水质 总有机碳的测定
水质——总有机碳(TOC)的测定

本标准参照采用国际标准ISO 8245—1987《水质——总有机碳(TOC)的测定——导则》。
1 主题内容和适用范围1.1 本标准规定了测定地面水中总有机碳的非色散红外线吸收法。
1.2 测定范围本标准适用于地面水中总有机碳的测定,测定浓度范围为0.5~60mg/L,检测下限为0.5mg/L。
1.3 干扰地面水中常见共存离子超过下列含量(mg/L)时,对测定有干扰,应作适当的前处理,以消除对测定的干扰影响:SO42-400;Cl-400:NO3-100;PO43-100;S2-100。
水样含大颗粒悬浮物时,由于受水样注射器针孔的限制,测定结果往往不包括全部颗粒态有机碳。
2 原理2.1 差减法测定总有机碳将试样连同净化空气(干燥并除去二氧化碳)分别导入高温燃烧管(900℃)和低温反应管(160℃)中,经高温燃烧管的水样受高温催化氧比,使有机化合物和无机碳酸盐均转化成为二氧化碳,经低温反应管的水样受酸化而使无机碳酸盐分解成二氧化碳。
其所生成的二氧化碳依次引入非色散红外线检测器。
由于一定波长的红外线被二氧化碳选择吸收,在一定浓度范围内二氧化碳对红外线吸收的强度与二氧化碳的浓度成正比,故可对水样总碳(TC)无机碳(IC)进行定量测定。
总碳与无机碳的差值,即为总有机碳。
2.2 直接法测定总有机碳将水样酸比后曝气,将无机碳酸盐分解生成二氧化碳驱除、再注入高温燃烧管中,可直接测定总有机碳。
3 试剂除另有说明外,均为分析纯试剂,所用水均为无二氧化碳蒸馏水。
3.1 无二氧化碳蒸馏水:将重蒸馏水在烧杯中煮沸蒸发(蒸发量10%)稍冷,装入插有碱石灰管的下口瓶中备用。
3.2 邻苯二甲酸氢钾(KHC8H4O4):优质纯。
3.3 无水碳酸钠(Na2CO3):优质纯。
3.4 碳酸氢钠(NaHCO3)优质纯,存放于干燥器中。
3.5 有机碳标准贮备溶液:C=400mg/L。
称取邻苯二甲酸氢钾(3.2)(预先在110~120℃干燥2h,置于干燥器中冷却至室温)0.8500g,溶解于水(3.1)中,移入1000mL容量瓶内,用水(3.1)稀释至标线,混匀,在低温(4℃)冷藏条件下可保存48d。
水质 总有机碳的测定 燃烧氧化—非分散红外吸收法

水质总有机碳的测定燃烧氧化—非分散红外吸收法摘要:一、引言二、总有机碳的测定方法概述1.燃烧氧化法2.非分散红外吸收法三、燃烧氧化—非分散红外吸收法的原理与步骤1.燃烧氧化过程2.非分散红外吸收过程四、燃烧氧化—非分散红外吸收法的优势与应用五、结论正文:一、引言水质分析是环境监测的重要组成部分,其中总有机碳(Total Organic Carbon, TOC)是衡量水体中有机物污染程度的重要指标。
总有机碳含量的高低可以反映水体的有机物污染程度,从而为水环境的管理和保护提供科学依据。
目前,水质中总有机碳的测定方法有很多,其中燃烧氧化—非分散红外吸收法由于其较高的准确性和便捷性,得到了广泛的应用。
二、总有机碳的测定方法概述总有机碳的测定方法主要分为两类:燃烧氧化法和非分散红外吸收法。
1.燃烧氧化法:燃烧氧化法是将水样中的有机物在高温下氧化成二氧化碳和水,通过测定生成的二氧化碳的量,从而推算出水样中的总有机碳含量。
这种方法具有较高的准确性,但操作过程较为繁琐。
2.非分散红外吸收法:非分散红外吸收法是利用红外光谱技术,通过测定水样中总有机碳的红外吸收光谱,从而推算出水样中的总有机碳含量。
这种方法具有操作简便、速度快的特点,但准确性相对较低。
三、燃烧氧化—非分散红外吸收法的原理与步骤燃烧氧化—非分散红外吸收法是将燃烧氧化法和非分散红外吸收法相结合的一种方法,其原理和步骤如下:1.燃烧氧化过程:先将水样中的有机物在高温下氧化成二氧化碳和水,此过程一般采用燃烧管进行。
燃烧过程中,有机物被氧化生成的二氧化碳和水分别通过吸附剂和冷凝器进行收集。
2.非分散红外吸收过程:将收集的二氧化碳和水在非分散红外光谱仪上进行测定,通过分析红外吸收光谱,推算出水样中的总有机碳含量。
四、燃烧氧化—非分散红外吸收法的优势与应用燃烧氧化—非分散红外吸收法具有以下优势:1.准确性高:该方法将燃烧氧化法和非分散红外吸收法相结合,既保证了燃烧氧化法的高准确性,又充分利用了非分散红外吸收法的快速、便捷特点。
水质总有机碳的测定燃烧氧化-非分散红外吸收法

水质总有机碳的测定燃烧氧化-非分散红外吸收法
水质总有机碳的测定通常使用燃烧氧化-非分散红外吸收法(Combustion oxidation-Non-dispersive infrared absorption method,简称TOC法)。
该方法通常包括以下步骤:
1. 采集水样:在代表性水样采集点采集水样。
2. 准备样品:将采集的水样通过过滤等方法去除悬浮物,得到可测定的溶解性样品。
3. 燃烧氧化:将溶解性样品经过燃烧氧化,将有机碳氧化为二氧化碳(CO2)。
4. 分离和检测:通过分离装置将CO2与其他气体分离,然后
使用非分散红外光谱仪测定CO2的吸收峰值。
5. 数据处理和计算:根据CO2的吸收峰值测定有机碳的浓度,并经过一系列计算得出水样中的总有机碳含量。
TOC法的优点包括测定速度快、操作简便、灵敏度高、范围
宽等。
然而,TOC法也存在一些限制,如对样品中悬浮物和
溶解气体的干扰较大,需要进行额外的处理。
因此,在具体应用中需要对样品进行预处理,以提高测定的准确性。
水中总有机碳的测定

水中总有机碳的测定一、概述总有机碳(total organic carbon, TOC)是指1升水中有机物的总碳量,包括溶解性和悬浮性有机碳的含量,用mg/L表示。
水中的总有机碳主要来源于工业废水、生活污水、农业生产废水和动植物的分解产物中的有机污染物,所以它是评价水质有机污染程度的挺直指标。
总碳(total carbon,TC)是指水中存在的有机碳、无机碳和元素碳的总含量。
无机碳(in-organic carbon, IC)是指水中存在的元素碳、、、碳化物、氰酸盐、氰化物和的含碳量。
可吹扫有机碳(purgeable organic carbon, POC)是指在规定条件下水中可被吹扫出的有机碳。
不行吹扫有机碳(non-purgeable organic carbon,NPOC)是指在标准规定条件下水中不行被吹扫出的有机碳。
测定水样总有机碳时应从总碳中扣除无机碳。
二、测定办法水样总有机碳的测定办法,普通通过氧化的办法使有机碳转化成举行间接测定。
的测定办法有:红外光谱法、滴定法、热导池检测器气相色谱法、电导滴定法、电量滴定法、敏感电极法、把还原为甲烷后火焰离子化检测器法等。
中国环境庇护标准《水质总有机碳的测定》(HJ 501-2009)中测定水样总有机碳的标准办法是燃烧氧化-非色散红外法。
中国《生活饮用水标准检验办法》( GB/T 5750.7-2006)中总有机碳的测定办法为有机碳测定仪法。
1.燃烧氧化-非色散红外法本法分差减法和挺直法测定总有机碳。
差减法测定总有机碳的原理是:将试样连同净化气体分离导入高温燃烧管和低温反应管中,经高温燃烧管的试样被高温催化氧化,其中的有机碳和无机碳均转化为,经低温反应管的试样被酸化后,其中的无机碳分解成,两种反应管中生成的二氧化碳分离被导入非簇拥红外检测器。
在特定波长下,一定质量浓度范围内的红外线汲取强度与其质量浓度成止比,由此可对试样总碳和无机碳举行定量测定。
水质 总有机碳(TOC)的测定 非色散红外线吸收法

水质总有机碳(TOC)的测定非色散红外线吸收法
水中TOC测试的意义:
目前国内一般选用COD来表征水体受有机污染的程度,然而去其结果却取决于有机污染物的成分、氧化剂种类以及实验条件等,因此COD指标不能完全反映水体的有机污染情况。
相比COD,TOC的测定过程能氧化水体中全部有机物,能够真实反映水体有机污染情况。
在发达国家,如欧美日等,早已将其作为判断水体有机污染的重要指标,而近年来国内亦在开始推行TOC 测试作为水质指标。
一、原理:
①差减法:
将试样随净化空气分别倒入900℃高温燃烧管和160℃低温反应管中,经高温燃烧管的水样受高温催化氧化,使有机碳和无机碳均氧化为CO
2
,经
低温反应管的水样受酸化而使无机碳酸盐分解为CO
2,生成CO
2
分别经非色
散红外线检测器测试,获得水样中总碳和无机碳含量,其差值即为总有机碳含量。
②直接法:
将水样酸化(pH<4)曝气,将无机碳酸盐分解生成的CO
2
驱除,水样再注入高温燃烧管中,直接测试得到TOC含量。
二、注意事项:
1.采集和保存
采集后保存于棕色玻璃瓶中,24h内测试;如不能及时测试,应加硫酸至pH<2,4℃保存7d。
2.前处理
如有大颗粒悬浮物时,应该进行过滤处理。
3.影响因素
①背景影响:使用净化后的载气;无CO
2
的蒸馏水;
②无机碳浓度远高于有机碳时,测试精度会受到影响;
③当水样中含有大量VOC时,不利于使用直接法测TOC,因其测试结果为难挥发性TOC。
参考文献:GB 13193-91 水质总有机碳(TOC)的测定非色散红外线吸收法。
水质总有机碳的测定燃烧氧化-非分散红外吸收法HJ 501-2009

HJ 中华人民共和国国家环境保护标准HJ 501-2009代替GB 13193—91和HJ/T 71—2001水质总有机碳的测定燃烧氧化-非分散红外吸收法Water quality—Determination of total organic carbon—Combustion oxidation nondispersive infrared absorption method2009-10-20发布 2009-12-01实施环境保护部发布HJ501—2009中华人民共和国环境保护部公告2009年第54号为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,现批准《水质总有机碳的测定燃烧氧化-非分散红外吸收法》等六项标准为国家环境保护标准,并予发布。
标准名称、编号如下:一、《水质总有机碳的测定燃烧氧化-非分散红外吸收法》(HJ 501—2009);二、《水质挥发酚的测定溴化容量法》(HJ 502—2009);三、《水质挥发酚的测定 4-氨基安替比林分光光度法》(HJ 503—2009);四、《环境空气臭氧的测定靛蓝二磺酸钠分光光度法》(HJ 504—2009);五、《水质五日生化需氧量(BOD5)的测定稀释与接种法》(HJ 505—2009);六、《水质溶解氧的测定电化学探头法》(HJ 506—2009)。
以上标准自2009年12月1日起实施,由中国环境科学出版社出版,标准内容可在环境保护部网站()查询。
自以上标准实施之日起,由原国家环境保护局或原国家环境保护总局批准、发布的下述七项国家环境保护标准废止,标准名称、编号如下:一、《水质总有机碳(TOC)的测定非色散红外线吸收法》(GB 13193—91);二、《水质总有机碳的测定燃烧氧化-非分散红外吸收法》(HJ/T 71—2001);三、《水质挥发酚的测定蒸馏后溴化容量法》(GB 7491—87);四、《水质挥发酚的测定蒸馏后4-氨基安替比林分光光度法》(GB 7490—87);五、《环境空气臭氧的测定靛蓝二磺酸钠分光光度法》(GB/T 15437—1995);六、《水质五日生化需氧量(BOD5)的测定稀释与接种法》(GB 7488—87);七、《水质溶解氧的测定电化学探头法》(GB 11913—89)。
水质 总有机碳的测定

精心整理水质总有机碳的测定燃烧氧化-非分散红外吸收法1适用范围本标准规定了测定地表水、地下水、生活污水和工业废水中总有机碳(TOC)的燃烧氧化-非分散红外吸收方法。
本标准适用于地表水、地下水、生活污水和工业废水中总有机碳(TOC)的测定,检出限为0.1mg/L,测定下限为注1注2注322.12.22.32.42.533.1差减法测定总有机碳将试样连同净化气体分别导入高温燃烧管和低温反应管中,经高温燃烧管的试样被高温催化氧化,其中的有机碳和无机碳均转化为二氧化碳,经低温反应管的试样被酸化后,其中的无机碳分解成二氧化碳,两种反应管中生成的二氧化碳分别被导入非分散红外检测器。
在特定波长下,一定质量浓度范围内二氧化碳的红外线吸收强度与其质量浓度成正比,由此可对试样总碳(TC)和无机碳(IC)进行定量测定。
总碳与无机碳的差值,即为总有机碳。
3.2直接法测定总有机碳试样经酸化曝气,其中的无机碳转化为二氧化碳被去除,再将试样注入高温燃烧管中,可直接测定总有机碳。
由于酸化曝气会损失可吹扫有机碳(POC),故测得总有机碳值为不可吹扫有机碳(NPOC)。
4干扰及消除水中常见共存离子超过下列质量浓度时:SO42?400mg/L、Cl?400mg/L、NO3?100mg/L、PO43?2?5)。
5.15.25.35.45.55.65.7℃下干燥至恒重)混匀。
在5.81.7634g1000ml5.950.00ml匀。
在45.10(5.7)于200ml5.11载气:氮气或氧气,纯度大于99.99%。
6仪器和设备本标准除非另有说明,分析时均使用符合国家A级标准的玻璃量器。
6.1非分散红外吸收TOC分析仪。
6.2一般实验室常用仪器。
7样品水样应采集在棕色玻璃瓶中并应充满采样瓶,不留顶空。
水样采集后应在24h内测定。
否则应加入硫酸(5.2)将水样酸化至pH≤2,在4℃条件下可保存7d。
8分析步骤8.1仪器的调试按TOC分析仪说明书设定条件参数,进行调试。
水中toc的测定方法

水中总有机碳(Total Organic Carbon, TOC)的测定方法主要包括以下几种常见类型:1.湿法氧化(过硫酸盐法)- 非色散红外探测(NDIR)在这种方法中,首先通过添加酸(如磷酸)处理水样,将其中的无机碳转化为二氧化碳并排出,以消除无机碳的干扰。
之后,向样品中加入过硫酸盐作为氧化剂,在一定的温度条件下,水中的有机碳被氧化为二氧化碳。
产生的二氧化碳随后通过非色散红外检测器(NDIR)进行定量测定,从而得出TOC的浓度。
此方法适用于地表水、地下水等常规水体,但对于含有复杂有机物如腐殖酸、高分子化合物等的水体,氧化可能不充分。
2.高温催化燃烧氧化 - 非色散红外探测(NDIR)该方法通过将水样加热至高温(通常在680℃以上,并在催化剂存在下),使水样中的有机碳彻底氧化为二氧化碳。
高温燃烧能够确保大多数有机物得到有效氧化,适用于污染严重的江河、海水和工业废水样品。
3.紫外氧化 - 非色散红外探测 (NDIR)这种方法利用185nm的紫外光照射水样,促使有机碳氧化为二氧化碳。
同样在检测前需先去除无机碳。
虽然紫外氧化法对于某些类型的有机物(如颗粒状有机物、药物、蛋白质等)氧化效率不高,但在测定原水、工业用水等水体时较为适用。
4.紫外(UV)- 湿法(过硫酸盐)氧化 - 非色散红外探测(NDIR)结合了紫外氧化和湿法氧化的优点,首先利用紫外光部分氧化有机物,接着加入过硫酸盐进一步氧化未完全氧化的有机碳,最后通过NDIR检测二氧化碳含量以确定TOC浓度。
这种方法提高了氧化效率,尤其适用于较高TOC含量和复杂有机成分的水体。
5.差减法差减法是一种间接测定TOC的方法,分为两个步骤:o总碳(TC)测定:水样在高温炉中燃烧,所有碳都被转化为二氧化碳;o总无机碳(TIC)测定:通过酸化水样,使得碳酸盐分解为二氧化碳;最终,通过TC和TIC的差值得出TOC(TOC = TC - TIC)。
除了上述方法外,还有其他技术如电阻法、紫外吸收光谱法、电导法等也被用于TOC的测定,但这些方法可能针对性更强,或局限于特定水质条件下的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水质总有机碳的测定
燃烧氧化-非分散红外吸收法
1 适用范围
本标准规定了测定地表水、地下水、生活污水和工业废水中总有机碳(TOC)的燃烧氧化-非分散红外吸收方法。
本标准适用于地表水、地下水、生活污水和工业废水中总有机碳(TOC)的测定,检出限为0.1 mg/L,测定下限为0.5 mg/L。
注1:本标准测定TOC分为差减法(3.1)和直接法(3.2)。
当水中苯、甲苯、环己烷和三氯甲烷等挥发性有机物含量较高时,宜用差减法测定;当水中挥发性有机物含量较少而无机碳含量相对较高时,宜用直接法测定。
注2:当元素碳微粒(煤烟)、碳化物、氰化物、氰酸盐和硫氰酸盐存在时,可与有机碳同时测出。
注3:水中含大颗粒悬浮物时,由于受自动进样器孔径的限制,测定结果不包括全部颗粒态有机碳。
2 术语和定义
下列术语和定义适用于本标准。
2.1 总有机碳 total organic carbon,TOC
指溶解或悬浮在水中有机物的含碳量(以质量浓度表示),是以含碳量表示水体中有
机物总量的综合指标。
2.2 总碳 total carbon,TC
指水中存在的有机碳、无机碳和元素碳的总含量。
2.3 无机碳 inorganic carbon,IC
指水中存在的元素碳、二氧化碳、一氧化碳、碳化物、氰酸盐、氰化物和硫氰酸盐的含碳量。
2.4 可吹扫有机碳 purgeable organic carbon,POC
指在本标准规定条件下水中可被吹扫出的有机碳。
2.5 不可吹扫有机碳 non-purgeable organic carbon,NPOC
指在本标准规定条件下水中不可被吹扫出的有机碳。
3 方法原理
3.1 差减法测定总有机碳
将试样连同净化气体分别导入高温燃烧管和低温反应管中,经高温燃烧管的试样被高温催化氧化,其中的有机碳和无机碳均转化为二氧化碳,经低温反应管的试样被酸化后,其中的无机碳分解成二氧化碳,两种反应管中生成的二氧化碳分别被导入非分散红外检测器。
在特定波长下,一定质量浓度范围内二氧化碳的红外线吸收强度与其质量浓度成正比,由此可对试样总碳(TC)和无机碳(IC)进行定量测定。
总碳与无机碳的差值,即为总有机碳。
3.2 直接法测定总有机碳
试样经酸化曝气,其中的无机碳转化为二氧化碳被去除,再将试样注入高温燃烧管中,可直接测定总有机碳。
由于酸化曝气会损失可吹扫有机碳(POC),故测得总有机碳值为不可吹扫有机碳(NPOC)。
4 干扰及消除
2?400 mg/L、Cl? 400 mg/L、NO3?100 mg/L、水中常见共存离子超过下列质量浓度时:SO
4
3? 100 mg/L、S2? 100 mg/L,可用无二氧化碳水(5.1)稀释水样,至上述共存离子质量PO
4
浓度低于其干扰允许质量浓度后,再进行分析。
5 试剂和材料
本标准所用试剂除另有说明外,均应为符合国家标准的分析纯试剂。
所用水均为无二氧化碳水(5.1)。
5.1 无二氧化碳水:将重蒸馏水在烧杯中煮沸蒸发(蒸发量10%),冷却后备用。
也可使用纯水机制备的纯水或超纯水。
无二氧化碳水应临用现制,并经检验TOC质量浓度不超过0.5 mg/L。
5.2 硫酸(H2SO4):ρ (H2SO4)=1.84 g/ml。
5.3 邻苯二甲酸氢钾(KHC8H4O4):优级纯。
5.4 无水碳酸钠(Na2CO3):优级纯。
5.5 碳酸氢钠(NaHCO3):优级纯。
5.6 氢氧化钠溶液:ρ (NaOH)=10 g/L。
5.7 有机碳标准贮备液:ρ(有机碳,C)= 400 mg/L。
准确称取邻苯二甲酸氢钾(预先在110~120℃下干燥至恒重)0.850 2 g,置于烧杯中,加水(5.1)溶解后,转移此溶液于1 000 ml容量瓶中,用水(5.1)稀释至标线,混匀。
在4℃条件下可保存两个月。
5.8 无机碳标准贮备液:ρ(无机碳,C)=400 mg/L。
准确称取无水碳酸钠(预先在105℃下干燥至恒重)1.763 4 g和碳酸氢钠(预先在干燥器内干燥)1.400 0 g,置于烧杯中,加水(5.1)溶解后,转移此溶液于1 000 ml容量瓶中,用水(5.1)稀释至标线,混匀。
在4℃条件下可保存两周。
5.9 差减法标准使用液:ρ(总碳,C)= 200 mg/L,ρ(无机碳,C)= 100 mg/L。
用单标线吸量管分别吸取50.00 ml有机碳标准贮备液(5.7)和无机碳标准贮备液(5.8)于200 ml容量瓶中,用水(5.1)稀释至标线,混匀。
在4℃条件下贮存可稳定保存一周。
5.10 直接法标准使用液:ρ(有机碳,C)= 100 mg/L,用单标线吸量管吸取50.00 ml 有机碳标准贮备液(5.7)于200 ml容量瓶中,用水(5.1)稀释至标线,混匀。
在4℃条件下贮存可稳定保存一周。
5.11 载气:氮气或氧气,纯度大于99.99%。
6 仪器和设备
本标准除非另有说明,分析时均使用符合国家A级标准的玻璃量器。
6.1 非分散红外吸收TOC分析仪。
6.2 一般实验室常用仪器。
7 样品
水样应采集在棕色玻璃瓶中并应充满采样瓶,不留顶空。
水样采集后应在24 h内测定。
否则应加入硫酸(5.2)将水样酸化至pH≤2,在4℃条件下可保存7 d。
8 分析步骤
8.1 仪器的调试
按TOC分析仪说明书设定条件参数,进行调试。
8.2 校准曲线的绘制
8.2.1 差减法校准曲线的绘制
在一组七个100 ml容量瓶中,分别加入0.00、2.00、5.00、10.00、20.00、40.00、100.00 ml差减法标准使用液(5.9),用水(5.1)稀释至标线,混匀。
配制成总碳质量浓度为0.0、4.0、10.0、20.0、40.0、80.0、200.0 mg/L和无机碳质量浓度为0.0、2.0、5.0、10.0、20.0、40.0、100.0 mg/L的标准系列溶液,按照(8.4)的步骤测定其响应值。
以标准系列溶液质量浓度对应仪器响应值,分别绘制总碳和无机碳校准曲线。
8.2.2 直接法校准曲线的绘制
在一组七个100 ml容量瓶中,分别加入0.00、2.00、5.00、10.00、20.00、40.00、100.00 ml直接法标准使用液(5.10),用水(5.1)稀释至标线,混匀。
配制成有机碳质量浓度为0.0、2.0、5.0、10.0、20.0、40.0、100.0 mg/L的标准系列溶液,按照(8.4)的步骤测定其响应值。
以标准系列溶液质量浓度对应仪器响应值,绘制有机碳校准曲线。
上述校准曲线浓度范围可根据仪器和测定样品种类的不同进行调整。
8.3 空白试验
用无二氧化碳水(5.1)代替试样,按照(8.4)的步骤测定其响应值。
每次试验应先检测无二氧化碳水(5.1)的TOC含量,测定值应不超过0.5 mg/L。
8.4 样品测定
8.4.1 差减法
经酸化的试样,在测定前应以氢氧化钠溶液(5.6)中和至中性,取一定体积注入TOC 分析仪进行测定,记录相应的响应值。
8.4.2 直接法
取一定体积酸化至pH≤2的试样注入TOC分析仪,经曝气除去无机碳后导入高温氧化炉,记录相应的响应值。
9 结果计算
9.1 差减法
根据所测试样响应值,由校准曲线计算出总碳和无机碳质量浓度。
试样中总有机碳质量浓度为:
ρ(TOC) = ρ (TC) ? ρ (IC)
式中:ρ (TOC)——试样总有机碳质量浓度,mg/L;
ρ (TC)——试样总碳质量浓度,mg/L;
ρ (IC)——试样无机碳质量浓度,mg/L。
9.2 直接法
根据所测试样响应值,由校准曲线计算出总有机碳的质量浓度ρ (TOC)。
9.3 结果表示
当测定结果小于100 mg/L时,保留到小数点后一位;大于等于100 mg/L时,保留三位有效数字。
10 精密度和准确度
六个实验室测定TOC质量浓度为24.0 mg/L的统一分发标准溶液,实验室内相对标准偏差为2.9%,实验室间相对标准偏差为3.9%,相对误差为2.9%~6.3%。
六个实验室对地表水、生活污水和工业废水进行加标回收试验,差减法的回收率为91.0%~109%,直接法的回收率为93.0%~109%。
11 质量保证和质量控制
11.1 每次试验前应检测无二氧化碳水(5.1)的TOC含量,测定值应不超过0.5 mg/L。
11.2 每次试验应带一个曲线中间点进行校核,校核点测定值和校准曲线相应点浓度的相对误差应不超过10%。