辐射定标像元亮度值,辐射亮度亮温、表观反射率、地表反射率、反照率、比辐射率
辐射定标

线形定标公式
定标过程一般采取线形公式进行转换: 定标过程一般采取线形公式进行转换: L = a*DN + b a(gain)、b(offset)通常可以从遥感数据头文件读出 a(gain)、b(offset)通常可以从遥感数据头文件读出 L
线形区域
DN
二、辐射纠正—反射率 辐射纠正— 的计算
电磁辐射与辐射源——地物 电磁辐射与辐射源——地物——传感器的几何 地物——传感器的几何 关系 水平地面的假设 山地辐射纠正 辐亮度向反射率的转换
定标参数的确定
• 定标公式针对何种真实物理量 反射率? 反射率? • a是负数时,定标前后图象视觉相反 是负数时, ? • 定标参数的确定都是对波段的波长积分 响 应 函 数 λ
遥感数据的星上辐射定标
DN值的影响因素 DN值的影响因素 参考光源 地面定标测量 遥感数据的辐射定标——地表辐亮度的计算 遥感数据的辐射定标 地表辐亮度的计算
公式的GAINS/BIASES可从头文件中获取
%1=%1*0.00398-0.0100 %2=%2*0.00964-0.0232 %3=%3*0.00540-0.0078 %4=%4*0.01043-0.0193 %5=%5*0.00235-0.0080 %6=%6*0.05516+1.2378 %7=%7*0.00154-0.0040 TM6的 TM6的GAINS/BIASES 是不变的,为:0.055158 / 1.2378 是不变的,
式中除10为将单位由 式中除10为将单位由 mW /(cm ⋅ Sr ⋅ µm ) 转化为 W /( M ⋅ Sr ⋅ µm )
2
2
实际操作
计算出各波段的反射辐亮度 计算出各波段的行星反射率 对比地物反射辐亮度与行星反射率 请考查计算后各典型地物反射率的特点, 请考查计算后各典型地物反射率的特点,并 分析原因
辐射定标教程

在新版本ENVI中(4.5版本以及更新),没有单独设立ASTER和MODIS定标的工具。
对于ASTER L1A/L1B和MODIS 02级数据,在打开数据时会自动完成对数据的定标。
如图1所示打开ASTER L1B的结果,在波段列表中,自动读取各个波段的中心波长信息,并按照波段范围信息(VNIR、SWIR、TIR)分组波段。
其中VNIR、SWIR自动定标为辐射亮度,单位是:W/m2/sr/μm;TIR数据定标为大气表观温度值,单位:开尔文。
打开其中一个数据,浏览像元值,可以看到已经定标为浮点型的辐射亮度值。
图1 ASTER L1B数据如图2为打开MODIS 02级1km数据,其中250米和500米的波段经过重采样为1km 加入这个数据集中。
ENVI根据各个波段的中心波长信息定标为三个类型数据:反射率数据(Reflectance)、辐射亮度值数据(Radiance)和发射率数据(Emissive)。
其中反射率和发射率为0~1无单位值,辐射亮度值单位是:W/m2/μm/sr。
图2 MODIS 02级数据如果打开原始的ASTER和MODIS的DN值数据,可以在ENVI主菜单中选择File->preferences,切换到Miscellaneous面板,将Auto-Correct ASTER/MODIS项设置为NO。
3.2 Landsat数据定标ENVI4.7版本改进了Landsat数据定标的功能,对于Landsat4/5数据可以手动选择以下两种定标公式:式中:•QCAL为原始量化的DN值•LMINλ为QCAL = 0时的辐射亮度值•LMAXλ为QCAL = QCALMAX时的辐射亮度值注:LMINλ和LMAXλ的值取自Chander, Markham, and Helder (2009)的研究成果。
•QCALMIN是最小量化定标像素值(与LMINλ类似)。
取值如下:1:LPGS产品1:04 April 2004之后的NLAPS产品0:04 April 2004之前的NLAPS产品注:如果没有元数据信息,QCALMIN取默认值1(TM和ETM+))或者0 (MSS)。
Landsat系列辐射定标参数

辐射定标参数整理1.亮度温度计算亮度温度是一个常用的温度概念,是在卫星高度上传感器探测波段范围内普朗克黑体辐射函数与传感器响应函数乘积积分得到的辐射值.亮度温度包含有大气和地表对热辐射传导的影响,不是真正意义上的地表温度。
计算公式:其中,Lλ为传感器探孔处光谱辐射强度,即星上辐射亮度值,实现像素DN值转化为绝对辐射亮度值。
1.1.星上辐射亮度(Lλ)遥感影像的亮度值(DN值)都是经过量化和纠正过的以8bit编码的数字影像,为了精确反演地物特性,有必要将DN值转化为星上辐射亮度值。
ndsat8Lλ= M L*Q cal + A L通过查看影像的头文件,可以获取偏差参数:M L(RADIANCE_MULT_BAND_x)和A L(RADIANCE_ADD_BAND_x)为图像的增益和偏置。
1.1.ndsat5/7QCAL为经过辐射校正的图像灰度值即DN值;L max为探测器可检测到的最大辐射亮度,也是最大灰度值所相应的辐射亮;L min为探测器可检测到的最小辐射亮度,也是最小灰度值所相应的辐射亮度。
表 1 Landsat5 TM的Lmin和Lmax值表 2 Landsat7 ETM+的Lmin和Lmax值QCAL max为传感器接收到的最大灰度值,QCAL min为传感器接收到的最小灰度值。
(1)如果没有元数据信息,QCAL MIN默认值1(TM和ETM+1)或者0(MSS);QCAL MAX取默认值255(TM 和ETM+)或者127(MSS)。
(2)如果有元数据信息,QCAL MIN取值如下:对于LPGS Products(The level 1 product generation system)取值为1,对于NLAPS Products(National Landsat Archive Production System)在04 April 2004之前取值为0,在04 April 2004之后取值为1;QCAL MAX 取值为127(MSS), 255(TM、ETM)。
辐射定标

辐射定标(像元亮度值,辐射亮度/亮温)、表观反射率、地表反射率、反照率、比辐射率(转)(2012-11-28 13:58:29)转载▼标签:杂谈分类:科研(2012-01-26 01:18:44)标签:校园分类:工作篇环境一号卫星光学数据绝对定标环境一号卫星光学数据的遥感器校正分为绝对定标和相对辐射定标。
对目标作定量的描述,得到目标的辐射绝对值。
要建立传感器测量的数字信号与对应的辐射能量之间的数量关系,即定标系数,在卫星发射前后都要进行。
卫星发射前的绝对定标是在地面实验室或实验场,用传感器观测辐射亮度值已知的标准辐射源以获得定标数据。
卫星发射后,定标数据主要采用敦煌外场测量数据,此值一般在图像头文件信息中可以读取。
以下两表为敦煌场地测定的绝对定标数据。
表HJ 1A/B星绝对辐射定标系数(DN/W⋅m-2⋅sr-1⋅μm-1)卫星传感器定标系数(DN/W⋅m-2⋅sr-1⋅μm-1)Band1Band2Band3Band4HJ1A CCD10.57630.54100.68240.7209 CCD20.63600.59100.81420.8768HJ1B CCD10.53290.528950.684950.72245 CCD20.57820.50870.68250.6468利用绝对定标系数将DN值图像转换为辐亮度图像的公式为:L=DN/coe式中coe为绝对定标系数,转换后辐亮度单位为W⋅m-2⋅sr-1⋅μm-1。
由于以上定标系数为敦煌场采用单点法对中等反射率目标(戈壁)测定的结果,因此对于太阳反射光谱波段,建议针对中等反射率地物采用上面提供的绝对辐射定标系数。
对于HJ1B的红外相机,近红外波段绝对定标系数为4.2857,短波红外波段绝对定标系数为18.5579。
定标公式同前。
HJ-1B红外相机热红外通道绝对辐射定标系数为:增益53.473,单位:DN/(W⋅m-2⋅sr-1⋅μm-1);截距26.965,单位:DN。
(定量遥感课件)绝对辐射定标

辐射定标方法分类
积分球定标源
积分球定标系统
实验室标准灯
标准黑体
星上定标器
星上定标器把已知辐照度相对稳定的光源引入 光学系统,然后在不同时间记录下定标器的信 号,以确定传感器的响应是否发生变化。
TM的星上定标器包括三个灯和一束光纤 SPOT-1 HRV有一个基准灯内定标器,此外
青海湖TM图像
辐射定标同步观测试验
试验前准备工作 野外观测试验 定标数据处理
试验前准备工作
室内仪器检测 不同仪器比对 实验室仪器标定 标准参考板BRF室内标定 同步观测大纲制定 其它野外试验准备
野外观测试验及数据处理
大气光学特性观测 气象探空测量 地表反射比测量 水表辐亮度测量 地面测量目标定位
外 定 标 场 景 图来自大气光学参数测量CE-318 sun-photometer
地表反射比测量
ASD野外光谱仪测量 CE312通道式辐射计测量
青海湖水表辐亮度测量
CE312通道式热红外辐射计
Bomen红外干涉光谱仪
HRV还有一个太阳基准定标器,用光纤引入太 阳光。 星上定标存在缺陷:
• 定标光路和对地观测时的光路不同 • 自身基准定标光源退化 • 滤光片和分光片光谱特性的改变
实验场定标
遥感卫星传感器在轨定标,也称替代定标, 是利用地面均一场地作为定标目标,把地面 测得地表反射率或辐亮度和大气参数输入 到辐射传输计算程序,计算出大气层顶的 表观辐亮度或表观反射率,然后将表观辐 亮度或表观反射率与卫星计数值相比较得 到卫星传感器的定标系数 。
地理信息系统-操作指南-PIE-Basic示例数据

PIE-Basic操作说明PIE-Basic具备全流程的数据处理能力,这里以GF1数据预处理为例,介绍软件业务化生产能力。
本次操作可分为三部分,GF1数据预处理、监督分类、专题制图。
1GF1数据预处理1.1数据处理流程介绍图1-1数据处理流程11.2数据介绍示例数据采用一景廊坊地区GF1影像,对影像进行辐射定标处理后,再对整景影像进行正射校正和融合处理。
详细数据列表如下:表1 影像数据列表图1-2 数据视图2图1-3 数据覆盖区域1.3辐射定标辐射定标是使用大气纠正技术将影像数据的灰度值转化为表观辐亮度、表观反射率等物理量的过程,以纠正传感器本身产生的误差。
按照流程分别对原始影像的全色影像和多光谱影像进行辐射定标处理。
选择【图像预处理】模块下的“辐射校正”组,点击【辐射定标】,弹出辐射定标对话框,如下图所示:3●输入文件:输入待处理的卫星影像数据;●元数据文件:默认自动读取该影像对应的元数据(.xml)文件,也可以用户自定义(国产卫星数据元数据文件一般和数据是存放在一起的,软件会自动读取,Landsat系列数据元数据文件是MTL.txt);●定标类型:选择定标为表观辐亮度或者表观反射率,默认选项是表观反射率/亮温;●输出文件:设置输出结果保存路径及文件名。
所有参数设置完毕后,点击【确定】按钮,输出辐射定标处理结果。
41.4大气校正大气校正的目的消除大气对太阳和来自目标的辐射产生吸收和散射作用的影响,从而获得目标反射率、辐射率、地表温度等真实物理模型参数。
大多数情况下,大气校正同时也是反演地物真实反射率的过程。
对多光谱辐射定标结果进行大气校正处理。
选择【图像预处理】模块下的“辐射校正”组,点击【大气校正】,弹出大气校正对话框,如下图所示:5●输入信息:数据类型:设置待处理影像的数据类型,要与输入的文件保持一致,支持DN值、表观辐亮度和表观反射率三种数据类型;DN值类型是没有经过辐射定标的原始影像数据,表观辐亮度和表观反射率类型是辐射定标输出的结果文件。
高光谱遥感第三章讲解学习

第三章 高光谱遥感图像 辐射与几何校正
三种场地定标法的优缺点比较
反射率法
辐亮度法
投入的测试设备和获取 飞机飞行高度越高 的测量数据相对较少。 大气校正就越简单
优 省工、省物且满足精 精度也就越高 点 度要求
辐照度法
由于利用地面测量的大气 漫射和总辐射之比来描述 大气气溶胶的散射特性, 故减少了反射率法中由于 气溶胶光学特性参量的假设 而带来的误差
大气的散射与辐射光波长有密切关系,对短 波长的散射与长波长的散射要强的多,分子散射 的强度与波长的四次方成反比;
气溶胶的散射强度随波长的变化与粒子尺度 分布有关;
第三章 高光谱遥感图像 辐射与几何校正
大气辐射传输方程
到达遥感器处总的上行辐射为:
Ls Lsu Lsd Lsp Ls 遥感器处总的上行辐射 Lsu - 地表对太阳光的反射辐 射 Lsd - 地表对天空光的反射 Lsp -向上散射的程辐射
① 有关大气介质特征参数的获取 ② 具体实用的大气辐射传输模型的研究
第三章 高光谱遥感图像 辐射与几何校正
- 大气辐射校正常用算法
- 采用大气参数的方法 - 5S模型 - 6S模型
– 直接采用大气物理参数,增加多次散射计算 • LOWTRAN辐射传输模型 • MODTRAN辐射传输模型
第三章 高光谱遥感图像 辐射与几何校正
要对大气气溶胶的一
缺 些光学特性参量做假设 点
为精确进入大气校正 还需要反射率法的全 部数据,该方法投入 的设备、资金和人力 相对较多
测量数据相对较多,漫射
和总辐射之比的测量在高 纬
度地区对精度由较大影响
第三章 高光谱遥感图像 辐射与几何校正
2 大气辐射传输理论
-大气对遥感辐射传输的影响
2.1 辐射定标

定标标准通常由国家权威部门制定,并与国际接轨。 n Lamp Standards n Primary Lamp n Secondary standard lamp n Blackbody Standards n Reflectance Standards n Detector Standards
21:02 22
11
场区地表反射比 测量数据 6S辐射 传输模型 星地光谱 响应匹配 卫星光谱带上ρA和s
场区大气参数 测量数据
通道表观反射率
漫射辐射与 总辐射比
辐照度法定标流程
21:02
卫星通道 定标系数
卫星图象 计数值
23
3. 辐亮度基法
n
n
n
利用经绝对定标后的辐射计测量目标的上行辐 亮度(可以装在飞机上测量),而不是与参考 板进行比较。 在地面同步测量大气状况,利用辐射传输程序 计算大气效应,得到TOA处的辐亮度,与待标 定传感器的DN值相结合,得到定标系数。 对所使用辐射计的定标及表征成为关键。所选 择的滤波器与待定标传感器的滤波器相匹配。
21:02 14
7
定标场的选取
(1)一个相对较亮的目标,定标场目标的反射率不低于0.3,这样确保卫星信号 贡献绝大部分来自于地面,减少大气订正带来的误差; (2)目标海拔在1公里以上,这样大气中气溶胶和水汽的含量较少,减少与其相 关特性和浓度估计的误差; (3)具有非常好的空间均一性大面积平坦的地面目标,为满足不同空间分辨率 卫星的需要,定标场均匀区不小于2×2km2,这样可以减少地面仪器测量目标的 代表性,减少象元混合带来的误差; (4)定标场季节性变化较小,场区无植被,场区选在干旱或半干旱气候区,大 气中无云的天数较多,而且场区反射率不至于因湿度变化频繁而变化; (5)场区应该近似朗伯表面,减少因太阳和卫星观测角度的变化带来的不确定 性; (6)场区反射率具有较好的光谱均一性,这样可以较少因传感器光谱响应不匹 配带来的误差,有利于卫星传感器相互定标; (7)场区附近具有较好的后勤和交通便利条件,便于野外试验的开展进行 。