为2S ,则()212=1-233S x x x x ⎛⎫⎛⎫-=-+≤- ⎪ ⎪⎝⎭⎝⎭.…………5分当且仅当()1,2x =时,2S 取得最大值.,宽为(2m 时,2S 最大.….…………7分(Ⅲ)()()2121114+2=2123,1222S S x x x x x x x ⎛⎫⎛⎫-+--=-+<< ⎪ ⎪⎝⎭⎝⎭于是令()31222142+220,2x S S x x x x-+⎛⎫'=--==∴= ⎪⎝⎭分∴关于x 的函数12+2S S 在(1上递增,在)2上递减,∴当x =时,12+2S S 取得最大值.,宽为(m 时,12+2S S 最大..…………12分16.(1)1a =时,()()2ln 1xf x ex =++,()2121x f x e x '=++()01f =,()10231f '=+=,所以()f x 在()0,1处的切线方程为31y x =+(2)存在[)00,x ∈+∞,()()20002ln f x x a x <++,即:()02200ln 0x ex a x -+-<在[)00,x ∈+∞时有解;设()()22ln xu x ex a x =-+-,()2122x u x e x x a'=--+令()2122xm x ex x a =--+,()()21420x m x e x a '=+->+所以()u x '在[)0,+∞上单调递增,所以()()102u x u a''≥=-1°当12a ≥时,()1020u a'=-≥,∴()u x 在[)0,+∞单调增,所以()()max 01ln 0u x u a ==-<,所以a e >2°当12a <时,()1ln ln 2x a x ⎛⎫+<+ ⎪⎝⎭设()11ln 22h x x x ⎛⎫=+-+ ⎪⎝⎭,()11211122x h x x x -'=-=++令()102h x x '>⇒>,()1002h x x '<⇒<<所以()h x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,2⎛⎫+∞ ⎪⎝⎭单调递增所以()1102h x h ⎛⎫≥=> ⎪⎝⎭,所以11ln 22x x ⎛⎫+>+ ⎪⎝⎭所以()()222ln ln xx u x e x a x e =-+->-2221122x x x e x x ⎛⎫⎛⎫+->-+- ⎪ ⎪⎝⎭⎝⎭设()()22102xg x ex x x ⎛⎫=--+≥ ⎪⎝⎭,()2221x g x e x '=--,令()2221xx ex ϕ=--,()242420x x e ϕ'=-≥->所以()2221xx ex ϕ=--在[)0,+∞上单调递增,所以()()010g x g ''≥=>所以()g x 在()0,+∞单调递增,∴()()00g x g >>,所以()()00g x g >>,所以()()()22ln 0xu x e x a x g x =-+->>所以,当12a <时,()()22ln f x x a x >++恒成立,不合题意综上,实数a 的取值范围为12a ≥.17.(1)因为()ln 2f x a x x '=-,依题意得12,x x 为方程ln 20a x x -=的两不等正实数根,∴0a ≠,2ln x a x=,令()ln x g x x =,()21ln xg x x -'=,当()0,x e ∈时,()0g x '>;当(),x e ∈+∞时,()0g x '<,所以()g x 在()0,e 上单调递增,在(),e +∞上单调递减,()10g =,当x e >时,()0g x >,所以()20g e a<<∴()210g e a e<<=解得2a e >,故实数a 的取值范围是()2,e +∞.(2)由(1)得,11ln 2a x x =,22ln 2a x x =,两式相加得()()1212ln ln 2a x x x x λ+=+,故()12122ln ln x x x x aλλ++=两式相减可得()()1212ln ln 2a x x x x -=-,故12122ln ln x x a x x -=⋅-所以12ln ln 1x x λλ+>+等价于()1221x x aλλ+>+,所以()()1221x x a λλ+>+所以()()121212221ln ln x x x x x x λλ-+>+-,即()()121212ln ln 1x x x x x x λλ+->+-,所以112212ln 11x x x x x x λλ⎛⎫+ ⎪⎝⎭>+-,因为120x x <<,令()120,1x t x =∈,所以()ln 11t t t λλ+>+-即()()()ln 110t t t λλ+-+-<,令()()()()ln 11h t t t t λλ=+-+-,则()0h t <在()0,1上恒成立,()ln h t t tλλ'=+-,令()ln I t t t λλ=+-,()()()2210,1t I t t t t tλλ-'=-=∈①当1λ≥时,()0I t '<所以()h t '在()0,1上单调递减,()()10h t h ''>=所以()h t 在()0,1上单调递增,所以()()10h t h <=符合题意②当0λ≤时,()0I t '>所以()h t '在()0,1上单调递增()()10h t h ''<=故()h t 在()0,1上单调递减,所以()()10h t h >=不符合题意;③当01λ<<时,()01I t t λ'>⇔<<所以()h t '在(),1λ上单调递增,所以()()10h t h ''<=所以()h t 在(),1λ上单调递减,故()()10h t h >=不符合题意综上所述,实数λ的取值范围是[)1,+∞.18.解:(1)∵f (x )=(lnx ﹣k ﹣1)x (k ∈R ),∴x >0,=lnx ﹣k ,①当k≤0时,∵x >1,∴f′(x )=lnx ﹣k >0,函数f (x )的单调增区间是(1,+∞),无单调减区间,无极值;②当k >0时,令lnx ﹣k=0,解得x=e k ,当1<x <e k 时,f′(x )<0;当x >e k ,f′(x )>0,∴函数f (x )的单调减区间是(1,e k ),单调减区间是(e k ,+∞),在区间(1,+∞)上的极小值为f (e k )=(k ﹣k ﹣1)e k =﹣e k ,无极大值.(2)∵对于任意x ∈[e ,e 2],都有f (x )<4lnx 成立,∴f (x )﹣4lnx <0,即问题转化为(x ﹣4)lnx ﹣(k+1)x <0对于x ∈[e ,e 2]恒成立,即k+1>对于x ∈[e ,e 2]恒成立,令g (x )=,则,令t (x )=4lnx+x ﹣4,x ∈[e ,e 2],则,∴t (x )在区间[e ,e 2]上单调递增,故t (x )min =t (e )=e ﹣4+4=e >0,故g′(x )>0,∴g (x )在区间[e ,e 2]上单调递增,函数g (x )max =g (e 2)=2﹣,要使k+1>对于x ∈[e ,e 2]恒成立,只要k+1>g (x )max ,∴k+1>2﹣,即实数k 的取值范围是(1﹣,+∞).证明:(3)∵f (x 1)=f (x 2),由(1)知,函数f (x )在区间(0,e k )上单调递减,在区间(e k ,+∞)上单调递增,且f (e k+1)=0,不妨设x 1<x 2,则0<x 1<e k <x 2<e k+1,要证x 1x 2<e 2k ,只要证x 2<,即证<,∵f (x )在区间(e k ,+∞)上单调递增,∴f (x 2)<f (),又f (x 1)=f (x 2),即证f (x 1)<,构造函数h (x )=f (x )﹣f ()=(lnx ﹣k ﹣1)x ﹣(ln﹣k ﹣1),即h (x )=xlnx ﹣(k+1)x+e 2k (),x ∈(0,e k )h′(x )=lnx+1﹣(k+1)+e 2k (+)=(lnx ﹣k ),∵x ∈(0,e k ),∴lnx ﹣k <0,x 2<e 2k ,即h′(x )>0,∴函数h (x )在区间(0,e k )上单调递增,故h′(x )<h (e k ),∵,故h (x )<0,∴f (x 1)<f (),即f (x 2)=f (x 1)<f (),∴x 1x 2<e 2k 成立.19.(Ⅰ)由()21e 2xf x a x x =--得()e 1x f x a x '=--.因为曲线()y f x =在点()()0,0f 处的切线与y 轴垂直,所以()010f a '=-=,解得1a =.(Ⅱ)由(Ⅰ)知()e 1xf x a x '=--,若函数()f x 有两个极值点,则()e 10x f x a x '=--=,即1e x x a +=有两个不同的根,且1e xx a +-的值在根的左、右两侧符号相反.令()1e x x h x +=,则()()()2e 1e e e x x x x x x h x -+'==-,所以当0x >时,()0h x '<,()h x 单调递减;当0x <时,()0h x '>,()h x 单调递增.又当x →-∞时,()h x →-∞;0x =时,()01h =;0x >时,()0h x >;x →+∞时,()0h x →,所以01a <<.即所求实数a 的取值范围是01a <<.(Ⅲ)证明:令()1e ln xg x x x x=-+(1x >),则()10g =,()2e 1e ln 1x xg x x x x'=+--.令()()h x g x '=,则()e e ln x xh x x x '=+23e e 2x x x x x-++,因为1x >,所以e ln 0xx >,e 0xx>,()2e 10x x x ->,320x >,所以()0h x '>,即()()h x g x '=在1x >时单调递增,又()1e 20g '=->,所以1x >时,()0g x '>,即函数()g x 在1x >时单调递增.所以1x >时,()0g x >,即1x >时,1e ln xx x x>-.20.(1)当0b =时,()321233f x x x x =-+,()()()2'4313f x x x x x =-+=--.当()1,3x Î时,()'0f x <,故函数()f x 在()1,3上单调递减;当()3,4x Î时,()'0f x >,故函数()f x 在()3,4上单调递增.由()30f =,()()4143f f ==.∴()f x 在[]1,4上的值域为40,3轾犏犏臌;(2)由(1)可知,()()()2'4313f x x x x x =-+=--,由()'0f x <得13x <<,由()'0f x >得1x <或3x >.所以()f x 在()1,3上单调递减,在(),1-¥,()3,+¥上单调递增;所以()()max 413f x f b ==+,()()min 3f x f b ==,所以当403b +>且0b <,即403b -<<时,()10,1x $Î,()21,3x Î,()33,4x Î,使得()()()1230f x f x f x ===,由()f x 的单调性知,当且仅当4,03b 骣琪Î-琪桫时,()f x 有三个不同零点.21.(1)当1=a 时,函数2ln 21)(2--=x x x f ,xx x f 1)('-=,∴0)1('=f ,23)1(-=f ,∴曲线)(x f 在点))1(,1(f 处的切线方程为23-=y .(2))0(1)('2>-=x xax x f .当0≤a 时,0)('<x f ,)(x f 的单调递减区间为),0(+∞;当0>a 时,)(x f 在,0(a a 递减,在),(+∞aa 递增.22.(Ⅰ)211()0sin f x x x θ'=-+≥∙在[1,)-+∞上恒成立,即2sin 10sin x x θθ∙-≥∙.∵(0,)θπ∈,∴sin 0θ>.故sin 10x θ∙-≥在[1,)-+∞上恒成立只须sin 110θ∙-≥,即sin 1θ≥,又0sin 1θ<≤只有sin 1θ=,得2πθ=.由22111()0x f x x x x-'=-+==,解得1x =.∴当01x <<时,()0f x '<;当1x >时,()0f x '>.故()f x 在1x =处取得极小值1,无极大值.(Ⅱ)构造1212()ln ln e e F x kx x kx x x x x+=---=--,则转化为;若在[1,]e 上存在0x ,使得0()0F x >,求实数k 的取值范围.当0k ≤时,[1,]x e ∈,()0F x <在[1,]e 恒成立,所以在[1,]e 上不存在0x ,使得0002()ekx f x x ->成立.②当0k >时,2121()e F x k x x+'=+-2222121()kx e x kx e e e x x x ++-+++-==.因为[1,]x e ∈,所以0e x ->,所以()0F x '>在[1,]x e ∈恒成立.故()F x 在[1,]e 上单调递增,max 1()()3F x F e ke e ==--,只要130ke e-->,解得231e k e +>.∴综上,k 的取值范围是231(,)e e++∞.。

压轴题10 导数的简单应用(原卷版)--2023年高考数学压轴题专项训练(全国通用)

压轴题10 导数的简单应用(原卷版)--2023年高考数学压轴题专项训练(全国通用)

压轴题10导数的简单应用题型/考向一:导数的计算及几何意义题型/考向二:利用导数研究函数的单调性题型/考向三:利用导数研究函数的极值、最值○热○点○题○型一导数的计算及几何意义1.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′.2.导数的几何意义(1)函数在某点的导数即曲线在该点处的切线的斜率.(2)曲线在某点的切线与曲线过某点的切线不同.(3)切点既在切线上,又在曲线上.3.导数中的公切线问题,重点是导数的几何意义,通过双变量的处理,从而转化为零点问题,主要考查消元、转化、构造函数、数形结合能力以及数学运算素养.一、单选题1.函数()()ln 322f x x x =--的图象在点()()1,1f 处的切线方程是()A .10x y ++=B .230x y ++=C .230x y --=D .30x y --=2.若函数()e ln xf x x a =++的图象在点()()1,1f 处的切线方程为1y kx =-,则=a ()A .1B .0C .-1D .e3.已知直线l 为曲线22ln y x x =-在1x =处的切线,则点()3,2-到直线l 的距离为()AB .10C .5D 4.若直线y x a =+与函数()x f x e =和()ln g x x b =+的图象都相切,则a b +=()A .1-B .0C .1D .35.曲线221e 24x y x -=⋅+在1x =处的切线与坐标轴围成的面积为()A .32B .3C .4916D .4986.已知函数()()21220232023ln 22f x x xf x '=-++-,则()2023f '=()A .2022B .2021C .2020D .20197.若对m ∀∈R ,,a b ∃∈R ,使得()()()f a f b f m a b-=-成立,则称函数()f x 满足性质Ω,下列函数不满足...性质Ω的是()A .()23f x x x=+B .()()211f x x =+C .()1ex f x -+=D .()()cos 12f x x =-8.已知函数()f x 的定义域是()(),00,∞-+∞U ,()f x '为()f x 的导函数,若()()()121f f x f x x'=+-,则()f x 在()0,∞+上的最小值为()A .4215-B 1C 1D 1二、多选题9.已知函数()332f x x ax =+-的极值点分别为()1212,x x x x <,则下列选项正确的是()A .0a >B .()()122f x f x +=C .若()20f x <,则1a >D .过()0,2仅能做曲线()=y f x 的一条切线10.若函数()()22ln 12x axf x x -=++的图象上,不存在互相垂直的切线,则a 的值可以是()A .-1B .3C .1D .211.给出定义:若函数()f x 在D 上可导,即()f x '存在,且导函数()f x '在D 上也可导,则称()f x 在D 上存在二阶导函数,记()()()f x f x ''''=,若()0f x ''<在D 上恒成立,则称()f x 在D 上为凸函数,以下四个函数在π0,2⎛⎫ ⎪⎝⎭上是凸函数的是()A .()sin cos f x x x=-B .()ln 3f x x x=-C .()331f x x x =-+-D .()exf x x -=12.设函数()y f x =在区间(),a b 上的导函数为()f x ,()f x 在区间(),a b 上的导函数为()f x '',若区间(),a b 上()0f x ''<,则称函数()f x 在区间(),a b 上为“凸函数”.已知()5421122012f x x mx x =--在()1,2上为“凸函数”则实数m 的取值范围的一个必要不充分条件为()A .1m >-B .m 1≥C .1m >D .0m >○热○点○题○型二利用导数研究函数的单调性利用导数研究函数单调性的关键(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域.(2)单调区间的划分要注意对导数等于零的点的确认.(3)已知函数单调性求参数范围,要注意导数等于零的情况.一、单选题1.函数()2e =-xf x x 的单调递增区间为()A .(),0∞-B .()ln2,+∞C .(],ln2∞-D .[)0,∞+2.已知函数()2,0,ln ,,x a xf x x x a x⎧<<⎪⎪=⎨⎪≥⎪⎩若()f x 在()0,∞+上单调递减,则实数a 的取值范围是()A .21,e ⎡⎤⎣⎦B .[]e,2eC .2,e e ⎡⎤⎣⎦D .[)e,+∞3.设0.33e a -=,0.6e b =, 1.6c =,则()A .c b a <<B .c a b <<C .b a c <<D .b c a<<4.若函数()y f x =满足()()xf x f x '>-在R 上恒成立,且a b >,则()A .()()af b bf a >B .()()af a bf b >C .()()af a bf b <D .()()af b bf a <5.已知()f x 是定义在R 上的偶函数,当0x ≥时,()e sin xf x x =+,则不等式()π21e f x -<的解集是()A .1π,2+⎛⎫+∞⎪⎝⎭B .1π0,2+⎛⎫⎪⎝⎭C .π1e 0,2⎛⎫+ ⎪⎝⎭D .1π1π,22-+⎛⎫⎪⎝⎭6.已知函数()f x 与()g x 定义域都为R ,满足()()()1e xx g x f x +=,且有()()()0g x xg x xg x ''+-<,()12e g =,则不等式()4f x <的解集为()A .()1,4B .()0,2C .(),2-∞D .()1,+∞7.已知函数()x f x e =,若存在0[1,2]x ∈-使得00()()f t x f x t =+-恒成立,则0()b f x t =-的取值范围()A .10,1e ⎡⎤+⎢⎥⎣⎦B .211,e 2e⎡⎤+-⎢⎥⎣⎦C .11,1e ⎡⎤+⎢⎥⎣⎦D .21,e 2⎡⎤-⎣⎦8.已知函数()312x f x x +=+,()()42e xg x x =-,若[)12,0,x x ∀∈+∞,不等式()()()()2221e e t g x t f x +≤+恒成立,则正数t 的取值范围是()A .21,e e ⎡⎤⎢⎥⎣⎦B .22,e ⎤-⎦C .)2⎡++∞⎣D .()2e,⎡+∞⎣二、多选题9.已知函数()(1)e x f x x =+的导函数为()f x ',则()A .函数()f x 的极小值点为21e -B .(2)0f '-=C .函数()f x 的单调递减区间为(,2)-∞-D .若函数()()g x f x a =-有两个不同的零点,则21(,0)e a ∈-10.对于三次函数()()320ax bx d a f x cx =+++≠,给出定义:设()f x '是函数()y f x =的导数,()f x ''是函数()f x '的导数,若方程()0f x ''=有实数解0x ,则称()()00,x f x 为函数()y f x =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若函数()()3211R 32f x x x x b b =-++∈,则()A .()f x 一定有两个极值点B .函数()y f x =在R 上单调递增C .过点()0,b 可以作曲线()y f x =的2条切线D .当712b =时,123202220222023202320232023f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭三、解答题11.已知函数()321132f x x ax =-,a ∈R .(1)当2a =时,求曲线()y f x =在点()()3,3f 处的切线方程;(2)讨论()f x 的单调性.12.已知函数()222ln 12x x f x x-+=.求函数()f x 的单调区间;○热○点○题○型三利用导数研究函数的极值、最值1.由导函数的图象判断函数y =f (x )的极值,要抓住两点(1)由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点.(2)由y =f ′(x )的图象可以看出y =f ′(x )的函数值的正负,从而可得到函数y =f (x )的单调性,可得极值点.2.求函数f (x )在[a ,b ]上的最大值和最小值的步骤(1)求函数在(a ,b )内的极值.(2)求函数在区间端点处的函数值f (a ),f (b ).(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.一、单选题1.函数()32142f x x x x =+-的极小值为()A .43-B .1C .52-D .104272.函数()f x 的定义域为R ,导函数()f x '的图象如图所示,则函数()f x ()A .无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点3.已知函数()π2sin 3f x x ω⎛⎫=+ ⎪⎝⎭()0ω>在()0,π上有3个极值点,则ω的取值范围为()A .13,6⎛⎫+∞ ⎪⎝⎭B .1319,66⎡⎤⎢⎥⎣⎦C .1319,66⎛⎤ ⎥⎝⎦D .713,66⎛⎤ ⎥⎝⎦4.已知函数()2e ln 2xx f x x =+-的极值点为1x ,函数()ln 2x h x x =的最大值为2x ,则()A .12x x >B .21x x >C .12x x ≥D .21x x ≥5.若函数()3222f x x ax a x =++在1x =处有极大值,则实数a 的值为()A .1B .1-或3-C .1-D .3-6.已知函数()()2ln 11f x x x =+++,则()A .0x =是()f x 的极小值点B .1x =是()f x 的极大值点C .()f x 的最小值为1ln 2+D .()f x 的最大值为37.若函数()3e 3ln x f x a x x x ⎛⎫=-+ ⎪⎝⎭只有一个极值点,则a 的取值范围是()A .2e ,4⎛⎤-∞ ⎥⎝⎦B .(,0]-∞C .(]3e ,09⎧⎫-∞⎨⎬⎩⎭ D .32e e ,49 纟禳镲çú-¥睚çú镲棼铪8.已知定义域为()0,∞+的函数()f x 满足()1()1f x xf x x'+=+,()10f '=,()1122g x a ax x=+--,若01a <<,则()()f x g x -的极值情况是()A .有极大值,无极小值B .有极小值,无极大值C .既有极大值,又有极小值D .既无极小值,也无极大值二、多选题9.已知函数()2211e e x x f x -+=+,则()A .()f x 为奇函数B .()f x 在区间()0,2上单调递减C .()f x 的极小值为22e D .()f x 的最大值为411e +10.设函数()ln xf x ax x=-,若函数()f x 有两个极值点,则实数a 的值可以是()A .12B .18C .2D .14-三、解答题11.已知函数()()322113f x x ax a x b =-+-+(a ,b ∈R ),其图象在点()()1,1f 处的切线方程为30x y +-=.(1)求a ,b 的值;(2)求函数()f x 的单调区间和极值;(3)求函数()f x 在区间[]2,5-上的最大值.12.已知函数()ln xf x x a=+,其中a 为常数,e 为自然对数的底数.(1)当1a =-时,求()f x 的单调区间;(2)若()f x 在区间(]0,e 上的最大值为2,求a 的值.。

(完整版)2019-2020年高考数学压轴题集锦——导数及其应用(五)

(完整版)2019-2020年高考数学压轴题集锦——导数及其应用(五)

2019-2020年高考数学压轴题集锦——导数及其应用(五)46.已知函数4)(2--=ax x x f (a ∈R)的两个零点为12,,x x 设12x x < .(Ⅰ)当0a >时,证明:120x -<<.(Ⅱ)若函数|)(|)(2x f x x g -=在区间)2,(--∞和),2(+∞上均单调递增,求a 的取值范围.47.设函数2()ln f x x ax x =-++(R ∈a ). (Ⅰ)若1a =时,求函数()f x 的单调区间;(Ⅱ)设函数()f x 在],1[e e 有两个零点,求实数a 的取值范围.48.已知函数()ln()f x ax b x =+-,2()ln g x x ax x =-- .(Ⅰ)若1b =, ()()()F x f x g x =+,问:是否存在这样的负实数,使得()F x 在1x =处存在切线且该切线与直线1123y x =-+平行,若存在,求a 的值;若不存在,请说明理由 .(Ⅱ)已知0a ≠,若在定义域内恒有()ln()0f x ax b x =+-≤,求()a a b +的最大值 .49.设函数2)21(ln )(-+=x b x x x f )(R b ∈,曲线()y f x =在()1,0处的切线与直线3y x =平行.证明:(Ⅰ)函数)(x f 在),1[+∞上单调递增; (Ⅱ)当01x <<时,()1f x <.50.已知f (x )=a (x -ln x )+212xx -,a ∈R . (I )讨论f (x )的单调性;(II )当a =1时,证明f (x )>f ’(x )+23对于任意的x ∈[1,2]恒成立。

51.已知函数f (x )=x 2+ax ﹣ln x ,a ∈R .(1)若函数f (x )在[1,2]上是减函数,求实数a 的取值范围;(2)令g (x )=f (x )﹣x 2,是否存在实数a ,当x ∈(0,e ](e 是自然常数)时,函数g (x )的最小值是3,若存在,求出a 的值;若不存在,说明理由; (3)当x ∈(0,e ]时,证明:e 2x 2-25x >(x +1)ln x .52.已知函数f (x )=31x 3-ax +1.(1)若x =1时,f (x )取得极值,求a 的值; (2)求f (x )在[0,1]上的最小值;(3)若对任意m ∈R ,直线y =﹣x +m 都不是曲线y =f (x )的切线,求a 的取值范围.53.已知函数()xf x axe =(0a ≠) (1)讨论()f x 的单调性;(2)若关于x 的不等式()ln 4f x x x <+-的解集中有且只有两个整数,求实数a 的取值范围.54.已知函数()()11,1n x n m x f x g x m mx x +-==--(其中,,m e n me ≥为正整数,e 为自然对数的底)(1)证明:当1x >时,()0m g x >恒成立;(2)当3n m >≥时,试比较()n f m 与()m f n 的大小,并证明.55.已知函数f (x )=e x 和函数g (x )=kx +m (k 、m 为实数,e 为自然对数的底数,e ≈2.71828).(1)求函数h (x )=f (x )﹣g (x )的单调区间;(2)当k =2,m =1时,判断方程f (x )=g (x )的实数根的个数并证明;(3)已知m ≠1,不等式(m ﹣1)[f (x )﹣g (x )]≤0对任意实数x 恒成立,求km 的最大值.56.已知函数(1)()ln ()a x f x x a R x-=-∈. (Ⅰ)若1a =,求()y f x =在点()1,(1)f 处的切线方程; (Ⅱ)求()f x 的单调区间; (Ⅲ)求证:不等式111ln 12x x -<-对一切的(1,2)x ∈恒成立.57.已知函数2()(1)ln f x x a x =-+(a R ∈).(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 存在两个极值点()1212x x x x <、,求21()f x x 的取值范围.58.设函数R m xmx x f ∈+=,ln )(. (Ⅰ)当e m =(e 为自然对数的底数)时,求)(x f 的极小值; (Ⅱ)若对任意正实数a 、b (a b ≠),不等式()()2f a f b a b-≤-恒成立,求m 的取值范围.59.已知函数()b x a ax x x f +-+-=2233231, ),(R b a ∈ (1)当3=a 时, 若()x f 有3个零点, 求b 的取值范围;(2)对任意]1,54[∈a , 当[]m a a x ++∈,1时恒有()a x f a ≤'≤-, 求m 的最大值, 并求此时()x f 的最大值。

2019年高考数学基本初等函数、导数及其应用复习指导(最适用、最详细)

2019年高考数学基本初等函数、导数及其应用复习指导(最适用、最详细)

2019年高考数学基本初等函数、导数及其应用复习指导第一节函数及其表示教材细梳理1.函数与映射函数由定义域、对应关系和值域三个要素构成,对函数y=f(x),x∈A,其中(1)定义域:自变量x的取值范围.(2)值域:函数值的集合{f(x)|x∈A}.[易错易混]函数的定义域必须写成集合或区间的形式,不能直接用不等式表示.3.函数的表示法表示函数的常用方法有:解析法、列表法、图象法.4.分段函数若函数在定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.[易错易混]1.分段函数是一个函数,切不可把它看作几个函数.分段函数在书写时用大括号把各段函数合并写成一个函数的形式.2.分段函数是为了研究问题的需要而进行的分类讨论,相当于求“并集”,不可与方程组或不等式组的求“交集”相混淆.知识微思考1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数是建立在其定义域到值域的映射.( )(2)函数y =f (x )的图象与直线x =a 最多有2个交点.( ) (3)函数f (x )=x 2-2x 与g (t )=t 2-2t 是同一函数.( )(4)若两个函数的定义域与值域相同,则这两个函数是相等函数.( ) (5)若A =R ,B ={x |x >0},f :x →y =|x |,其对应是从A 到B 的映射.( ) (6)分段函数是由两个或几个函数组成的.( )(7)分段函数的定义域等于各段定义域的并集,值域等于各段值域的并集.( ) 答案:(1)√ (2)× (3)√ (4)× (5)× (6)× (7)√ 2.函数定义中的集合B 与函数的值域有什么关系?提示:函数的值域C :{y |y =f (x ),x ∈A }是集合B 的子集.即C ⊆B .四基精演练1.(必修1·1.2例(1)改编)函数f (x )=2x -1+1x -2的定义域为( )A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C.由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0且x ≠2.2.(必修1·习题1.2B 组改编)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:选B.选项A ,定义域为{x |-2≤x ≤0},不正确.选项C ,当x 在(-2,2]取值时,y 有两个值和x 对应,不符合函数的概念.选项D ,值域为[0,1],不正确,选项B 正确.3.(必修1·1.2例2改编)下列函数中,与函数y =x +1是相等函数的是( ) A .y =(x +1)2 B .y =3x 3+1 C .y =x 2x+1D .y =x 2+1解析:选B.对于A ,函数y =(x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义域不同,不是相等函数;对于B ,定义域和对应关系都相同,是相等函数;对于C ,函数y =x 2x +1的定义域为{x |x ≠0},与函数y =x +1的定义域不同,不是相等函数;对于D ,定义域相同,但对应关系不同,不是相等函数.4.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12三段讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x +x +12>1,显然成立.当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,x >-14.答案:⎝⎛⎭⎫-14,+∞ 5.(实践题)(教材习题改编)一个圆柱形容器的底面半径是Rcm ,高是h cm ,现在以v cm 2/s 的速度向容器内注入某溶液,则容器内溶液的高度x (cm)和注入溶液的时间t (s)的函数解析式为________,其定义域为________.答案:x =v πR 2t ,⎣⎡⎦⎤0,πR 2h v考点一 求函数的定义域[简单型]——提升数学运算能力函数定义域的求解策略1.已知函数解析式:构造使解析式有意义的不等式(组)求解. 2.实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. 3.抽象函数:(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. [易错提醒]1.不要对解析式进行化简变形,以免定义域发生变化.2.定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.1.(2018·山东临沂模拟)函数f (x )=ln(x 2-x )的定义域为( ) A .(0,1) B .[0,1]C .(-∞,0)∪(1,+∞)D .(-∞,0]∪[1,+∞)解析:选C.由题意知,x 2-x >0,即x <0或x >1.则函数的定义域为(-∞,0)∪(1,+∞),故选C.2.(2017·贵州贵阳监测)函数y =1-x 22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞) D.⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1 解析:选 D.由函数y =1-x 22x 2-3x -2得⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12,所以所求函数的定义域为⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1,故选D.3.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f (x +1)x -1的定义域是( )A .[0,2 018]B .[0,1)∪(1,2 018]C .(1,2 019]D .[-1,1)∪(1,2 018]解析:选B.令t =x +1,则由已知函数的定义域为[1,2 019],可知1≤t ≤2 019.要使函数f (x +1)有意义,则有1≤x +1≤2 019,解得0≤x ≤2 018,故函数f (x +1)的定义域为[0,2018].所以使函数g (x )有意义的条件是⎩⎪⎨⎪⎧0≤x ≤2 018,x -1≠0,解得0≤x <1或1<x ≤2 018.故函数g (x )的定义域为[0,1)∪(1,2 018].考点二 求函数的解析式[探究型]——提升数学运算能力[例1] (1)已知二次函数f (2x +1)=4x 2-6x +5,则f (x )=________. 解析:法一(换元法): 令2x +1=t (t ∈R ),则x =t -12,所以f (t )=4⎝⎛⎭⎪⎫t -122-6×t -12+5=t 2-5t +9(t ∈R ), 所以f (x )=x 2-5x +9(x ∈R ). 法二(配凑法):因为f (2x +1)=4x 2-6x +5 =(2x +1)2-10x +4 =(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9. 法三(待定系数法): 因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0), 则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c . 因为f (2x +1)=4x 2-6x +5,所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9. 答案:x 2-5x +9(2)已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:因为2f (x )+f ⎝⎛⎭⎫1x =3x ,① 所以将x 用1x 替换,得2f ⎝⎛⎭⎫1x +f (x )=3x ,② 由①②解得f (x )=2x -1x (x ≠0),即f (x )的解析式是f (x )=2x -1x (x ≠0).答案:2x -1x(x ≠0)(3)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.解析:∵-1≤x ≤0,∴0≤x +1≤1, ∴f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x +1).答案:-12x (x +1)[母题变式]1.若本例(1)中条件变为f (x +1)=x +2x ,则f (x )=________.解析:设t =x +1,则x =(t -1)2(t ≥1),代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.故f (x )=x 2-1(x ≥1). 答案:x 2-1(x ≥1)2.若本例(2)中条件变为2f (x )+f (-x )=3x ,则f (x )=________. 解析:因为2f (x )+f (-x )=3x ,①所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,② 由①②解得f (x )=3x , 即f (x )的解析式是f (x )=3x . 答案:3x求函数解析式的常见方法1.待定系数法:若已知函数的类型(如一次函数、二次函数),根据函数类型设出函数解析式,由题设条件,列出方程组,解出待定系数即可.2.换元法:已知f (h (x ))=g (x )求f (x )时,往往可设h (x )=t ,从中解出x ,代入g (x )进行换元,求出f (t )的解析式,再将t 替换为x 即可.3.转化法:已知某区间上的解析式,求其他区间上的解析式,将待求变量转化到已知区间上,利用函数满足的等量关系间接获得其解析式.4.消去法:已知关于f (x )与f ⎝⎛⎭⎫1x (或f (-x ))的方程式,可根据已知条件再构造出另一个方程式构成方程组求出f (x ).考点三 分段函数[高频型]——提升数学运算、发展逻辑推理[例2] (2018·陕西师大附中模拟)若函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(4-x ),x ≤0,f (x -1)-f (x -2),x >0,则f (3)的值为( )A .-1B .-2C .1D .2解析:依题意,f (3)=f (3-1)-f (3-2)=f (2)-f (1),又2>0,所以f (2)=f (2-1)-f (2-2)=f (1)-f (0),所以f (3)=f (1)-f (0)-f (1)=-f (0),又f (0)=log 2(4-0)=2,所以f (3)=-f (0)=-2. 答案:B[例3] (2016·高考江苏卷)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R .若f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫92,则f (5a )的值是________. 解析:由题意可得f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-12=-12+a , f ⎝⎛⎭⎫92=f ⎝⎛⎭⎫12=⎪⎪⎪⎪25-12=110, 则-12+a =110,解得a =35,于是f (5a )=f (3)=f (-1)=-1+35=-25.答案:-251.求分段函数的函数值:先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.2.求某条件下自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量是否满足相应段自变量的取值范围.1.已知函数f (x )=⎩⎪⎨⎪⎧2x -2,x ≤0,-log 3x ,x >0,且f (a )=-2,则f (7-a )=( )A .-log 37B .-34C .-54D .-74解析:选D.当a ≤0时,2a -2=-2无解;当a >0时,由-log 3a =-2,解得a =9,所以f (7-a )=f (-2)=2-2-2=-74.2.(2018·山东烟台二模)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为( )A .-32B .-34C .-32或-34D .32或-34解析:选B.当a >0时,1-a <1,1+a >1.由f (1-a )=f (1+a )得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )得-1+a -2a =2+2a +a ,解得a =-34,所以a 的值为-34,故选B.发展数学建模、数学运算(应用型)模型 求解与分段函数有关的不等式分段函数与函数性质,不等式的交汇是高考的热点.求分段函数自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.[例4] (1)设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0,若f (f (a ))≤2,则实数a 的取值范围是________.解析:由题意得⎩⎪⎨⎪⎧f (a )<0,f 2(a )+f (a )≤2或⎩⎪⎨⎪⎧ f (a )≥0,-f 2(a )≤2,解得f (a )≥-2.由⎩⎪⎨⎪⎧a <0,a 2+a ≥-2或⎩⎪⎨⎪⎧a ≥0,-a 2≥-2,解得a ≤ 2. 答案:(-∞,2](2)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1.则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎡⎦⎤23,1 B .[0,1] C.⎣⎡⎭⎫23,+∞D .[1,+∞)解析:当a =2时,f (2)=4,f (f (2))=f (4)=24, 显然f (f (2))=2f (2),故排除A ,B.当a =23时,f ⎝⎛⎭⎫23=3×23-1=1,f ⎝⎛⎭⎫f ⎝⎛⎭⎫23=f (1)=21=2.显然f ⎝⎛⎭⎫f ⎝⎛⎭⎫23=2f ⎝⎛⎭⎫23.故排除D.选C.答案:C课时规范训练(限时练·夯基练·提能练)A 级 基础夯实练(25分钟,50分)1.(2018·河南濮阳检测)函数f (x )=log 2(1-2x )+1x +1的定义域为( )A.⎝⎛⎭⎫0,12 B .⎝⎛⎭⎫-∞,12 C .(-1,0)∪⎝⎛⎭⎫0,12 D .(-∞,-1)∪⎝⎛⎭⎫-1,12 解析:选D.要使函数有意义,需满足⎩⎪⎨⎪⎧1-2x >0,x +1≠0,解得x <12且x ≠-1,故函数的定义域为(-∞,-1)∪⎝⎛⎭⎫-1,12. 2.已知函数f (x )=⎩⎪⎨⎪⎧f (-x ),x >2,ax +1,-2≤x ≤2,f (x +5),x <-2,若f (2 019)=0,则a =( )A .0B .-1C .1D .-2解析:选B.由于f (2 019)=f (-2 019)=f (-404×5+1)=f (1)=a +1=0,故a =-1. 3.(2018·山西太原二模)若函数f (x )满足f (1-ln x )=1x ,则f (2)等于( )A.12 B .e C.1eD .-1解析:选B.法一:令1-ln x =t ,则x =e 1-t ,于是f (t )=1e 1-t,即f (x )=1e 1-x ,故f (2)=e.法二:由1-ln x =2,得x =1e ,这时1x =11e =e ,即f (2)=e.4.已知函数f (x )满足f ⎝⎛⎭⎫2x +|x |=log 2x |x |,则f (x )的解析式是( )A .f (x )=log 2xB .f (x )=-log 2xC .f (x )=2-xD .f (x )=x -2解析:选B.根据题意知x >0,所以f ⎝⎛⎭⎫1x =log 2x ,则f (x )=log 21x =-log 2x . 5.下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1D .f (x )=-x解析:选C.显然选项A ,D 满足,对于选项B ,f (2x )=2x -|2x |=2(x -|x |)=2f (x ),也满足;对于选项C ,令x =3,则f (2x )=f (6)=7,2f (x )=2f (3)=2(3+1)=8,故函数f (x )=x +1不满足f (2x )=2f (x ).6.设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x , x ≥1.若f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=4,则b =( ) A .1 B .78C.34D .12解析:选D.根据分段函数的定义域赋值得到关于b 的方程,求解可得.f ⎝⎛⎭⎫56=3×56-b =52-b ,若52-b <1,即b >32,则3×⎝⎛⎭⎫52-b -b =152-4b =4,解得b =78,不符合题意,舍去;若52-b ≥1,即b ≤32,则252-b =4,解得b =12.7.(2018·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧-cos πx ,x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .1 B .2 C .3D .-2解析:选C.f ⎝⎛⎭⎫43=-cos 4π3=cos π3=12;f ⎝⎛⎭⎫-43= f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=-cos 2π3+2=12+2=52. 故f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3.8.函数f (x )=⎩⎪⎨⎪⎧sin (πx 2),-1<x <0,e x -1,x ≥0满足f (1)+f (a )=2,则a 的所有可能值为________.解析:因为f (1)=e 1-1=1且f (1)+f (a )=2, 所以f (a )=1,当-1<a <0时,f (a )=sin(πa 2)=1,∵0<a 2<1,∴0<πa 2<π,∴πa 2=π2⇒a =-22;当a ≥0时,f (a )=e a -1=1⇒a =1. 答案:1或-229.若函数y =ax +1ax 2+2ax +3的定义域为R ,则实数a 的取值范围是________.解析:因为函数y =ax +1ax 2+2ax +3的定义域为R ,所以ax 2+2ax +3=0无实数解,即函数y =ax 2+2ax +3的图象与x 轴无交点. 当a =0时,函数y =13的图象与x 轴无交点;当a ≠0时,则Δ=(2a )2-4·3a <0,解得0<a <3. 综上,实数a 的取值范围是[0,3). 答案:[0,3)10.函数y =f (x )的图象如图所示,那么,f (x )的定义域是________;值域是________;其中只与x 的一个值对应的y 值的范围是______________.解析:由图象知,函数y =f (x )的图象包括两部分,一部分是以点(-3,2)和(0,4)为两个端点的一条曲线段,一部分是以(2,1)为起点,到(3,5)结束的曲线段,故其定义域是[-3,0]∪[2,3],值域为[1,5],只与x 的一个值对应的y 值的取值范围是[1,2)∪(4,5].答案:[-3,0]∪[2,3] [1,5] [1,2)∪(4,5]B 级 能力升级练(20分钟,30分)1.(2018·山东潍坊调研)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx,x <A ,cA ,x ≥A ,(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:选D.∵c A=15,故A >4,则有c2=30,解得c =60,A =16,故选D.2.已知函数f (x )=⎩⎪⎨⎪⎧-⎝⎛⎭⎫12x ,a ≤x <0,-x 2+2x ,0≤x ≤4的值域是[-8,1],则实数a 的取值范围是( )A .(-∞,-3]B .[-3,0)C .[-3,-1]D .{-3}解析:选B.当0≤x ≤4时,f (x )∈[-8,1];当a ≤x <0时,f (x )∈⎣⎡⎭⎫-⎝⎛⎭⎫12a ,-1, 所以⎣⎡⎭⎫-12a ,-1⊆[-8,1],-8≤-12a <-1. 即-3≤a <0.3.已知函数f (x )=⎩⎪⎨⎪⎧-x -1,(-1≤x <0),-x +1,(0<x ≤1),则f (x )-f (-x )>-1的解集为( )A .(-∞,-1)∪(1,+∞) B.⎣⎡⎭⎫-1,-12∪(0,1] C .(-∞,0)∪(1,+∞) D.⎣⎡⎦⎤-1,-12∪(0,1) 解析:选B.①当-1≤x <0时,0<-x ≤1, 此时f (x )=-x -1,f (-x )=-(-x )+1=x +1, ∴f (x )-f (-x )>-1化为-2x -2>-1, 解得x <-12,则-1≤x <-12.②当0<x ≤1时,-1≤-x <0,此时,f (x )=-x +1,f (-x )=-(-x )-1=x -1, ∴f (x )-f (-x )>-1化为-2x +2>-1, 解得x <32,则0<x ≤1.故所求不等式的解集为⎣⎡⎭⎫-1,-12∪(0,1]. 4.(2018·陕西西安模拟)设函数y =f (x )在R 上有定义,对于给定的正数M ,定义函数f M (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤M ,M ,f (x )>M ,则称函数f M (x )为f (x )的“孪生函数”.若给定函数f (x )=2-x 2,M =1,则f M (0)的值为( )A .2B .1 C. 2D .- 2解析:选B.由题意,令f (x )=2-x 2=1,得x =±1,因此当x ≤-1或x ≥1时,f M (x )=2-x 2;当-1<x <1时,f M (x )=1,所以f M (0)=1,选B.5.(2018·福州模拟)已知函数f (x )=4|x |+2-1的定义域是[a ,b ],(a ,b ∈Z ),值域是[0,1],则满足条件的整数数对(a ,b )共有________个.解析:由0≤4|x |+2-1≤1,即1≤4|x |+2≤2,得0≤|x |≤2,满足条件的整数数对有(-2,0),(-2,1),(-2,2),(0,2),(-1,2),共5个.答案:56.(2018·吉林四地联考)设集合A =⎣⎡⎭⎫0,12,B =⎣⎡⎦⎤12,1,函数f (x )=⎩⎪⎨⎪⎧x +12,x ∈A ,2(1-x ),x ∈B .若x 0∈A ,且f [f (x 0)]∈A ,则x 0的取值范围是________.解析:∵0≤x 0<12,∴f (x 0)=x 0+12∈⎣⎡⎭⎫12,1B ,∴f [f (x 0)]=2(1-f (x 0))=2⎣⎡⎦⎤1-⎝⎛⎭⎫x 0+12 =2⎝⎛⎭⎫12-x 0.∵f [f (x 0)]∈A ,∴0≤2⎝⎛⎭⎫12-x 0<12. ∴14<x 0≤12, 又∵0≤x 0<12,故14<x 0<12.答案:14<x 0<12第二节 函数的单调性与最值教材细梳理1.函数的单调性 (1)单调函数的定义[易错易混] 从单调函数的定义可以看出,函数是增函数还是减函数,是对定义域内某个区间而言的.有的函数在其定义域的一个区间上是增函数,而在另一个区间上不是增函数.例如,函数y =x 2,当x ∈[0,+∞)时是增函数,当x ∈(-∞,0]时是减函数.(2)函数单调性的常用结论①若f (x ),g (x )均是区间A 上的增(减)函数,则f (x )+g (x )也是区间A 上的增(减)函数; ②若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; ③函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反; ④函数y =f (x )(f (x )≥0)在公共定义域内与y =f (x )的单调性相同. 2.函数的最值1.下列结论是否正确(请在括号中打“√”或“×”) (1)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( )(2)对于函数f (x ),x ∈D ,若x 1,x 2∈D ,且(x 1-x 2)·[f (x 1)-f (x 2)]>0,则函数f (x )在D 上是增函数.( )(3)函数y =|x |是R 上的增函数.( )(4)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) (5)函数f (x )=log 5(2x +1)的单调增区间是(0,+∞).( ) (6)函数y =1-x 21+x 2的最大值为1.( )答案:(1)× (2)√ (3)× (4)× (5)× (6)√2.“函数f (x )的单调区间”与“函数f (x )在某区间上单调”的区别是什么?提示:前者是指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集. 3.在最大值、最小值的定义中,条件(2)能否去掉?为什么?提示:不能,因为去掉后不能保证M 是一个函数值,即存在一个x 0∈I ,使M =f (x 0),最大值、最小值必须是函数值中的最大值、最小值.四基精演练1.(必修1·习题1.3A 组改编)一次函数y =kx +b 在R 上是增函数,则k 的范围为( ) A .k >0 B .k ≥0 C .k <0 D .k ≤0答案:A2.(2017·高考全国卷Ⅱ)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞)D .(4,+∞) 解析:选D.由x 2-2x -8>0可得x >4或x <-2, 所以x ∈(-∞,-2)∪(4,+∞),令u =x 2-2x -8,则其在x ∈(-∞,-2)上单调递减,在x ∈(4,+∞)上单调递增.又因为y =ln u 在u ∈(0,+∞)上单调递增, 所以y =ln(x 2-2x -8)在x ∈(4,+∞)上单调递增.3.(2016·高考北京卷)下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-x解析:选D.选项A 中,y =11-x =1-(x -1)的图象是将y =-1x 的图象向右平移1个单位得到的,故y =11-x 在(-1,1)上为增函数,不符合题意;选项B 中,y =cos x 在(-1,0)上为增函数,在(0,1)上为减函数,不符合题意;选项C 中,y =ln(x +1)的图象是将y =ln x 的图象向左平移1个单位得到的,故y =ln(x +1)在(-1,1)上为增函数,不符合题意;选项D 符合题意.4.(必修1·习题1.3探究改编)若函数f (x )=1x 在区间[2,a ]上的最大值与最小值的和为34,则a =________.解析:由f (x )=1x 的图象知,f (x )=1x 在(0,+∞)上是减函数,∵[2,a ]⊆(0,+∞),∴f (x )=1x 在[2,a ]上也是减函数,∴f (x )max =f (2)=12,f (x )min =f (a )=1a ,∴12+1a =34,∴a =4. 答案:45.(实践题)(教材例题改编)“菊花”烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂,如果烟花距地面的高度h m 与时间t s 之间的关系式为h (t )=-t 2+4t +7,那么烟花冲出后________s 是它爆裂的最值时刻.答案:2考点一 利用单调性求最值[简单型]——发展数学运算求函数最值的常用方法1.单调性法:先确定函数的单调性,再由单调性求最值;2.图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;3.换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.1.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.答案:22.已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎡⎦⎤12,2上的值域为[12,2],则a =________. 解析:由反比例函数的性质知函数f (x )=1a -1x (a >0,x >0)在⎣⎡⎦⎤12,2上单调递增, 所以⎩⎪⎨⎪⎧f ⎝⎛⎭⎫12=12,f (2)=2,即⎩⎨⎧1a -2=12,1a -12=2,解得a =25.答案:25考点二 确定函数的单调性(区间)[探究型]——直观想象、逻辑推理[例1] (1)函数f (x )=-x 2+2|x |+1的递减区间为________.解析:f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,=⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0.画出函数图象如图所示,可知单调递减区间为[-1,0]和[1,+∞).答案:[-1,0]和[1,+∞)(2)判断并证明函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上的单调性.解:设1≤x 1<x 2≤2,则 f (x 2)-f (x 1)=ax 22+1x 2-ax 21-1x 1 =(x 2-x 1)⎣⎡⎦⎤a (x 1+x 2)-1x 1x 2, 由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4, 1<x 1x 2<4,-1<-1x 1x 2<-14.又因为1<a <3, 所以2<a (x 1+x 2)<12,得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),故当a ∈(1,3)时,f (x )在[1,2]上单|调递增. [母题变式]1.将本例(1)中函数变为f (x )=|-x 2+2x +1|,如何求解?解析:作出函数y =|-x 2+2x +1|的图象如图所示.由图象可知,单调递减区间为(-∞,1-2)和(1,1+2).答案:(-∞,1-2)和(1,1+2)2.若本例(2)中函数变为f (x )=axx -1(a ≠0),试判断f (x )在(-1,1)上的单调性.解:法一(定义法):设-1<x 1<x 2<1, f (x )=a ⎝ ⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎪⎫1+1x -1,f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1 =a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1, 所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上递增. 法二(导数法):f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2, 当a >0时,f ′(x )<0,函数f (x )在(-1,1)上递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上递增.1.判断函数的单调性应先求定义域.2.定义法判断(或证明)函数单调性的一般步骤为:取值—作差—变形—判号—定论,其中变形为关键,而变形的方法有因式分解、配方法等.3.用导数判断函数的单调性简单快捷,应引起足够的重视.4.图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,可由图象的直观性写出它的单调区间.1.函数f (x )=lg x 2的单调递减区间是________.解析:函数f (x )是定义域为{x |x ≠0}的偶函数,且f (x )=lg x 2=⎩⎪⎨⎪⎧2lg x ,x >0,2lg (-x ),x <0.函数大致图象如图所示,所以函数的单调递减区间是(-∞,0).答案:(-∞,0)2.(2018·湖南长沙模拟)设函数y =f (x )在(-∞,+∞)内有定义.对于给定的正数k ,定义函数f k (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤k ,k ,f (x )>k ,取函数f (x )=2-|x |.当k =12时,函数f k (x )的单调递增区间为( )A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)解析:选C.由f (x )>12,得-1<x <1,由f (x )≤12,得x ≤-1或x ≥1.所以f 12(x )=⎩⎪⎨⎪⎧2-x ,x ≥1,12,-1<x <1,2x,x ≤-1,故f 12(x )的单调递增区间为(-∞,-1).考点三 函数单调性的应用[高频型]——发展逻辑推理、提升数学运算[例2] (2018·江西三校联考)已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0 解析:∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0, ∴当x 1∈(1,2)时,f (x 1)<f (2)=0, 当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0. 答案:B[例3] (2018·青海西宁高三期末)已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x -1,x ≤1,log ax ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为________.解析:要使函数f (x )在R 上单调递增, 则有⎩⎪⎨⎪⎧a >1,a -2>0,f (1)≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3]. 答案:(2,3]1.利用函数的单调性比较函数值大小的求解思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用函数的性质转化到同一个单调区间内,只需比较自变量的大小,根据单调性比较函数值大小.2.求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )).提醒:应注意g (x ),h (x )应在函数y =f (x )的定义域内. 3.根据函数的单调性求参数的取值范围的常用方法(1)数形结合法:将函数的单调性转化为函数图象的升(降),再转化为其参数满足的不等式(组)进而求解.(2)导数法:将函数的单调性转化为导函数在某单调区间上恒正(负)问题求解.3.已知偶函数f (x )是定义在[0,+∞)上的增函数,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23 B .⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D .⎣⎡⎭⎫12,23解析:选A.因为f (x )为偶函数,且在[0,+∞)上单调递增,f (2x -1)<f ⎝⎛⎭⎫13,故|2x -1|<13,解得13<x <23. 4.(2018·山东日照模拟)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .( 0,1]解析:选D.由f (x )=-x 2+2ax 在[1,2]上是减函数可得[1,2]⊆[a ,+∞),∴a ≤1. ∵y =1x +1在(-1,+∞)上为减函数,∴由g (x )=ax +1在[1,2]上是减函数可得a >0,故0<a ≤1.故选D.发展数学建模、数学运算(创新型)模型 单调性与抽象函数的创新交汇研究抽象函数的单调性主要利用定义来完成,但变形有一定的技巧性,在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.[例4] 函数f (x )对任意的m 、n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1.(1)求证:f (x )在R 上是增函数; (2)若f (3)=4,解不等式f (a 2+a -5)<2.解:(1)证明:设x 1,x 2∈R ,且x 1<x 2,∴x 2-x 1>0, ∵当x >0时,f (x )>1,∴f (x 2-x 1)>1. f (x 2)=f [(x 2-x 1)+x 1]=f (x 2-x 1)+f (x 1)-1, ∴f (x 2)-f (x 1)=f (x 2-x 1)-1>0⇒f (x 1)<f (x 2), ∴f (x )在R 上为增函数. (2)∵m ,n ∈R ,不妨设m =n =1, ∴f (1+1)=f (1)+f (1)-1⇒f (2)=2f (1)-1,f (3)=4⇒f (2+1)=4⇒f (2)+f (1)-1=4⇒3f (1)-2=4, ∴f (1)=2,∴f (a 2+a -5)<2=f (1), ∵f (x )在R 上为增函数, ∴a 2+a -5<1⇒-3<a <2, 即a ∈(-3,2).课时规范训练(限时练·夯基练·提能练)A 级 基础夯实练(25分钟,50分)1.(2018·河北唐山模拟)下列四个函数中,在区间(0,1)上是减函数的是( ) A .y =log 2x B .y =x 13C .y =-⎝⎛⎭⎫12xD .y =1x解析:选 D.y =log 2x在(0,+∞)上为增函数;y =x 13在(0,+∞)上是增函数;y =⎝⎛⎭⎫12x在(0,+∞)上是减函数,y =-⎝⎛⎭⎫12x 在(0,+∞)上是增函数;y =1x 在(0,+∞)上是减函数,故y =1x在(0,1)上是减函数.故选D.2.函数f (x )=|x -2|x 的单调递减区间是( ) A .[1,2] B .[-1,0) C .[0,2]D .[2,+∞)解析:选A.由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调递减区间是[1,2].3.(2018·湖南长沙模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,x +c ,x <1,则“c =-1”是“函数f (x )在R上递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.若函数f (x )在R 上递增,则需log 21≥c +1,即c ≤-1.由于c =-1⇒c ≤-1,但c ≤-1⇒/c =-1,所以“c =-1”是“f (x )在R 上递增”的充分不必要条件.4.函数y =⎝⎛⎭⎫12的值域为( )A .(-∞,1)B .⎝⎛⎭⎫12,1 C.⎣⎡⎭⎫12,1D .⎣⎡⎭⎫12,+∞ 解析:选C.因为x 2≥0,所以x 2+1≥1,即1x 2+1∈(0,1],故y =⎝⎛⎭⎫12∈⎣⎡⎭⎫12,1.5.(2018·山东青岛二模)用min{a ,b ,c }表示a ,b ,c 三个数中的最小值,设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为( )A .4B .5C .6D .7解析:选C.如图所示,在同一直角坐标系中分别作出y =x +2,y =2x ,y =10-x 的图象.根据f (x )的定义知,f (x )=min{2x ,x +2,10-x }(x ≥0)的图象(如图实线部分).∴f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤2,x +2,2<x <4,10-x ,x ≥4.令x +2=10-x ,得x =4. 当x =4时,f (x )取最大值f (4)=6.6.(2018·广东深圳质检)已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0,若f (2-a 2)<f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)解析:选C.作出f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0,的图象,如图,由f (x )的图象可知f (x )在(-∞,+∞)上是单调增函数,由f (2-a 2)>f (a )得2-a 2>a ,即a 2+a -2<0,解得-2<a <1.7.(2018·曲师附中月考)已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c <b <aB .b <a <cC .b <c <aD .a <b <c解析:选B.∵函数图象关于x =1对称,∴a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,又y =f (x )在(1,+∞)上单调递增,∴f (2)<f ⎝⎛⎭⎫52<f (3),即b <a <c .8.(2018·厦门质检)函数f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________. 解析:∵y =⎝⎛⎭⎫13x 和y =-log 2(x +2)都是[-1,1]上的减函数,∴y =⎝⎛⎭⎫13x-log 2(x +2)是区间[-1,1]上的减函数,∴最大值为f (-1)=3.答案:39.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2·f (x -1),则函数g (x )的递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1).答案:[0,1)10.设函数f (x )=⎩⎪⎨⎪⎧-x +a ,x <1,2x ,x ≥1的最小值为2,则实数a 的取值范围是________.解析:当x ≥1时,f (x )≥2,当x <1时,f (x )>a -1, 由题意知,a -1≥2,∴a ≥3. 答案:[3,+∞)B 级 能力升级练(25分钟,30分)1.(2018·山师附中质检)若函数y =|2x -1|,在(-∞,m ]上单调递减,则m 的取值范围是( )A .(-∞,0]B .⎝⎛⎦⎤-∞,12C .(0,+∞)D .(-∞,0)解析:选A.画出y =|2x -1|图象如图,易知y =|2x -1|的递减区间是(-∞,0],依题意有m ≤0,故选A.2.(2018·株洲二模)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C.由已知得当-2≤x ≤1时,f (x )=x -2; 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6.3.(2018·长春二模)f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)解析:选B.因为2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f (x (x -8))≤f (9),因为f (x )是定义在(0,+∞)上的增函数, 所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.4.(2018·潍坊二模)已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是( )A .(-∞,-2)B .(-∞,0)C .(0,2)D .(-2,0)解析:选A.作出函数f (x )的图象如图所示,易知函数f (x )在R 上为单调递减函数,所以不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立等价于x +a <2a -x ,即x <a2在[a ,a +1]上恒成立,所以只需a +1<a2,即a <-2.故选A.5.(2018·威海模拟)如果对定义在R 上的函数f (x ),对任意两个不相等的实数x 1,x 2,都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),则称函数f (x )为“H 函数”.给出下列函数:①y =e x+x ;②y =x 2;③y =3x -sin x ;④f (x )=⎩⎪⎨⎪⎧ln |x |,x ≠0,0,x =0.以上函数是“H 函数”的所有序号为________. 解析:因为对任意两个不相等的实数x 1,x 2, 都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1)恒成立, 所以不等式等价为(x 1-x 2)[f (x 1)-f (x 2)]>0恒成立, 即函数f (x )是定义在R 上的增函数.①函数y =e x +x 在定义域上为增函数,满足条件. ②函数y =x 2在定义域上不单调,不满足条件.③y =3x -sin x ,y ′=3-cos x >0,函数单调递增,满足条件.④f (x )=⎩⎪⎨⎪⎧ln |x |,x ≠0,0,x =0,当x >0时,函数单调递增,当x <0时,函数单调递减,不满足条件.综上,满足“H 函数”的函数为①③.答案:①③6.已知函数f (x )=⎩⎪⎨⎪⎧e -x-2,(x ≤0)2ax -1,(x >0)(a 是常数且a >0).对于下列命题:①函数f (x )的最小值是-1; ②函数f (x )在R 上是单调函数;③若f (x )>0在⎣⎡⎭⎫12,+∞上恒成立,则a 的取值范围是a >1; ④对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝⎛⎭⎫x 1+x 22<f (x 1)+f (x 2)2.其中正确命题的序号是________.解析:根据题意可画出草图,由图象可知,①显然正确;函数f (x )在R 上不是单调函数,故②错误; 若f (x )>0在⎣⎡⎭⎫12,+∞上恒成立,则2a ×12-1>0,a >1,故③正确;由图象可知在(-∞,0)上对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2成立,故④正确. 答案:①③④第三节 函数的奇偶性与周期性教材细梳理1.函数的奇偶性(1)实质是函数在关于原点对称的两个自变量处函数值的关系,具体为:间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.利用这些性质可以简化或判断一些函数图象的画法.(2)掌握常见函数的奇偶性.如一次函数、二次函数、指数函数、对称函数、正弦函数、余弦函数等.[易错易混] f (0)=0既不是f (x )为奇函数的充分条件,也不是必要条件. 2.函数的周期性(1)周期函数:对于定义域中任意的x 和一个非零常数T ,f (x +T )=f (x )恒成立⇔f (x )是以T 为周期的周期函数.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f (x )的最小正周期(若不特别说明,T 一般都是最小正周期).3.函数图象的对称性(1)函数y =f (x )满足f (x )=2b -f (2a -x )⇔y =f (x )的图象关于点(a ,b )成中心对称. (2)函数y =f (x )满足f (x )=f (2a -x )⇔y =f (x )的图象关于直线x =a 成轴对称.知识微思考1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)偶函数图象不一定过原点,奇函数的图象一定过原点.( )(2)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.( )(3)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.( ) (4)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.( ) (5)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.( ) (6)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期.( ) 答案:(1)× (2)√ (3)√ (4)√ (5)√ (6)√2.函数f (x )满足f (a +x )=f (b -x )与函数f (x )满足f (a +x )=f (b +x )(a ≠b )含义相同吗?为什么?提示:f (a +x )=f (b -x )⇔f (a +b -x )=f (x )表明f (x )的图象关于x =a +b 2对称,而f (a +x )=f (b +x )⇔f (a -b +x )=f (x ).表明f (x )具有周期性,它的一个周期为a -b .四基精演练1.(必修1·习题1.3A 组改编)设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是________.解析:如图所示,由f (x )为奇函数知:f (x )>0的x 的取值范围为(-1,0)∪(1,+∞). 答案:(-1,0)∪(1,+∞)2.(必修1·习题1.3A 组改编)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=________. 解析:依题意,得f ⎝⎛⎭⎫-52=-f ⎝⎛⎭⎫52=-f ⎝⎛⎭⎫52-2=-f ⎝⎛⎭⎫12=-2×12×⎝⎛⎭⎫1-12=-12. 答案:-123.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________. 解析:函数的周期是2,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫32-2= f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1. 答案:14.(2017·高考全国卷Ⅰ)函数f (x )在(-∞,+∞)单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3]解析:选D.已知函数f (x )在(-∞,+∞)上为单调递减函数,且为奇函数,则f (-1)=-f (1)=1,所以原不等式可化为f (1)≤f (x -2)≤f (-1),则-1≤x -2≤1,即1≤x ≤3,故选D.5.(实践题)(必修1·习题1.3B 组T 3改编)已知函数f (x )是奇函数,在(0,+∞)上是减函数,且在区间[a ,b ](a <b <0)上的值域为[-3,4],则f (x )在区间[-b ,-a ]上( )A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-3解析:选B.根据题意作出y =f (x )的简图,由图知,选B.考点一 函数的奇偶性及应用[简单型]——发展逻辑推理判断函数奇偶性的方法1.定义法:首先确定函数的定义域,若定义域关于原点对称,则确定f (x )与f (-x )的关系,进而得出函数的奇偶性;否则该函数既不是奇函数也不是偶函数.2.图象法:观察f (x )的图象,若关于原点对称,则f (x )为奇函数,若关于y 轴对称,则f (x )为偶函数.1.下列函数中,既不是奇函数,也不是偶函数的是( ) A .y =1+x 2 B .y =x +1xC .y =2x +12xD .y =x +e x解析:选D.根据函数奇偶性的定义,易知函数y =1+x 2,y =2x +12x 为偶函数,y =x+1x为奇函数,所以排除选项A ,B ,C.故选D. 2.(2018·河北衡水中学二调)已知函数y =f (x )+x 是偶函数,且f (2)=1,则f (-2)=( ) A .-1 B .1 C .-5D .5解析:选D.设F (x )=f (x )+x ,由已知函数y =f (x )+x 是偶函数,得F (x )=F (-x ),即f (x )+x =f (-x )-x ,∴f (-x )=f (x )+2x ,∴f (-2)=f (2)+2×2=5.3.(2018·山东聊城二模)与函数y =x ⎝⎛⎭⎫12-12x +1的奇偶性相同的函数为( )A .y =lg(x +x 2+1)B .y =lg 1-x1+xC .y =⎩⎪⎨⎪⎧x (1-x ),x >0,-x (1+x ),x <0D .y =cos x解析:选D.设f (x )=x ⎝ ⎛⎭⎪⎫12-12x +1=x 2·2x-12x +1,则f (-x )=-x 2·2-x-12-x +1=-x 2·1-2x1+2x =x 2·2x-12x +1=f (x ),则y =x ⎝ ⎛⎭⎪⎫12-12x +1是偶函数,易知选项A ,B ,C 中的函数都是奇函数,而y =cos x是偶函数,故选D.考点二 函数的周期性及应用[探究型]——发展数学运算[例1] (1)设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +4)=f (x ).当x ∈[0,2]时,f (x )=2x -x 2,则f (2 019)=________.解析:因为f(x+4)=f(x),所以周期T=4.又f(1)=1,所以f(2 019)=f(-1+4×505)=f(-1)=-f(1)=-1. 答案:-1(2)已知函数f(x)是定义在R上的偶函数,若对于x≥0,都有f(x+2)=-1f(x),且当x∈[0,2)时,f(x)=log2(x+1),则求f(-2 017)+f(2 019)的值为________.解析:当x≥0时,f(x+2)=-1f(x),∴f(x+4)=f(x),即4是f(x)(x≥0)的一个周期.∴f(-2 017)=f(2 017)=f(1)=log22=1,f(2 019)=f(3)=-1f(1)=-1,∴f(-2 017)+f(2 019)=0.答案:0[母题变式]1.若本例(1)中的条件不变,则f(x)(x∈[2,4])的解析式是________.解析:当x∈[-2,0]时,-x∈[0,2],由已知得f(-x)=2(-x)-(-x)2=-2x-x2,又f(x)是奇函数,所以f(-x)=-f(x)=-2x-x2.所以f(x)=x2+2x.又当x∈[2,4]时,x-4∈[-2,0],所以f(x-4)=(x-4)2+2(x-4).又f(x)是周期为4的周期函数,所以f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8.故x∈[2,4]时,f(x)=x2-6x+8.答案:f(x)=x2-6x+82.若将本例(2)中“f(x+2)=-1f(x)”变为“f(x+2)=-f(x)”,则f(-2 017)+f(2 019)=________.解析:由f(x+2)=-f(x)可知T=4,∴f(-2 017)=1,f(2 019)=-1,∴f (-2 017)+f (2 019)=0. 答案:01.利用周期f (x +T )=f (x )将不在解析式范围之内的x 通过周期变换转化到解析式范围之内,以方便代入解析式求值.2.判断函数周期性的几个常用结论.(1)f (x +a )=-f (x ),则f (x )为周期函数,周期T =2|a |.(2)f (x +a )=1f (x )(a ≠0),则函数f (x )必为周期函数,2|a |是它的一个周期;(3)f (x +a )=-1f (x ),则函数f (x )必为周期函数,2|a |是它的一个周期.考点三 函数性质的综合应用[高频型]——发展数学运算、逻辑推理[例2] 已知函数y =f (x )是R 上的偶函数,当x 1,x 2∈(0,+∞)时,都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 1m,b =(ln m )2,c =ln m ,其中m >e ,则( )A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )解析:根据已知条件知f (x )在(0,+∞)上是减函数,且f (a )=f (|a |),f (b )=f (|b |),f (c )=f (|c |),|a |=ln m >1,b =(ln m )2>|a |,0<c =12ln m <|a |,∴f (c )>f (a )>f (b ).答案:C[例3] (2016·高考山东卷)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12.则f (6)=( ) A .-2 B .-1 C .0D .2解析:当x >12时,由f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12可得f (x )=f (x +1),所以f (6)=f (1)=-f (-1)= -[(-1)3-1]=2,故选D. 答案:D。

高考数学压轴题汇总及答案

高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案一、2019年高考数学上海卷:(本题满分18分)已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.(1)若120,3a d π==,求集合S ;(2)若12a π=,求d 使得集合S 恰好有两个元素;(3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的值.二、2019年高考数学浙江卷:(本小题满分15分)已知实数0a ≠,设函数()=ln 0.f x a x x +>(Ⅰ)当34a =-时,求函数()f x 的单调区间;(Ⅱ)对任意21[,)e x ∈+∞均有()f x ≤求a 的取值范围.注: 2.71828e =L 为自然对数的底数.设2*012(1),4,nnn x a a x a x a x n n +=++++∈N .已知23242a a a =.(1)求n 的值;(2)设(1n a =+*,a b ∈N ,求223a b -的值.四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。

(1)设{}n a 是首项为1,公比为12的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由;(2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ;(3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在2132201200,,,b b b b b b L ﹣﹣﹣中至少有100个为正数,求d 的取值范围.已知函数l (n )f x x -=.(Ⅰ)若()f x 在1x x =,212()x x x ≠处导数相等,证明:12()()88ln2f x f x +>-;(Ⅱ)若34ln2a <-,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.六、2018年高考数学江苏卷:(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项1b ,公比为q 的等比数列.(Ⅰ)设10a =,11b =,2q =若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(Ⅱ)若110a b =>,m ∈*N ,q ∈,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立,并求d 的取值范围(用1b ,m ,q 表示).七、2017年高考数学上海卷:(本小题满分18分)设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤.(1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 是周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,g()x 是定义在R 上的、恒大于零的周期函数,M 是g()x 的最大值.函数()()()h x f x g x =.证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.八、2017年高考数学浙江卷:(本题满分15分)已知数列{}n x 满足:1=1x ,()()*11ln 1N n n n x x x n ++=++∈.证明:当*N n ∈时,(I )10n n x x +<<;(I I )1122n n n n x x x x ++-≤;(III )1-21122n n n x -≤.高考压轴题答案一、2019年上海卷:解:(1) 等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.∴当120,3a d π==,集合S ⎧⎪=⎨⎪⎪⎩⎭.(2)12a π= ,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=,②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=,综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合{}123,,S b b b =,符合题意.②当4T =时,4n n b b +=,()sin 4sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0,]d π∈,故42n n a d a k π+=+,2k d π=,又1,2k ∴=当1k =时满足条件,此时{,1,1}S =--.③当5T =时,5n n b b +=,()sin 5sin ,52n n n n a d a a d a k π+=+=+,或者52n n a d k a π+=-,因为(0,]d π∈,故1,2k =.当1k =时,sin,1,sin 1010S ππ⎧⎫=-⎨⎬⎩⎭满足题意.④当6T =时,6n n b b +=,()sin 6sin n n a d a +=,所以62n n a d a k π+=+或者62n n a d k a π+=-,(0,]d π∈,故1,2,3k =.当1k =时,22S =⎨⎬⎪⎪⎩⎭,满足题意.⑤当7T =时,()7,sin 7sin sin n n n n n b b a d a a +=+==,所以72n n a d a k π+=+,或者72n n a d k a π+=-,(0,]d π∈,故1,2,3k =当1k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,227d m n ππ==-,7,7m n m -=>,不符合条件.当2k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,247d m n ππ==-,m n -不是整数,不符合条件.当3k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=或者4π,267d m n ππ==-,或者467d m n ππ==-,此时,m n -均不是整数,不符合题意.综上,3,4,5,6T =.二、2019年浙江卷:解:(1)当34a =-时,()3ln 4f x x =-+,函数的定义域为()0,∞+,且:()3'4f x x -+=-+,因此函数()f x 的单调递增区间是12ω=,单调递减区间是()0,3.(2)由1(1)2f a ≤,得04a <≤,当204a <时,()f x ,等价于2ln 0x ≥,令1t a=,则t ≥,设()22ln g t t x =--,t ≥,则2()2ln g t t x=--,(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤则()2ln g x g x =-- ,记1()ln ,7p x x x =--≥,则1()p x x '==列表讨论:x17117⎛⎫ ⎪⎝⎭,1(1,)+∞()'p x ﹣0+()P x 17P ⎛⎫⎪⎝⎭单调递减极小值()1P 单调递增∴p(x)≥p(1)=0,∴g(t)≥g(2√2)=2p(x)≥0(ii )当211,7x e ⎡⎫∈⎪⎢⎣⎭时,()g t g ≥=令211()(1),,7q x x x x e ⎡⎤=++∈⎢⎥⎣⎦,则()10q x'=+>,故()q x 在211,7e ⎡⎤⎢⎥⎣⎦上单调递增,1()7q x q ⎛⎫∴≤ ⎪⎝⎭,由(i )得11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭,()0,()0q x g t g ∴<∴≥=-,由(i )(ii )知对任意21,,),()0x t g t e ⎡⎫∈+∞∈+∞≥⎪⎢⎣⎭,即对任意21,x e ⎡⎫∈+∞⎪⎢⎣⎭,均有()2f x a≤,综上所述,所求的a 的取值范围是4⎛ ⎝⎦.三、2019年江苏卷:解:(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥ ,,所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====,44(1)(2)(3)C 24nn n n n a ---==.因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n=+02233445555555C C C C C C =++++a =+因为*,ab ∈N ,所以024135555555C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-.四、2018年上海卷:解:(1)数列{}n b 与{}n a 接近.理由:{}n a 是首项为1,公比为12的等比数列,可得112n n a -=,11112n n nb a +=+=+,则011111111222n n n n b a ---=+-=-<,*n N ∈,可得数列{}n b 与{}n a 接近;(2){}n b 是一个与{}n a 接近的数列,可得11n n n a b a +-≤≤,数列{}n a 的前四项为:11a =,22a =,34a =,48a =,可得1[0,2]b ∈,2[1,3]b ∈,3[3,5]b ∈,4[7,9]b ∈,可能1b 与2b 相等,2b 与3b 相等,但1b 与3b 不相等,4b 与3b 不相等,集合1234{|,}i M x x b i ===,,,,M 中元素的个数3m =或4;(3){}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,可得11n a a n d =+-(),①若0d >,取n n b a =,可得110n n n n b b a a d ++-=-=>,则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意;②若0d =,取11n b a n=-,则11111n n b a a a n n -=--=<,*n N ∈,可得11101n n b b n n +-=->+,则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意;③若20d ﹣<<,可令21211n n b a --=-,221n n b a =+,则()2212211120n n n n b b a a d ---=+--=+>,则21b b -,32b b -,⋯,201200b b -中恰有100个正数,符合题意;④若2d - ,若存在数列{}n b 满足:{}n b 与{}n a 接近,即为11n n n a b a -+ ,11111n n n a b a +++-+ ,可得()111120n n n n b b a a d ++-+--=+ ,21b b -,32b b -,⋯,201200b b -中无正数,不符合题意.综上可得,d 的范围是(2,)-+∞.五、2018年浙江卷:解:(Ⅰ)函数()f x的导函数1()f x x'=-,由12()()f x f x ''=1211x x -,因为12x x ≠,所以12+=.=+.因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x +=-+-=.设()ln g x x =-,则1()4)4g x x'=-,所以()g x 在[256,)+∞上单调递增,故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-.(Ⅱ)令()e a k m -+=,211a n k ⎛+⎫=+ ⎪⎝⎭,则()–0f m km a a k k a -->+-≥,(0)f n kn a a n k n ⎫----<⎪⎭<,所以,存在0(,)x m n ∈)使00()f x kx a =+,所以,对于任意的a ∈R 及k ∈(0,+∞),直线y kx a =+与曲线()y f x =有公共点.由()f x kx a =+得k =.设ln ()x x a h x x --=,则22ln 1()12()x a g x a h x x x --+--+'==,其中()ln 2x g x x =-.由(Ⅰ)可知()(16)g x g ≥,又34ln2a -≤,故–11613420g x a g a ln a -+-+=-++()≤()-≤,所以()0h x '≤,即函数()h x 在(0,+∞)上单调递减,因此方程()0f x kx a --=至多1个实根.综上,当34ln2a -≤时,对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.六、2018江苏卷:解:(Ⅰ)由题意得||1n n a b -≤对任意1,2,3,4n =均成立故当10a =,121q b ==时可得|01|1|2|1|24|1|38|1d d d -⎧⎪-⎪⎨-⎪⎪-⎩≤≤≤≤即1335227532d d d ⎧⎪⎪⎪⎨⎪⎪⎪⎩≤≤≤≤≤≤所以7532d ≤≤(Ⅱ)因为110a b =>,1||n n a b b -≤对2,3,1n m =+…均能成立把n a ,n b 代入可得1111|(1)|(2,3,1n b n d b q b n m -+--=+ ≤…,)化简后可得11111112(22)(222)0(2,3,1)111n n n m b q b b b q n n n m n n n ----=-+=-+=+--- ≤…,因为q ∈,所以122n m -≤,22(2,3,1)n n m -=+≤…,而110(2,3,,11n b q n m n ->=+- …)所以存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立当1m =时,112)b d ≤当2m ≥时,设111n n b q c n -=- ,则111111(1)(2,3,)1(1)n n n n n b q b q q n q c c b q n m n n n n --+---=-==-- …设()(1)f n q n q =--,因为10q ->,所以()f n单调递增,又因为q ∈所以11()(1)(1)(1)2111m m f m q m q m m m m ⎛⎫ ⎪⎫=---=-- ⎪⎪-⎭ ⎪-⎝⎭ ≤设111,0,2x x x m m ⎛⎤==∈ ⎥⎝⎦,且设1()21x g x x =+-,那么'21()2ln 2(1)x g x x =--因为2ln 2ln 2x ,214(1)x -≥所以'21(x)2ln 20(1)x g x =-<- 在10,2x ⎛⎤∈ ⎥⎝⎦上恒成立,即()f x 单调递增。

2019-2020年高考数学压轴题集锦——导数及其应用

2019-2020年高考数学压轴题集锦——导数及其应用

23.已知函数()3223log 32a f x x x x =-+(0a >且1a ≠). (Ⅰ)若()f x 为定义域上的增函数,求实数a 的取值范围; (Ⅱ)令a e =,设函数()()324ln 63g x f x x x x =--+,且()()120g x g x +=,求证:122x x +≥24.已知函数()2x f x e x ax =--. (1)R x ∈时,证明:1->x e x;(2)当2a =时,直线1y kx =+和曲线()y f x =切于点()(),1A m n m <,求实数k 的值; (3)当10<<x 时,不等式()0>x f 恒成立,求实数a 的取值范围.25.已知函数()ln af x a x x x=-+-(a 为常数)有两个不同的极值点. (1)求实数a 的取值范围;(2)记()f x 的两个不同的极值点分别为12,x x ,若不等式()()()21212f x f x x x l +>+恒成立,求实数l 的取值范围.26.已知函数()1ln f x ax x =--(a ∈R ).(1)讨论函数()f x 极值点的个数,并说明理由;(2)若1x ∀>,()2xf x ax ax a <-+恒成立,求a 的最大整数值.27.已知函数()()()()221,2ln 1f x x x g x a x a R =-+=-∈. (1)求函数()()()h x f x g x =-的极值;(2)当0a >时,若存在实数,k m 使得不等式()()g x kx m f x ≤+≤恒成立,求实数a 的取值范围.28.设()y f x =是二次函数,方程()0f x =有两个相等的实根,且()22f x x '=+. (1)求()y f x =的表达式;(2)若直线()01x t t =-<<,把()y f x =的图象与两坐标轴所围成图形的面积二等分,求t 的值.29.已知函数()1ln 2f x x x =+(a ∈R ).(1)若曲线()y f x =在点()()1,1f 处的切线经过点()2,3,求a 的值; (2)若()f x 在区间1,14⎛⎫⎪⎝⎭上存在极值点,判断该极值点是极大值点还是极小值点,并求a 的取值范围;(3)若当0x >时,()0f x >恒成立,求a 的取值范围.30.已知函数()ln f x x a =+,()(),bg x x a b R x=-?. (1)若曲线()y f x =与曲线()y g x =在点()()1,1f 处的切线方程相同,求实数,a b 的值; (2)若()()x g x f ≥恒成立,求证:当2≠a 时,1≠b .31.()2xf x e ax =--,其中e 是自然对数的底数,a R ∈.(1)求函数()f x 的单调递增区间; (2)若k 为整数,1a =,且当0x >时,()11k xf x x -'<+恒成立,其中()f x '为()f x 的导函数,求k 的最大值.32.已知f (x )=2x ln x ,g (x )=﹣x 2+ax ﹣3. (1)求函数f (x )的单调区间;(2)若存在x ∈(0,+∞),使f (x )≤g (x )成立,求实数a 的取值范围.33.已知数列{x n }按如下方式构成:x n ∈(0,1)(n ∈N *),函数f (x )=ln (x x-+11)在点(x n ,f (x n ))处的切线与x 轴交点的横坐标为x n +1 (Ⅰ)证明:当x ∈(0,1)时,f (x )>2x (Ⅱ)证明:x n +1<x n 3(Ⅲ)若x 1∈(0,a ),a ∈(0,1),求证:对任意的正整数m ,都有log n x a +log 1+n x a +…+log m n x +a <21•(31)n ﹣2(n ∈N *)34.已知函数f (x )= ⎪⎩⎪⎨⎧∈--∈-]3,1[),1(55]1,0[,2x x f x x x(Ⅰ)求f (25)及x ∈[2,3]时函数f (x )的解析式 (Ⅱ)若f (x )≤xk对任意x ∈(0,3]恒成立,求实数k 的最小值.35.已知函数1()(2)a f x a x x a -⎛⎫=-- ⎪⎝⎭,其中0a ≠. (Ⅰ)若1a =,求()f x 在区间[0,3]上的最大值和最小值.(Ⅱ)解关于x 的不等式()0f x >.36.若实数x ,y ,m 满足x m y m-<-,则称x 比y 靠近m .(Ⅰ)若1x +比x -靠近1-,求实数x 有取值范围.(Ⅱ)(i )对0x >,比较ln(1)x +和x 哪一个更靠近0,并说明理由. (ii )已知函数{}n a 的通项公式为112n n a -=+,证明:1232e n a a a a <L .37.已知函数2()e (e 1)1x f x ax a x =-+-+-(e 是自然对数的底数,a 为常数). (1)若函数1()()()2g x f x x f x '=-⋅,在区间[1,+∞)上单调递减,求a 的取值范围.(2)当(e 2,1)a ∈-时,判断函数()f x 在(0,1)上是否有零点,并说明理由.38.已知函数()ln f x x x =. (1)求函数()f x 的极值点.(2)设函数()()(1)g x f x a x =--,其中a ∈R ,求函数()g x 在[1,e]上的最小值.39.已知函数1()ln 2f x x x=-,(0,)x ∈+∞. (1)求函数()f x 的图象在点(2,(2))f 处的切线方程. (2)求函数()f x 的单调递增区间.40.设m ∈R ,函数f (x )=e x ﹣m (x +1)+41m 2(其中e 为自然对数的底数)(Ⅰ)若m =2,求函数f (x )的单调递增区间;(Ⅱ)已知实数x 1,x 2满足x 1+x 2=1,对任意的m <0,不等式f (x 1)+f (0)>f (x 2)+f (1)恒成立,求x 1的取值范围;(Ⅲ)若函数f (x )有一个极小值点为x 0,求证f (x 0)>﹣3,(参考数据ln6≈)41.已知函数f (x )=x 2﹣x 3,g (x )=e x﹣1(e 为自然对数的底数). (1)求证:当x ≥0时,g (x )≥x +21x 2; (2)记使得kf (x )≤g (x )在区间[0,1]恒成立的最大实数k 为n 0,求证:n 0∈[4,6].42.设函数3211()(3)332f x x ax a x =++++,其中a R ∈,函数()f x 有两个极值点12,x x ,且101x ≤<.(1)求实数a 的取值范围;(2)设函数'1()()()x f x a x x ϕ=--,当12x x x <<时,求证:|()|9x ϕ<.43.已知14)(2+-=x tx x f 的两个极值点为α,β,记A (α,f (α)),B (β,f (β))(Ⅰ)若函数f (x )的零点为γ,证明:α+β=2γ. (Ⅱ) 设点 C (m t -4,0),D (m t+4,0),是否存在实数t ,对任意m >0,四边形ACBD 均为平行四边形.若存在,求出实数t ;若不存在,请说明理由.44.已知函数ln (),xf x x=() (0)=>g x kx k ,函数{}()max (),(),F x f x g x =其中{}max ,a b ,,,.a ab b a b ≥⎧=⎨<⎩ (Ⅰ)求()f x 的极值;(Ⅱ)求()F x 在[]1, e 上的最大值(e 为自然对数底数).45.已知函数2()2ln ,f x x a x a R =+∈.(Ⅰ)若()f x 在1x =处取得极值,求实数a 的值;(Ⅱ)若不等式()0f x >对任意[1,)x ∈+∞恒成立,求实数a 的取值范围.参考答案23.(Ⅰ)()2123ln f x x x x a'=-+, 由()f x 为增函数可得,()0f x '≥恒成立,则由21230ln x x x a -+≥32123ln x x a⇒-≥-⇒,设()3223m x x x =-,则 ()266m x x x '=-,若由()()610m x x x '=->和()()610m x x x '=-<可知 ()m x 在()0,1上单调递减,在()1,+∞上单调递增,所以()()min 11m x m ==-,所以11ln a-≥-, 当1a >时,易知a e ≤,当01a <<时,则10ln a <,这与11ln a≤矛盾, 从而不能使()0f x '≥恒成立,所以1a e <≤. (Ⅱ)()322332g x x x =-+32ln 4ln 63x x x x --+233ln 62x x x =--+,因为()()120g x g x +=,所以211133ln 62x x x --++22223(3ln 6)02x x x --+=,所以 221212123()3ln()6()02x x x x x x -+-++=, 212121[()2]2x x x x -+--1212ln()2+=0x x x x +(), 212121()+2x x x x -+1212ln()2()0x x x x -++=, 所以212121()+2()2x x x x -++1212ln()x x x x =-, 令12x x t =,()ln g t t t =-,()111tg t tt-'=-=,()g t 在()0,1上增,在()1,+∞上减, ()()11g t g ≤=-,所以212121()2()12x x x x -+++≤-,整理得21212()4()20x x x x +-+-≥,解得122x x +≥122x x +≤(舍),所以122x x +≥24.(1)记()1x F x e x =--, ∵()'1x F x e =-, 令()'0F x =得0x =, 当(),0x ??,()'0F x <,()F x 递减;当()0,x ??,()'0F x >,()F x 递增,∴()()min 00F x F ==, ()10x F x e x =--?,得1x e x ?.(2)切点为(),A m n ,()1m <,则21222m m n km n e m m k e m ì=+ïï=--íïï=--î,∴()2110m m e m --+=, ∵1m <,∴10m e m --=由(1)得0m =. 所以1k =-.(3)由题意可得20x e x ax --?恒成立,所以2x e x a x-£,下求()2x e x G x x -=的最小值,()()()()()22221111111'xxx x e x x e x x e x G x x xx 轾----------臌===,由(1)1x e x ?知10x e x --?且1x £. 所以()'0G x <,()G x 递减, ∵1x £,∴()()11G x G e ?-.所以1a e ?.25.(1)()()22'0x ax af x x x -+=>.由函数()ln af x a x x x=-+-(a 为常数)有两个不同的极值点. 即方程20x ax a -+=有两个不相等的正实根.∴121220040x x a x x a a a ì+=>ïï=>íïïD=->î,∴4a >.(2)由(1)知12x x a +=,12x x a =,4a >, ∴()()()2121212121212ln x x f x f x a x x x x a x x x x l ++=-++->+, 所以ln aal <-恒成立. 令()ln aF a a=-,4a >. ∵()2ln 1'0a F a a-=>,()F a 递增, ∴()()ln 242F a F >=-, ln 22l ?.26.(1)()f x 的定义域为()0,+∞,且()11ax f x a x x-'=-=. 当0a ≤时,()0f x '≤在()0,+∞上恒成立,函数()f x 在()0,+∞上单调递减. ∴()f x 在()0,+∞上没有极值点; 当0a >时,令()0f x '=得()10,x a=∈+∞; 列表所以当1x a=时,()f x 取得极小值. 综上,当0a ≤时,()f x 在()0,+∞上没有极值点; 当0a >时,()f x 在()0,+∞上有一个极值点.(2)对1x ∀>,()2xf x ax ax a <-+恒成立等价于ln 1x x xa x +<-对1x ∀>恒成立,设函数()ln 1x x x g x x +=-(1x >),则()()2ln 21x x g x x --'=-(1x >),令函数()ln 2x x x =--ϕ,则()11x x'=-ϕ(1x >), 当1x >时,()110x x'=->ϕ,所以()x ϕ在()1,+∞上是增函数, 又()31ln30=-<ϕ,()42ln 40=->ϕ,所以存在()03,4x ∈,使得()00x =ϕ,即()00g x '=,且当()01,x x ∈时,()0x <ϕ,即()0g x <,故()g x 在()01,x 在上单调递减; 当()0,x x ∈+∞时,()0x >ϕ,即()0g x >,故()g x 在()0,x +∞上单调递增; 所以当()1,x ∈+∞时,()g x 有最小值()00000ln 1x x x g x x +=-,由()00x =ϕ得00ln 20x x --=,即00ln 2x x =-, 所以()()00000021x x x g x x x -+==-,所以0a x <,又()03,4x ∈,所以实数a 的最大整数值为3.27.(I )由题意得2()(1)2ln(1)h x x a x =---,1x >,∴22[(1)]'()1x a h x x --=-,①当0a ≤时,则'()0h x >,此时()h x 无极值;②当0a >时,令'()0h x <,则11x a <<+;令'()0h x >,则1x a >+; ∴()h x 在(1,1]a +上递减,在(1,)a ++∞上递增; ∴()h x 有极小值(1)(1ln )h a a a =-,无极大值;(II )当0a >时,由(1)知,()h x 在(1,1]a +上递减,在(1,)a ++∞上递增,且有极小值(1)(1ln )h a a a =-.①当a e >时,(1)(1ln )0h a a a =-<,∴(1)(1f a g a <+, 此时,不存在实数k ,m ,使得不等式()()g x kx m f x ≤+≤恒成立; ②当0a e <≤时,(1)(1ln )0h a a a =-≥,2()21f x x x =-+在1x a =+(2)y ax a a =-,令()()(2)]u x f x ax a a =--,1x >,则2()[(1)]0u x x a =-+≥,∴2(2)()ax a a f x -≤,令()2(2)()v x ax a a g x =-+-=2(2)2ln(1)ax a a a x -+--,1x >, 则2[(1)]'()a x a v x -+=,令'()0v x <,则11x a <<+;令'()0v x >,则1x a >+;∴()(1)v x v a ≥+=(1ln )0a a -≥,∴()2(2)g x ax a a ≤-+, ∴()2(2)()g x ax a a f x ≤-+≤,当2k a =,2m a a =--时,不等式()()g x kx m f x ≤+≤恒成立, ∴0a e <≤符合题意. 由①,②得实数a 的取值范围为(0,]e . 28.(I )设2()(0)f x ax bx c a =++≠,则()2f x ax b '=+. 由已知()22f x x '=+,得1a =,2b =.2()2f x x x c ∴=++.又方程220x x c ++=有两个相等的实数根,440c ∴∆=-=,即1c =.故2()21f x x x =++;(II )依题意,得221(21)(21)ttx x dx x x dx ---++=++⎰⎰,3232011133ttx x x x x x ---⎛⎫⎛⎫∴++=++ ⎪ ⎪⎝⎭⎝⎭,整理,得3226610t t t -+-=,即32(1)10t -+=,312t ∴=29.(1)对()f x 求导,得()1122f x xx'=+-. 因此()1122af '=+.又()11f a =+, 所以,曲线()y f x =在点()()1,1f 处的切线方程为()()11122a y a x ⎛⎫-+=+- ⎪⎝⎭. 将2x =,3y =代入,得()13122aa -+=+.解得1a =. (2)()f x 的定义域为()0,+∞.()112f x x'=+-212x x +=.设()f x 的一个极值点为m,则210m +=,即a =- 所以()f x '==.当()0,x m ∈时,()0f x '<;当(),x m ∈+∞时,()0f x '>. 因此()f x 在()0,m 上为减函数,在(),m +∞上为增函数. 所以m 是()f x 的唯一的极值点,且为极小值点. 由题设可知1,14m ⎛⎫∈ ⎪⎝⎭.因为函数a =-1,14⎛⎫⎪⎝⎭上为减函数,a -<<11a -<<. 所以a 的取值范围是()1,1-.(3)当0x >时,()0f x >恒成立,则1ln 02x x +>恒成立,即1ln x x a ->0x ∀>恒成立.设()1ln x x g x -=()11ln x xg x --'=.设()11ln 2h x x x =--(0x >),显然()h x 在()0,+∞上为减函数. 又()10h =,则当01x <<时,()()10h x h >=,从而()0g x '>; 当1x >时,()()10h x h <=,从而()0g x '<. 所以()g x 在()0,1上是增函数,在()1,+∞上是减函数.所以()()max 11g x g ==-,所以1a >-,即a 的取值范围为()1,-+∞. 30.(1)由()1'f x x =,()2'1bg x x=--. 得()()()()'1'111f g f g ì=ïíï=î,解得3a =-,2b =-.(2)证明:设()()()ln bh x f x g x x a x x=-=+-+, 则()()2221'10b x x bh x x x x x ++=++=>,①当0b ³时,()'0h x >,函数()h x 在()0,+?上单调递增,不满足()()f x g x ³恒成立.②当0b <时,令20x x b ++=,由140b D=->,得0x >,或0x <(舍去),设0x ()y h x =在()00,x 上单调递减,在()0,x +?上单调递增,故()()0min 0h x h x =?,即000ln 0b x a x x +-+?,得000ln b a x x x ?-.又由2000x x b ++=,得200b x x =--, 所以()2200000000ln 1ln ba b x x x x x x x x -?----=---+,令()21ln t x x x x =---+,()()()2211121'21x x x x t x x x x x+---=--==. 当()0,1x Î时,()'0t x <,函数()t x 单调慈善 当()1,x ??时,()'0t x >,函数()t x 单调递增;所以()()min 11t x t ==-,1a b -?即1b a -?, 故当2a ?时,得1b ?. 31.(1)()xf x e a '=-,x R ∈若0a ≤,则()0f x '>恒成立,所以()f x 在区间(),-∞+∞上单调递增 若0a >,当()ln ,x a ∈+∞时,()0f x '>,()f x 在()ln ,a +∞上单调递增 (2)由于1a =,所以()11k xf x x -'<⇔+()()11x k x e x --<+,当0x >时,10x e ->故()()11x k x e x --<+11x x k x e +⇔<+-,令()11x x g x x e +=+-(0x >) 则()()2111x xxe g x e-+'=+=-()()221x x xe e x e---函数()2x f x e x =--在()0,+∞上单调递增,而()10h <,()20h >, 所以()h x 在()0,+∞上存在唯一的零点. 故()g x '在()0,+∞上存在唯一的零点. 设此零点为0x ,则()01,2x ∈.当()00,x x ∈时,()0g x '<,当()0,x x ∈+∞时,()0g x '>; 所以()g x 在()0,+∞上的最小值为()0g x ,由于()00g x '=,可得002x e x =+所以()()0012,3g x x =+∈,所以整数k 的最大值为2. 32.【考点】利用导数研究函数的单调性.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可; (2)问题等价于a≥(2ln x+x+)min ,记h (x )=2ln x+x+,x∈(0,+∞),根据函数的单调性判断即可.【解答】解:(1)f (x )的定义域为(0,+∞),f′(x )=2(ln x+1), 令f′(x )=0,得x=,当x∈时,f′(x )<0,当x∈时,f′(x )>0, 所以f (x )在上单调递减;在上单调递增.(2)存在x∈(0,+∞),使f (x )≤g(x )成立, 即2xln x≤﹣x 2+ax ﹣3在x∈(0,+∞)能成立, 等价于a≥2ln x+x+在x∈(0,+∞)能成立, 等价于a≥(2ln x+x+)min .记h (x )=2ln x+x+,x∈(0,+∞), 则h′(x )=+1﹣==.当x∈(0,1)时,h′(x)<0,当x∈(1,+∞)时,h′(x)>0,所以当x=1时,h(x)取最小值为4,故a≥4.33.【考点】利用导数研究曲线上某点切线方程;数列与函数的综合.【分析】(Ⅰ)求出函数的导数,根据函数的单调性求出f(x)>2x即可;(Ⅱ)求出函数f(x)的导数,求出曲线方程,得到x n+1=ln(﹣1)+x n,从而证出结论即可;(Ⅲ)得到b k=<a=b k﹣1<b k﹣2<…<b0,问题转化为b0<,根据(Ⅱ)证出即可.【解答】证明:(Ⅰ)设g(x)=ln(1+x)﹣ln(1﹣x)﹣2x,则g′(x)=,故x∈(0,1)时,g′(x)>0,函数g(x)在(0,1)递增,∴g(x)>g(0)=0,即f(x)>2x;(Ⅱ)由f′(x)=+=,故曲线在点(x n,f(x n))处的切线方程是:y=(x﹣x n)+f(x n),令y=0,则x n+1=x n+f(x n)(﹣1),则x n+1=ln(﹣1)+x n,由(Ⅰ)及﹣1<0得:x n+1<(2x n)•(﹣1)+x n=x n3;(Ⅲ)令=b k,(k=0,1,2,…,m),∵x n+k<,且a∈(0,1),x n∈(0,1),∴log a x n+k>log a,从而b k=<a=b k﹣1<b k﹣2<…<b0,∴log a+log a+…+log a=b0+b1+…+b m<b0(1+++)=b0(1﹣)<b0,要证log a+log a+…+log a<•()n﹣2(n∈N*),只需b0<,即证b0<⇔a<⇔x n<,由(Ⅱ)以及x1∈(0,a)得:x n<<<…<<,故原结论成立.34.【考点】函数恒成立问题;分段函数的应用.【分析】(Ⅰ)由函数f(x)=可求f()的值,由x∈[2,3]⇒x﹣2∈[0,1],可求得此时函数f(x)的解析式;(Ⅱ)依题意,分x∈(0,1]、x∈(1,2]、x∈(2,3]三类讨论,利用导数由f(x)≤对任意x∈(0,3]恒成立,即可求得实数k的最小值.【解答】解:(Ⅰ)f()=﹣f()=f()=×=.当x∈[2,3]时,x﹣2∈[0,1],所以f(x)= [(x﹣2)﹣(x﹣2)2]=(x﹣2)(3﹣x).(Ⅱ)①当x∈(0,1]时,f(x)=x﹣x2,则对任意x∈(0,1],x﹣x2≤恒成立⇒k≥(x2﹣x3)max,令h(x)=x2﹣x3,则h′(x)=2x﹣3x2,令h′(x)=0,可得x=,当x∈(0,)时,h′(x)>0,函数h(x)单调递增;当x∈(,1)时,h′(x)<0,函数h(x)单调递减,∴h(x)max=h()=;②当x∈(1,2]时,x ﹣1∈(0,1],所以f (x )=﹣ [(x ﹣1)﹣(x ﹣1)2]≤恒成立 ⇔k≥(x 3﹣3x 2+2x ),x∈(1,2].令t (x )=x 3﹣3x 2+2x ,x∈(1,2].则t′(x )=3x 2﹣6x+2=3(x ﹣1)2﹣1, 当x∈(1,1+)时,t (x )单调递减,当x∈(1+,2]时,t (x )单调递增,t (x )max =t (2)=0,∴k≥0(当且仅当x=2时取“=”);③当x∈(2,3]时,x ﹣2∈[0,1],令x ﹣2=t∈(0,1], 则k≥(t+2)(t ﹣t 2)=g (t ),在t∈(0,1]恒成立.g′(t )=﹣(3t 2+2t ﹣2)=0可得,存在t 0∈[,1],函数在t=t 0时取得最大值. 而t 0∈[,1]时,h (t )﹣g (t )=(t 2﹣t 3)+(t+2)(t 2﹣t )=t (1﹣t )(2t ﹣1)>0,所以,h (t )max >g (t )max , 当k≥时,k≥h(t )max >g (t )max 成立,综上所述,k≥0,即k min =0. 35.见解析(Ⅰ)1a =,2()(2)(1)1f x x x x =-=--,()22f x x '=-, ∴x(0,1) 1 (1,3) ()f x ' -+()f x↓ 极小 ↑∴min (1)1f f ==-, max max[(3),(0)]f f f =,而(3)3(0)f f =>, ∴max 3f =. (Ⅱ)0a >时, 1(2)0a x x a -⎛⎫--> ⎪⎝⎭,∵1120a a a a-+-=>, ∴12a a-<, 此时()0f x >解集为:[|2x x >或1a x a -⎤<⎥⎦, 0a <时,1(2)0a x x a -⎛⎫--< ⎪⎝⎭.①10a -<<,则12a a-<, ()0f x >解集为1|2a x x a -⎡⎤<<⎢⎥⎣⎦.②1a =-,无解.③1a <-,解集为1|2a x x a -⎡⎤<<⎢⎥⎣⎦. 综上:0a >,[|2x x >或1a x a -⎤<⎥⎦. 10a -<<,1|2a x x a -⎡⎤<<⎢⎥⎣⎦1a =-,∅.1a <-,12a x a -⎡⎤<<⎢⎥⎣⎦. 36.(1)|1(1)||(1)|x x --<---+ 22|2||1|(2)(1)x x x x <-⇔<-++, ∴12x <-.(2)①∵0x >,∴ln(1)0x >+, ∴|ln(1)0||0|ln(1)x x x x ---=-++, 记()ln(1)f x x x =-+, (0)0f =. 1()1011x f x x x-'=-=<++, ∴()f x 在(0,)∞+单减.∴()2(0)0f x f =,即ln(1)x x <+, ∴ln(1)x +比x 靠近0.②120n ->, 由①得:2323ln()ln ln ln n n a a a a a a =+++L L12111ln(12)ln(12)ln(12)22n n -----=+++<L L +++++111112(12)211212n ------=<=--,∴23e n a a a <L . 又∵12a =, ∴1232e n a a a a <L . 37.见解析.解:(1)由2()e (e 1)1x f x ax a x =-+-+-得()e 2(e 1)x f x ax a '=-+-+, ∴211()()()e (e 1)1[e 2e 1]22x x g x f x x f x ax a x x ax a '=-⋅=-+-+---+-+,即11()1e (e 1)122x g x x a x ⎛⎫=-+-+- ⎪⎝⎭,∴11()(1)e (e 1)22xg x x a '=-+-+,∴1()e 2xg x x ''=-,[1,)x ∈+∞;∴()0g x ''<,∴()g x '在[1,)+∞上单调递减, 又()g x 在[1,)+∞上单调递减; ∴1()(1)(e 1)02g x g a ''=-+≤≤,∴e 1a -≤,即实数a 的取值范围是(,e 1]-∞-.(2)假设函数()f x 在区间(0,1)上有零点,即存在(0,1)x ∈,使得2e (e 1)10x ax a x -+-+-=,即2e (1e)1x x a x x +--=-,记2e (1e)1()x x h x x x+--=-.①若()1h x <,则2e (1e)110x x x x +---<-,即22e (2e)10x x x x x -+--<-, 由于(0,1)x ∈,有20x x -<,即证2e (2e)10x x x -+-->在(0,1)x ∈上恒成立, 令2()e (2e)1x H x x x =-+--,(0,1)x ∈, 则()e 22e x H x x '=-+-,()e 2x H x ''=-, 当(0,ln2)x ∈时,()0H x ''<, 当(ln2,1)x ∈时,()0H x ''>, ∴当(0,ln2)x ∈时,()H x '单调递减, 当(ln2,1)x ∈时,()H x '单调递增.而(0)102e 0H '=-+->,(1)e 22e 0H '=-+-=,ln 2(ln 2)e 2ln 22e 4e 2ln 20H '=-+-=--<,∴在(0,ln2)上存在唯一的实数0x ,使得0()0H x '=, ∴在0(0,)x 上()H x 单调递增,在0(,1)x 上()H x 单调递减, 而(0)0H =,(1)0H =,∴()0H x >在(0,1)上恒成立,即2e (1e)1()1x x h x x x+--=<-恒成立, ②若()e 2h x >-,则2e (1e)1(e 2)0x x x x +---->-,即22e (e 2)10x x x x x ---->-, 由于(0,1)x ∈,有20x x -<,即证2e (e 2)10x x x ----<在(0,1)x ∈恒成立, 令2()e (e 2)1x H x x x =----,则()e 2(e 2)1x H x x '=---,()e 2(e 2)x H x ''=--, 当(0,ln2(e 2))x ∈-,()0H x ''<,()H x '单调递减; 当(ln2(e 2),1)x ∈-,()0H x ''>,()H x '单调递增, 而(0)0H '=,(1)3e 0H '=->,∴在(ln2(e 2),1)-上存在唯一的实数x ,使得0()0H x '=, ∴在0(0,)x 上()H x 单调递减,在0(,1)x 上()H x 单调递增, 又(0)0H =,(1)0H =,故()0H x <在(0,1)上成立,即2e (1e)1()e 2x x h x x x+--=>--成立, 综上所述,当(e 2,1)a ∈-时,函数2()e (e 1)1x f x ax a x =-+-+-在区间(0,1)上有零点. 38.见解析.解:(1)函数()f x 的定义域为(0,)+∞,()ln 1f x x '=+,∴令()ln 10f x x '=+>,得1e x >,令()0f x '<,得10ex <<, ∴函数()f x 在10,e ⎛⎫ ⎪⎝⎭单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭单调递增,∴1ex =是函数()f x 的极小值点,极大值点不存在. (2)由题意得()()(1)ln (1)g x f x a x x x a x =--=--, ∴()ln 1g x x a '=+-, 令()0g x '=得1e a x -=.①当1e 1a -<时,即1a <时,()g x 在[1,e]上单调递增, ∴()g x 在[1,e]上的最小值为(1)0g =;②当11e e a -≤≤,即12a ≤≤时,()g x 在1[1,e ]a -上单调递减,在1[e ,e]a -上单调递增, ∴()g x 在[1,e]上的最小值为11111(e )e lne e e a a a a a g a a a -----=-+=-; ③当1e e a ->,即2a >时,()g x 在区间[1,e]上单调递减, ∴()g x 在[1,e]上的最小值为(e)e (e 1)e e g a a a =--=-+, 综上所述,当1a <时,()g x 的最小值为0; 当12a ≤≤时,()g x 的最小值为1e a a --; 当2a >时,()g x 的最小值为e e a a -+. 39.见解析.解:(1)1()ln 2f x x x =-,得11()2f x x '=-,∴(2)ln21f =-,(2)0f '=,∴函数()f x 在(2,(2))f 处的切线方程为ln21y =-. (2)∵112()22xf x x x-'=-=,令()0f x '>,得2x <,令()0f x '<,得2x >, 又()f x 的定义域是(0,)+∞, ∴函数()f x 的单调增区间为(0,2). 40.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的递增区间即可; (Ⅱ)问题转化为2(x 1﹣1)m ﹣(﹣)+e ﹣1<0对任意m <0恒成立,令g(m)=2(x1﹣1)m﹣(﹣)+e﹣1,得到关于x1的不等式组,解出即可;(Ⅲ)求出f(x0)的解析式,记h(m)=m2﹣mlnm,m>0,根据函数的单调性求出h (m)的取值范围,从而求出f(x0)的范围,证明结论即可.【解答】解:(Ⅰ)m=2时,f(x)=e x﹣2x﹣1,f′(x)=e x﹣2,令f′(x)>0,解得:x>ln2,故函数f(x)在[ln2,+∞)递增;(Ⅱ)∵不等式f(x1)+f(0)>f(x2)+f(1)恒成立,x1+x2=1,∴2(x1﹣1)m﹣(﹣)+e﹣1<0对任意m<0恒成立,令g(m)=2(x1﹣1)m﹣(﹣)+e﹣1,当2(x1﹣1)=0时,g(m)=0<0不成立,则,解得:x1>1;(Ⅲ)由题意得f′(x)=e x﹣m,f′(x0)=0,故=m,f(x0)=﹣m(x0+1)+m2=m2﹣mlnm,m>0,记h(m)=m2﹣mlnm,m>0,h′(m)=m﹣lnm﹣1,h′′(m)=﹣,当0<m<2时,h′′(m)<0,当m>2时,h′′(m)>0,故函数h′(x)在(0,2)递减,在(2,+∞)递增,如图所示:[h′(m)]min=h′(2)=﹣ln2<0,又当m→0时,h′(m)>0,m→+∞,h′(m)>0,故函数h′(m)=0有2个根,记为m1,m2(m1<2<m2<6),(h′(6)>0),故h(m)在(0,m1)递增,在(m1,m2)递减,在(m2,+∞)递增,又当m→0时,h(m)>0,h(m)在m2处取极小值,由h′(m2)=0, m2﹣lnm2﹣1=0,lnm2=m2﹣1,故h(m2)=﹣m2lnm2=﹣m2(m2﹣1)=﹣+m2=﹣+1∈(﹣3,1),故f(x0)>﹣3.41.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(1)构造函数h(x)=g(x)﹣x﹣,求出函数导函数,对导函数求导后可得导函数的单调性,进一步确定导函数的符号,得到函数h(x)的单调性,可得h(x)≥h(0)=0得答案;(2)由(1)知,当kf(x)时,必有kf(x)≤g(x)成立,然后利用分析法证明当x∈[0,1]时,4f(x),当k≥6时,取特值x=说明不等式kf(x)≤g(x)在区间[0,1]上不恒成立,从而说明n0∈[4,6].【解答】证明:(1)设h(x)=g(x)﹣x﹣,即h(x)=,则h′(x)=e x﹣1﹣x,h″(x)=e x﹣1,当x≥0时,h″(x)≥0,h′(x)为增函数,又h′(0)=0,∴h′(x)≥0.∴h(x)在[0,+∞)上为增函数,则h(x)≥h(0)=0,∴g(x)≥x+;(2)由(1)知,当kf(x)时,必有kf(x)≤g(x)成立.下面先证:当x∈[0,1]时,4f(x),当x=0或1时,上式显然成立;当x∈(0,1)时,要证4f(x),即证4(x﹣x2),也就是证8x2﹣7x+2≥0.∵>0.∴当k≤4时,必有kf(x)≤g(x)成立.∴n0≥4;另一方面,当k≥6时,取x=,kf(x)﹣g(x)=>0,∴当k≥6时,kf(x)≤g(x)不恒成立.∴n0≤6.综上,n0∈[4,6].【点评】本题考查利用等式研究函数的单调性,训练了分析法证明函数不等式,体现了特值思想方法的应用,是中档题.42.(1);(2)见解析.试题解析:(1),由题可知:为的两个根,且,得或.而由(1)(2)得:,设,有而在上为减函数,则,即,即,综上,.(2)证明:由,,知,,由(1)可知,所以,所以.点睛:利用导数证明不等式常见类型及解题策略(1) 构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.43.(Ⅰ)求出函数的导数,根据二次函数的性质证明即可;(Ⅱ)求出f(α)+f(β)的解析式,根据二次函数的性质以及ACBD均为平行四边形,求出t的值即可.解:(Ⅰ)证明:,即﹣4x2+2tx+4=0,△=4t2+64>0,∴,,即4x﹣t=0,则零点,∴得证.(Ⅱ)要使构成平行四边形,由得,只需f(α)+f(β)=0,∴===,所以t=0.44.(Ⅰ) 解: 因为21ln ()xf x x -'=由 ()0f x '=,解得:e x =……………………………………………………3分 因为x (0, e) e (e, +)∞()f x '+-()f xZ1e]所以 ()f x 的极大值为1e,无极小值.………………………………………7分 (Ⅱ) 因为()f x 在[1, e]上是增函数, 所以 max 1()(e)ef x f ==……………………………………………………10分 ()g x 在[1, e]上是增函数所以 max ()(e)e g x g k ==……………………………………………………13分所以 2max211, 0<,e e ()1e, .e k F x k k ⎧<⎪⎪=⎨⎪≥⎪⎩……………………………………………15分 45.(Ⅰ)2'22()()2a x a f x x x x+=+=由'(1)220f a =+=,得1a =-. 经检验,当1a =-时取到极小值,故1a =-.(Ⅱ)由()0f x >,即22ln 0,x a x +>对任意[1,)x ∈+∞恒成立.(1)当1x =时,有a R ∈;(2)当1x >时,22ln 0,x a x +>得22ln x a x>-令2()(1)2ln x g x x x =->,得'2(2ln 1)()2ln x x g x x-=-;若1x <<,则'()0g x >;若x >'()0g x <.得()g x在上递增,在)+∞上递减。

2020届高考数学(文)一轮复习精品特训专题三:导数及其应用(1)导数、导数的计算A

2020届高考数学(文)一轮复习精品特训专题三:导数及其应用(1)导数、导数的计算A

导数及其应用(1)导数、导数的计算A1、已知点P 在曲线4e 1x y =+上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A. π0,4⎡⎫⎪⎢⎣⎭ B. ππ,42⎡⎫⎪⎢⎣⎭ C. π3π,24⎛⎤ ⎥⎝⎦ D. 3π,π4⎡⎫⎪⎢⎣⎭2、设曲线11x y x +=-在点()3,2处的切线与直线30ax y ++=垂直,则a =( ) A.2 B.2- C.12 D.12- 3、设()00f x '=,则曲线()y f x =在点()()00,x f x 处的切线( )A.不存在B.与x 轴平行或重合C.与x 轴垂直D.与x 轴斜交4、已知曲线()y f x =在点()()00,P x f x 处的切线方程为210x y ++=,则( )A. ()00f x '=B. ()00f x '<C. ()00f x '>D. ()0f x '不确定 5、若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A. 430x y --=B. 450x y +-=C. 430x y -+=D. 430x y ++=6、已知曲线3:3S y x x =-及点()2,2,P 则过点P 可向S 引切线,其切线条数为( ) A.0 B.1 C.2 D.37、设函数()()2f x g x x =+,曲线()y g x =在点()()1,1g 处的切线方程为21y x =+,则曲线(x)y f =在点()()1,1f 处切线的斜率为( ) A. 4 B. 14-C. 2D. 12- 8、设曲线11x y x +=-在点()3,2处的切线与直线10ax y ++=垂直,则a =( )A.2B.2-C.12-D.12 9、曲线2x y x =-在点()1,1-处的切线方程为( ) A. 2y x =-B. 32y x =-+C. 23y x =-D. 21y x =-+ 10、函数()ln f x x ax =-在点()1,P b 处的切线与320x y +-=垂直,则2a b +等于( )A .2B .0C . -1D .-211、在曲线323610y x x x =++-的所有切线中,斜率最小的切线方程是__________.12、若曲线()1y x R αα=+∈在点()1,2处的切线经过坐标原点,则α=__________. 13、已知函数()y f x =的图象在()()1,1M f 处的切线方程是122y x =+,则()()1'1f f +=__________.14、在曲线3()4f x x x =-的所有切线中,斜率最小的切线方程为____________ . 15、函数1()ln 2x f x x x-=+的导函数是'()f x ,则'(1)f =______. 16、已知函数3()3f x x x =-,其图象在点(1,2)处的切线方程是 ,它的单调递增区间为 .17、设曲线ln(1)y x a x =-+在点(0,0)处的切线方程为2y x =,则a =______.18、正弦函数sin y x =在π6x =处的切线方程为____________.答案以及解析1答案及解析:答案:D 解析:因为24e 44tan '1([0,π))1(e 1)4e 2x x x x y eαα---===≥=-∈+++,所以3ππ4α≤<,选D.2答案及解析:答案:B解析:函数的导函数为()22'1y x -=-,所以函数在()3,2处的切线斜率为12k =-,直线30ax y ++=的斜率为a -,所以112a ⎛⎫-⋅-=- ⎪⎝⎭,解得2a =-,选B.3答案及解析:答案:B解析:4答案及解析:答案:B解析:曲线在某点处的切线的斜率为负,说明函数在该点处的导数也为负.5答案及解析:答案:A解析:∵l 与直线480x y +-=垂直,∴l 的斜率为4.∵3'4y x =,∴由切线l 的斜率是4,得344x =,∴1x =.∴切点坐标为()1,1.∴切线方程为()141y x -=-,即430x y --=.故选A.6答案及解析:答案:D解析:显然P 不在S 上,设切点为()00,x y ,由233y x '=-,得02033|x x y x ='=-.切线方程为()()()320000333.y x x x x x --=-- ∵()2,2P 在切线上,∴()()()3200023332,x x x x --=-- 即3200320x x -+=. ∴()2000(1220)x x x ---=. 由010x -=,得01x =.由200220x x --=,得01x =∵有三个切点,∴由P 向S 作切线可以作3条.7答案及解析:答案:A解析:依题意得()()()()2,1124f x g x x f g '='+'='+=,选A.8答案及解析:答案:B解析:9答案及解析:答案:D解析:10答案及解析:答案:D解析:11答案及解析:答案:3110x y --=解析:()22'366311,y x x x ⎡⎤=++=++⎣⎦当1x =-时, y '取得最小值3,即斜率最小值为3,又当1x =-时, 14,y =-所以斜率最小的切线方程为()1431,y x +=+即3110.x y --=12答案及解析:答案:2解析:1y xαα-'=, ∴1|x y α='=.曲线在点()1,2处的切线方程为()21y x α-=-,将点()0,0代入方程,得2α=.13答案及解析:答案:3解析:点()()1,1M f 既在函数()y f x =的图象上,又在切线122y x =+上, 所以()151222f =+=.又()1'12f =, 所以()()511'1322f f +=+=.14答案及解析:答案:4y x =-(或40x y +=)解析:15答案及解析: 答案:12解析:222(1)'22(1)1222111'()(2)42x x x x x f x x x x x x x -⋅----++=+=-, 111'(1)122f =-=.16答案及解析:答案:2;(1,1)y =-解析:17答案及解析:答案:1-解析:18答案及解析:答案:1260y -+=解析:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020 年高考数学压轴题集锦——导数及其应用(一)1.已知函数f (x) x2 ax ln x(a R) .(1)函数f (x)在 [1,2] 上的性;(2)令函数g( x) e x 1 x2 a f (x) ,e=2.71828⋯是自然数的底数,若函数 g (x) 有且只有一个零点m,判断 m 与 e 的大小,并明理由 .2.已知函数 f (x) x3ax2bx c 在x 2与x 1都取得极. 3(1)求 a, b 的与函数f( x)的区;(2)若x [ c,1] ,不等式 f (x) c恒成立,求 c 的取范 . 23.已知函数 f (x) ln(1 x) ln(1x) .(1)明 f '(x) 2 ;(2)如果 f (x) ax x [0,1) 恒成立,求 a 的范 .x 14.已知函数f (x) ( e 自然数的底数) .e x(1)求函数f (x)的区;(2)函数(x) xf (x) tf '(x) 1x1, x2 [0 ,1] ,使得 2 ( x1 )(x2 ) x ,存在数e成立,求数t 的取范 .5.已知函数 f ( x) kx a x,其中k R,a 0且a 1 .(1)当 a e ( e=2.71 ⋯自然数的底),f(x)的性;(2)当k 1,若函数f(x)存在最大g(a),求g(a)的最小.6.已知函数 f x x2ax ln x a R(1)当a 3 ,求函数f(x)在1 ,2 上的最大和最小;2(2)函数 f(x)既有极大又有极小,求数 a 的取范 .7.已知 f( x)是定义在 R 上的奇函数,当x 0 时, f x1 x 3 ax a R ,且曲线 f(x)在3x1 处的切线与直线 y 3x 1平行24(1)求 a 的值及函数 f(x)的解析式;(2)若函数 y fx m 在区间 3, 3 上有三个零点,求实数m 的取值范围 .8.已知函数 fxx 0ax, aln x(1)若函数 y f x 在 1,上减函数,求实数 a 的最小值;(2)若存在x 1 , x 2e,e 2 ,使 f x 1 f x 2a 成立,求实数 a 的取值范围 .9.已知函数 f (x)x 3 ax 2 bx 1, a , b R .( 1)若 a 2 b 0 ,①当 a 0 时,求函数 f(x)的极值(用 a 表示);②若 f(x)有三个相异零点,问是否存在实数a 使得这三个零点成等差数列?若存在,试求出 a 的值;若不存在,请说明理由;( 2)函数 f( x)图象上点 A 处的切线 l 1 与 f(x)的图象相交于另一点B ,在点 B 处的切线为l 2 ,直线 l 1, l 2 的斜率分别为 k 1, k 2 ,且 k 2 =4k 1 ,求 a ,b 满足的关系式.10.已知函数 f ( x) e xe x ,其中 e 是自然对数的底数.(1)若关于 x 的不等式 mf ( x)e x m 1在 (0,+ ∞)上恒成立,求实数 m 的取值范围;(2)已知正数 a 满足:存在 x 0 [1, ) ,使得 f ( x 0 ) a( x 033x 0 ) 成立.试比较 e a 1与 a e 1 的大小,并证明你的结论.11.已知函数 f xe ax ln x 2 ( e 为自然对数的底数) .(1)若 a R , F xe axf ' x ,讨论 F x 的单调性;(2)若 a1 xf x x 1在 (- 1,+ ∞)内存在零点,求实数 a 的范围 .,函数 g212.已知函数( 1)若函数间;f ( x) (2 a)( x 1) 2ln x ( a R ) .g(x) f ( x) x 上带你 (1,g (1)) 处的切线过点 (0,2),求函数 g(x) 的单调减区(2)若函数yf (x) 在 (0, 1) 上无零点,求a 的最小值 .213.已知 aR ,函数 f (x)2a ln x .x(1)若函数 f (x) 在区间 (0,2)内单调递减,求实数 a 的取值范围;(2)当 a 0 时,求函数 f ( x) 的最小值 g (a) 的最大值; (3)设函数h( x) f ( x)(a 2) x , x [1, ) ,求证: h( x) 2 .14.设函数 f ( x) a 2 ln x x 2 ax(a R) .(1)试讨论函数f ( x) 的单调性;(2)设 ( x) 2x (a2a)ln x ,记 h( x) f (x)(x) ,当 a 0 时,若方程h( x) m(mR) 有两个不相等的实根 x 1 , x 2 ,证明 h '(x 1 x 2) 0 .215.已知函数 f xe x a(ln x 1)(a0) .(1) f( x)在区间 (0,2)上的极小值等于,求;x 21f xf x(2)令 g xmx 1,设 x 1, x 2 (x 1 x 2 ) 是函数 h xg x2x a4 3 ,求 h(x 1)h(x 2 ) 的最小值 .的两个极值点,若m3参考答案1.(1)由已知 x0 ,且 f ( x)2xa1 2x 2ax 1xx①当a 28 0 ,即当 2 2 a 2 2 ,f (x)函数 f ( x) 在 [1,2] 上 增 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分②当a 28 0 ,即a2 2或a2 2 ,2x2ax 10 有两个根,xaa 28,因 x0 ,所以 xaa 2 8441°当 aa 2 8 1 ,令 f (1)3 a 0 ,解得 a 34当 3a 2 2 或a 22 ,函数 f ( x) 在 [1,2]上 增 ⋯⋯⋯⋯⋯⋯⋯3 分aa 2 8 ,令 f (1) 3 a0 ,92°2 f (2)a 0 ,当 142解得9 a 32当 9a3 ,函数 f ( x) 在 [1,aa28] 上 减,24在 [aa 2 84, 2] 上 增; ⋯⋯⋯⋯⋯⋯⋯5 分3°当 aa 2 8 2 ,令 f (2)9 a0 ,解得 a9422当 a9,函数 f ( x) 在 [1,2]上 减; ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分2(2)函数 g (x)e x 1 x 2 af ( x) e x 1 ln x ax ag (x)e x 1 1 a h( x)xh (x)e x 11 0 ,所以 g ( x) 在 (0,) 上 增x 2当 x 0, g( x), x , g( x),所以 g ( x) R所以 g (x) 在 (0, ) 上有唯一零点 x 1当 x (0, x 1 ), g ( x)0, x ( x 1 , ), g ( x)0 ,所以 g ( x 1 ) g( x) 的最小由已知函数 g( x) 有且只有一个零点m , m x1所以 g (m) 0, g( m) 0, e m 1 1 a 0m ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分e m 1 ln m am a 0e m 1 ln m (e m 1 1)m (e m 11) 0 ,得 (2 m)e m 1 ln m m 1 0 m m m令 p(x) (2 x)e x 1 ln x x 1( x 0) ,所以 p(m) 0,xp (x) (1x 1 1(0,1), p ( x) 0, x (1, ), p ( x) 0 x)( e x 2 ) ,所以 x所以 p(x) 在 (1, ) 减,因 p(1) 1 0, p(e) (2 e)e e 1 1 e 1 (2 e)e e 1 1 0e e所以 p(x) 在(1,e) 上有一个零点,在(e, ) 无零点所以 m e ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯分 122.解:( 1)f (x) x3 ax2 bx c, f ' ( x) 3x2 2ax b由 f ' ( 2) 12 4 a b 0 , f ' (1) 3 2a b 0 得 a 1,b 23 9 3 2f ' (x) 3x2 x 2 (3 x 2)( x 1) ,随着 x 化, f ’(x), f ( x) 的化情况如下表:x ( , 2) 2 (2,1) 1 (1, ) 33 3f ' ( x)f ( x) 极大极小2 2所以函数 f ( x) 的增区是( ) 与 (1, ,1);, ) ,减区是 (3 3 (2)f ( x) x3 1 x2 2x c ,2当 c 2 ,由( 1)知f ( x)在c,1 上的最大 f ( 2 ) 22 c3 3 27所以只需要 f (2 22 cc,得 c44)27 2 273当2 c 1时 , 由 ( 1 )知 f ( x) 在c,1 上 的 最 大 值 为3f (c) c 31 c2 2c c c 31 c2 c22所以只需要 f (c)c31 c 2cc,解得 c1或 0 c 3222所以 0 c 1综上所述, c 的取值范围为, 440,1273.解:( 1)证明: f ' x11 2x 1 x 21 x 11 x 1 故 01 x2 1f ' x2(2)由题意知 f x ax 0对0 x 1 恒成立,设 g( x)f x ax,0 x1,则 g '(x)f ' x a2 ax 21当 a 2时, g ' x0恒成立 , g(x)在 0,1 上单调递增g( x) g 0 =0,符合题意2当 a2时, g' x 0得a ,21 x即21 x 2x 21 2,即 x12 aaa0 x1 2时, g' x 0, g( x) 单调递减ag( x) g 0 =0,不合题意综上, a 的取值范围为 ,24.解:(1) ∵函数的定义域为 R, f ′(x)=-x x,e∴当 x<0 时, f′(x)>0,当 x>0 时, f′(x)<0 ,∴f(x)在 (-∞, 0)上单调递增,在(0,+∞)上单调递减.(2) 存在 x1,x2∈ [0,1] ,使得 2φ(x1)<φ(x2)成立,则 2[φ(x)] min<[ φ(x)] max.∵φ(x)=xf(x)+ tf′(x)+ e-x=x2(1 t )x 1 ,e xx2 (1 t) x t x t x 1 ∴ ' xe x .e x①当 t≥1时,φ′(x)≤0,φ(x)在[0,1] 上单调递减,∴ 2φ(1)< φ(0),即 t>3-e>1 ;2②当 t≤0时,φ′(x)>0,φ(x)在[0,1] 上单调递增,∴ 2φ(0)< φ(1),即 t<3 -2e<0;③当 0<t<1 时,若 x∈ [0, t),φ′(x)<0 ,φ(x) 在[0, t)上单调递减,若t∈( t,1],φ′(x)>0 ,φ(x)在 (t,1)上单调递增,∴ 2φ(t)<max{ φ(0),φ(1)} ,即t 1 3 t2·e t<max{1 ,} . (*)et 1在 [0,1] 上单调递减,由(1) 知, g(t)= 2·te故4 t 1 2 3 t 3,∴不等式 (*) 无解.≤ 2 ·t ≤2,而e≤≤e e e e综上所述,存在t∈ (-∞, 3- 2e)∪ (3-e,+∞),使得命题成立.25.解:( 1)由题 f (x) kx e xf (x) k e x,①当 k ≤ 0 ,当 f ( x) 0 , f (x) 在R上是减函数;②当 k 0,当 x ln k ,f (x) 0 , f ( x) 在 (ln k ,) 上是减函数;当x ln k ,f (x) 0 , f ( x) 在 ( ,ln k) 上是增函数 .即当 k ≤ 0 时, f ( x) 在 ( ,) 上个递减;当 k 0 时, f ( x) 在 (ln k ,) 上递减,在 ( ,ln k) 上递增 .(2)当k 1,f (x) x a x, f (x) 1 a x ln a .x值,也无最大值;②当 a 1 ,设方程 f (x)0 的根为 t ,得 a1 . ln a11 lnln a ,即 t log aln aln a所以 f (x) 在 (,t) 上为增函数,在 (t , ) 上为减函数,1ln1 , 1则 f ( x) 的极大值为 f (t )t atln a 0 .ln aln aln a1ln1令 g( a)ln a ,令 h( x) xln x x , x0 .ln a ln ah ( x)ln x .当 x 1 时 h ( x) 0 ;当 x (0 ,1) 时 h (x) 0 ,所以 x 1为 h( x) 极小值也是最小值点 .且 h(1)1 ,即 g ( a) 的最小值为 1 ,此时 a e .6.12x 2 3x 12x 1 x 1解:( 1)当 a3 时, f x2x 3x,xx函数 fx 在区间1,2 仅有极大值点 x 1 ,故这个极大值点也是最大值点,2故函数在1, 2 的最大值是 f 12 ,2又f 2f12 ln 25 ln 2 32ln 2 0,故f2f 1 ,24 42故函数 fx 在 1, 2 上的最小值为 f 22 ln 2 .2(2)若 f x 既有极大值又有极小值,则必须 f x0 有两个不同正根 x 1, x 2 ,即 2x 2ax1 0 有两个不同正根,故 a 应满足: aa 28 0 a 2 2 .2 0 a函数 fx 既有极大值又有极小值,实数 a 的取值范围是 a2 2 .7.解:( 1)当 x0 时, f xx 2 a ,因为曲线 f x 在 x1 处的切线与直线2y3x 1 平行,4所以 f1 1 a 3,所以 a1 ,则当 x 0 时, f x1 x 3 x ,2443因为 f x 是定义在 R 上的奇函数,可知 f 00 ,设 x0 ,则 x 0 , fx1 x 3 x ,3所以 f xfx1 x 3 x1 x 3 x ,33综上所述,函数f x 的解析式为:f x1 x 3 x x R .3(2)由 f x1 x 3 x x R 得: fxx 2 1,令 fx0 得: x13当 3 x1时, f x 0 , f x 单调递增,当1 x 1 时, f x0 , f x 单调递减,当 1 x3 时, f x0 , fx 单调递增,又 f36 , f1 2 ,3f 123, f3函数 y f x m 在区间3, 3 上有三个零点,等价于 fx 在 3, 3 上的图像与 y m 有三个公共点,结合 f x 在区间3, 3 上大致图像可知,实数 m 的取值范围是3 .,028.解:因为 f x在 1,ln x 1a 0 在 1,上是减函数,故f x2上恒成立,ln xln x 111 1 1 2a1又 f x2ln x 2ln xa2a ,ln xln x4故当1 1 ,即 x e2 时, f x max1 a ,所以 1 a 0 ,于是 a1 ,故 a 的最ln x24 4 41小值为.(2)命题 “若x 1 , x 2e,e 2 ,使 f x 1f x 2 a 成立 ”等价于 “当 x e,e 2 时,有 f x minfxmaxa ”由( 1),当 xe, e2时, fxmax1 a ,所以 fx maxa1 .44问题等价于: “当 xe, e 2 时,有 f xmin1 ”4① 当 a1 时 , 由 ( 1 ) , f x 在 e, e 2上 是 减 函 数 , 则4fxminf e 21 e2 ae 2 1 ,故 a11 2242 4e111 21②当 a时,由于 f xa 在 e, e 2上为增函数,4ln x 24于是 fx 的值域为 f e , f e2,即 a,1a .410 .若 a 0 ,即 a 0 , f x0 ,在 e, e 2 上恒成立,故 f x在 e, e 2 上为增函数,于是 f xfe e aee1 ,不合题意;min420 .若 a 0 ,即 0 a 1 ,由 f x 的单调性和值域知,存在唯一x 0 e,e 2 ,使4f x 00 ,且满足当 xe, x 0 时, f x 0 , f x 为减函数,当 xx 0 , e 2 时, f x0 , f x 为增函数,所以 f xminf x 0x 0 ax 0 1, x 0 e, e 2 ,ln x 0 4所以 a1 11 1 1 1 11 矛盾,不合题意; ln x 04x 0ln e 2,与 0a4e 2 4 44综上: a 的取值范围为11,.224e9.解:( 1)① 由 f ( x) 3x 2 2ax b 及 a 2b 0 ,得 f (x) 3x 22ax a 2,令 f ( x)0 ,解得 xa 或 xa .3由 a 0 知, x ( , a), f ( x) 0 , f (x) 单调递增,x ( a, a ), f ( x) 0 , f ( x) 单调递减, x ( a,),f ( x) 0 , f (x) 单调递增,33因此, f (x) 的极大值为 f ( a) 1 a 3, f ( x) 的极小值为 f ( a) 1 5a 3 .327② 当 a 0 时, b 0 ,此时 f ( x) x31 不存在三个相异零点;当 a 0 时,与 ①同理可得 f ( x) 的极小值为 f ( a) 1a 3 , f (x) 的极大值为f ( a) 1 5a 3 . 3 27要使 f (x) 有三个不同零点,则必须有(1 a 3 )(15 a 3 ) 0 ,27即 a 31或 a 327 .5不妨设 f (x) 的三个零点为 x 1, x 2 , x 3 ,且 x 1 x 2 x 3 ,则 f (x 1 ) f ( x 2 ) f ( x 3 ) 0 ,f ( x ) x 3 ax 2 a 2 x 1 0 , ①1111 f ( x ) x 3ax 2a 2 x 1 0 , ② 2222f ( x 3 ) x 33 ax 32a 2 x 3 1 0 , ③②-① 得 ( x2x )( x 2 x xx 2 ) a( xx )( xx ) a 2 ( x2x ) 0 ,1212 121211因为 x 2 x 1 0 ,所以 x 22x 1 x 2 x 12 a(x 2 x 1) a 20 , ④同理 x 32 x 3x 2 x 22a( x 3 x 2 ) a 20 , ⑤⑤-④ 得 x 2 ( x 3 x 1 ) (x 3 x 1)( x 3 x 1 ) a( x 3 x 1 ) 0 , 因为 x 3 x 1 0 ,所以 x 2x 3 x 1 a 0 , 又 xx2x ,所以 xa2.13 23所以 f (a) 0 ,即 2a 23a 2 ,即 a 327 1 ,39a 11因此,存在这样实数 a3满足条件 .(2)设 A( m, f(m)) ,B(n, f(n)),则k1 3m2 2am b ,k2 3n2 2an b ,又f (m) f ( n) (m3 n3 ) a(m2 n2 ) b(m n) 2 2,k1m mn n a m n b m n m n ( )由此可得3m2 2am b m2 mn n 2 a( m n) b ,化简得 n a 2m ,因此, k2 3( a m 22a(a2m b12m2 am a 2 b,2 ) ) 8所以, 12m2 8am b a2 4(3m2 2am b) ,所以 a2 3b .10.解:( 1)由条件知( xe x 1)ex 1在 (0, ) 上恒成立,m e令 t e x(x 0 ),则 t 1,所以 m t 11 1 对于任意 t 1成t 2 t t 1 11t 1 立.因为 t 1t 1 1 2 (t 1)(t1 1 3 ,∴ 1 1 ,1 1) t 1 1 1 3t 1当且仅当 t 2 ,即 x ln 2 时等号成立.因此实数 m 的取值范围是 ( , 1 ] .3(2)令函数g(x) e x 1 a( x3 3x) ,则 g '( x) e x 1 3a( x2 1) ,e x e x当 x 1时,e x 1 0 , x2 1 0 ,又a 0 ,故g '(x) 0 ,e x所以 g(x) 是 [1, ) 上的单调递增函数,因此 g(x) 在 [1, ) 上的最小值是 g(1) e e 1 2a .由于存在 x0 [1, ) ,使 e x0 e x0 a( x0 3 3x0 ) 0 成立,当且仅当最小值g(1) 0 ,故 e e 12a 0 ,即 ae e 12.e a 1与 a e 1 均为正数,同取自然底数的对数,即比较 (a 1)ln e 与 (e 1)ln a 的大小,试比较ln e 与 ln a 的大小.e 1 a 1ln x11ln x( x 1), h '(x)x,构造函数 h(x)(xx 11)2再 m(x)11ln x , m '(x)1 x,从而 m( x) 在 (1, ) 上 减,xx 2此 m(x)m(1) 0 ,故 h '(x)0在 (1,) 上恒成立, h( x)ln x在 (1,+ ) 上x 1减.上所述,当 a( e e 1 , e) , e a 1a e 1 ;2当 a e , e a 1 a e 1 ;当 a (e,) , e a 1a e 1 .11.(Ⅰ ) (1) 当 a 0 , F x 在2,上 减;(2) 当 a0 , F x 在2,12上 减 ,在 1 2,增.aa(Ⅱ ) a 的取 范 是(,0) U0,1.2解:( I )定 域xx| 2 ,f ' xa e ax ln x 2e axx 1 e ax alnx 21 22x故 F xe axf ' xaln x 21 2 F ' xa 212ax 2a 2 1xx x 2x 2(1) 若 a 0 , F ' x 0, F x 在 2,上 减; ⋯⋯⋯⋯⋯⋯⋯2 分(2) 若 a0 ,令 F ' x0 x 12 .a①当 a0 , x12 ,因此在2, 上恒有 F ' x,即 F x 在2a2,上 减;②当 a0 , x1 2 2 ,因而在2,12 上有 F ' x0 ,在 1 2,上有aaaF ' x 0 ;因此 F x 在2,12 上 减,在a上, (1)当 a 0 , F x在2,上 减;1a2,增 .(2) 当 a0 , Fx 在2,12 上 减,在1 2, 增.aa⋯⋯⋯⋯⋯⋯⋯5 分(Ⅱ ) gxf xx 1 e ax ln x 2x 1, x1, ,g ' xf ' x1e axaln x2x 11 e ax F x1 ,2h x g ' x e ax F x 1,h ' xe axaF xF ' xe axa 2 ln x 22ax 4a 2 1 .x 2(1) 若 a=0 , g x f x x 1 ln x 2x 1, x1,g ' x1 2 1x 1 0, x 1,xx 2g x 在 x1, 减, gx g 1 0故此 函数 gx 无零点, a=0 不合 意 .⋯⋯⋯⋯⋯⋯⋯7分(2) 若 a 0 ,①当 x 0 , 0e ax1,由( 1)知 lnx 2 x 1 任意 x1,恒成立g x e ax ln x 2x 1 e ax ( x 1) x 1 (x 1) e ax1 0 ,故 g x 0 , 任意 x0,恒成立,②当1 x 0 ,g ' 1 e a 1 0, g ' 0aln210 ,2因此当 1 x 0 g 'x 必有零点, 第一个零点 x0 ,当 x (1,x 0 ) g ' x 0 , g x 增, g xg ( 1) 0.由①② 可知,当 a 0 , g x 必存在零点 . ⋯⋯⋯⋯⋯⋯⋯9分(2) 当 0 a1,考察函数h ' x ,由于21114ah ' 1 e a 2a 1 0, h 'e 2 a 2ln 21 20,2a2a22ah' x 在1, 上必存在零点 . h ' x 在 1,的第一个零点x 1 , 当x1, x 1 , h 'x 0 ,故 h x 在1,x 1 上 减函数,又 h x h 1e a 10 ,所以当 x1, x 1 ,g ' x 0 ,从而 g x在 x 1, x 1上 减,故当x 1, x 1 恒有 g xg 1 0 .即 g x 10 ,令 ( x) e axax 1, ' ( x) a(e ax1) , ( x) 在 x ( 1,0) 减,在 x(0, )增 . ( x)(0) 0 即 eax ax 1, 注意到 e ax ax1 ax a ,因此 g xe ax ln x 2x 1 a( x 1)ln x 2x 1 (x 1) aln x2 1 ,11111令 x 0e a , 有 gx 0 (e a 1) alne a 21(e a 1) alne a10 ,1由零点存在定理可知函数y g x 在 x 1 , e a 上有零点,符合 意 .上可知,a 的取 范 是( ,0) U 0,1.⋯⋯⋯⋯⋯⋯⋯分122(Ⅱ )解法二: gx f xx 1 e ax ln x 2x 1, x1,,g ' xf ' x 1 e ax aln x 211 e ax F x1 ,x 2(1) 若 a=0 , g x f x x 1 ln x 2 x 1, x1,g ' xx 1 2 1 x 10, x1,x 2g x 在 x1,减, g x g 1故此 函数 g x 无零点, a=0 不合 意 .⋯⋯⋯⋯⋯⋯⋯7分(2) 若 a0 ,当 1 x0 , g ' 1 e a1 0, g ' 0aln2 1 0 ,2因此当1 x 0 g'x 必有零点, 第一个零点x0 ,当 x (1,x 0 ) g ' x0 ,g x 增, g x 0g( 1) 0 又 g 0 f 01 ln2 1 0,所以,当 a 0 , gx 在 x ( x 0 ,0) 必存在零点 .⋯⋯⋯⋯⋯⋯⋯9分(3) 当 0 a1 ,由于 gln 2 1 0 ,2令 ( x) e axax 1, ' ( x) a(e ax 1) , ( x) 在 x( 1,0) 减,在 x (0, )增 . ( x) (0)0 即 e ax ax 1, 注意到 e ax ax 1 ax a ,因此 g xe ax ln x 2x 1 a( x 1)ln x 2x 1 (x 1) alnx 2 1 ,11111令 x 0e a , 有 gx 0(e a 1) aln e a 2 1(e a 1) alne a1 0 ,由零点存在定理可知函数 yg x 在 0,x 0 上存在零点,符合 意 .上可知, a 的取 范 是(,0) U 0,1.⋯⋯⋯⋯⋯⋯⋯分 12212.(1) ∵ g( x) (3a) x (2 a) 2ln x , ∴ g '( x)3 a2 ,x∴ g '(1) 1 a ,又 g(1)1, ∴ 11 2a 2,a1,解得1 0由 g '(x)32 2 x 2 x 2,xx 0 ,得 0∴ g( x) 的 减区(0, 2) .(2)若函数 f (x) 在 (0,1 ) 上无零点,2f (x) 在 (0, 1) 上 f ( x)0或 f ( x) 0 恒成立,2因 f (x)0在区 (0, 1) 上恒成立不可能,2故要使函数 f ( x) 在 (0, 1) 上无零点,只要 任意的 x(0, 1) , f ( x) 0 恒成立,22即对 x (0, 1 ) , a 22ln x 恒成立 .2x 1令 I ( x)2 2ln x , x (0, 1) ,x 122(x 1) 2ln x 2ln x 2 2则 I '(x)xx ,( x 1)2( x 1)2再令 m(x)2ln x2 2 , x (0, 1) ,x2 则 m '(x)2 2 2(1 x)0 ,x2xx2故 m(x) 在 (0, 1) 上为减函数,于是m( x) m( 1) 2 2ln 20 ,22从而 I '(x)0 ,于是 I ( x) 在 (0, 1 ) 上为增函数,2 所以 I ( x)I (1) 2 4ln 2 ,2故要使 a2 2ln x , x (0, 1) 恒成立,只要 a [2 4ln 2, ) ,x 1 2综上,若函数 f ( x) 在 (0, 1 ) 上无零点,则 a 的最小值为 2 4ln 2 .213.(1)函数 f (x) 在区间 (0, 2) 内单调递减x (0,2) ,恒有 f '(x) 0成立,而 f'(x)ax 2x20 ,故对 x (0,2) 2成立,,恒有 ax而21,则 a 1 满足条件 .x所以实数 a 的取值范围为 (,1] .ax 2 0 2 (2)当 a 0 时, f '(x)x 2x.a随 x 的变化, f '( x) , f (x) 的变化情况如下表:x220,aaf '(x) -f ( x)]极小值所以 f (x) 的最小值 g (a)f 2 a a ln 2.a ag '(a) ln 2 ln a 0a 2 .随 x 的变化, g '( x) , g( x) 的变化情况如下表:a (0, 2)2g '(a) +g( a)Z极大值所以 g(a) 的最大值为 g (2) 2 .( 3)因为 x [1,) ,所以当 a2 时,h( x) f ( x) (a 2) x2 a ln x ( a 2) x .x因为 h '(x)ax2a 2 0 ,x2所以 h( x) 在区间 [1, ) 内是增函数,故 h( x) h(1) a 2 .当 a 2时, h(x)f ( x)(a 2) x2a ln x (a 2)x , x由 h'( x) ax 2a 2x 2[(2 a)x 2]( x1)0 ,x解得 x20 (舍去)或 x 1 .2 a又2 a 0 ,故x 时, h '(x)0,1所以 h( x) 在区间 [1, ) 内是增函数,所以 h( x)h(1) 4 a 2 .综上所述,对x[1, ) , h(x) 2 恒成立 .2 ,a+Z(2,)-]14.(1)由f ( x) a2 ln x x2 ax ,可知f '(x) a2a2x2 ax a2 (2 x a)( x a).2 xx xx因为函数 f ( x) 的定义域为 (0, ) ,所以,①若 a 0 时,当 x (0, a) 时, f '(x) 0 ,函数 f ( x) 单调递减,当 x (a, ) 时,f '(x) 0 ,函数 f ( x) 单调递增;②若 a 0 时,当 f '(x) 2x 0 在 x (0, ) 内恒成立,函数 f ( x) 单调递增;③若 a 0 时,当 x (0, a) 时, f '(x) 0 ,函数 f ( x) 单调递减,当 x (a, ) 时,2 2f '(x) 0 ,函数 f ( x) 单调递增.(2)证明:由题可知h( x) f (x) ( x) x2 (2 a) x a ln x( x 0) ,所以 h '(x) 2x (2 a) a 2x2 (2 a) x a (2 x a)( x 1) x x x.所以当 x (0, a) 时,h '(x) 0 ;当x ( a , ) 时,h '( x) 0 ;当xa时,2 2 2a0.h '( )2 欲证 h '( x1x2 ) 0 ,只需证 h '(x1x2 ) h '(a) ,又 h ''(x) 2 a 0 ,即 h '( x) 单调2 2 2 x2递增,故只需证明x1 x2 a2 .2设 x1, x2是方程 h(x) m 的两个不相等的实根,不妨设为0 x1 x2,x 2 (2 a)x a ln x m则 1 1 1 ,x22 (2 a) x2 a ln x2 m两式相减并整理得a( x1 x2 ln x1 ln x2 ) x1 2 x2 2 2x1 2x2,从而 a x 2 x 2 2 x 2x,1 2 1 2x1 x2 ln x1 ln x2故只需证明x1 x2 x12 x22 2 x1 2x2,2 2(x1 x2 ln x1 ln x2 ) 即 x1 x2 x12 x22 2x1 2x2.x1 x2 ln x1 ln x2因为 x1 x2 ln x1 ln x2 0 ,21所以 (*) 式可化为 ln x 1 ln x 22x 12x2 ,x 1 x 2即 lnx 12x12x 2 . x 2x 1 1x 2因为 0x 1 x 2 ,所以 0x 1 1,x 2不妨令 tx 1 ,所以得到 ln t 2t2, t (0,1) .x 2 t1设R(t)ln t2t 2, t (0,1) ,所以 R '(t ) 1 4(t 1)2 0 ,当且仅当 t 1t 1t (t 1)2t (t 1)2时,等号成立,因此R(t ) 在 (0,1) 单调递增 .又 R(1) 0 ,因此 R(t ) 0 , t (0,1) , 故 ln t 2t2, t (0,1) 得证,t1从而 h '(x 1 x 2) 0 得证 .215.解:( 1)因为 a0 ,所以 f xe xa在区间 (0, 2) 上单调递增,x因为 x 0, f x 0 ,由题意 f x 在区间 (0, 2) 上有极小值,故 f 2 0 ,所以 e 2a 0 a 2e 2 ,设 x 0 为在区间 (0, 2) 上的极小值点,2故 e x 0a 0 ,所以 f ( x 0 )exa(ln x 01) a(1ln x 0 1) ,x 0x 0设 g xa( 1ln x 1),x(0,2) ,则 gx a( 1 1) a(1 x) ,xx 2 x x 2 所以 g x0 ,即 g x 在 (0, 2) 上单调递减,易得出 g 10,故f ( x 0 ) 0x 01,22代入 e x 0a 0 ,可得 a e ,满足 a2e 2 ,故 a e .x 0(2) h f x f xx 2 x 2 mx 1xag xmx ln x ,因为 h x,2x令 h x0 ,即 x2mx1 0 ,两根分别为 x 1 , x2 ,则x 1 x 2 mx 1 x 2 ,1又因为h(x 1)h( x 2 )1 x 12 mx 1 ln x 1 1 x 22 mx 2 ln x 22 21 (x2 x 2) m( x x ) lnx 11 ( x2 x 2 ) ( x2x 2) lnx 12 1 2 1 2x 22 1212x 2lnx11( x 12x 22) lnx 11 ( x 12x 22 )n x 11 ( x 1x2 ) ,x 2 2x 2 2 x 1x 2x 22 x 2 x令 x 1t ,由于 x 1 x 2 ,所以 0 t 1 ,又因为 m 4 3 , ( x 12 x 22 ) m 216 ,x 233即( x1x 2 )2 x 12x 2,即 t 21 16 ,x 1x 2 x 2x 1t 3所以 3t 2 10t 30 ,解得 t3 或 t 1 ,即 0 t1 ,3 3令 h(t )ln t1(t1)(0t1) , h (t) 1 1 t 12t t 2 1(t 1)2 02t3 t 22t 2 2t 2 2t 21 所以 h(t) (0, ] 上单调递减,3h(t)min1 1 1 1 4 ,所以 h( x 1 )4 h( ) ln 2 ( 3) ln 3h(x 2 ) 的最小值 ln 3.3 2 33323。

相关文档
最新文档