二次根式计算专题——30题(教师版含答案)

合集下载

二次根式计算专题——30题(教师版含答案)

二次根式计算专题——30题(教师版含答案)

二次根式计算专题1.计算:⑴ ()()24632463+- ⑵ 20(3)(3)2732π++-+-【答案】(1)22; (2) 643-【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.(2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) ()()24632463+-22(36)(42)=-=54-32 =22.(2)2(3)(3)2732π++-+-313323=+-+- 643=-考点: 实数的混合运算. 2.计算(1)﹣×(2)(6﹣2x)÷3.【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案. 试题解析:2051123525532335=-⨯32=-1=;(2)1(62)34x x x÷62)3x x x x =÷ (3)3x x x =÷3x x =.13=.考点: 二次根式的混合运算.3.计算:⎛÷⎝【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--.【答案】22.【解析】试题分析:根据二次根式的运算法则计算即可.22-==.考点:二次根式的计算.7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.1)=31-2. 考点:二次根式的化简.8⎝【答案】0.【解析】试题分析: 根据二次根式运算法则计算即可.0==⎝. 考点:二次根式计算.9.计算:()0+1π.【答案】1-【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:()0+1π11=-=- 考点:二次根式的化简. 10.计算:435.03138+-+ 【答案】323223+. 【解析】试题分析:先化成最简二次根式,再进行运算. 试题解析:原式=2322322+-+=323223+. 考点:二次根式的化简. 11.计算:(1)(2)()02014120143π----.【答案】(1)1(2)3-【解析】 试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果. 试题解析:(1)(1==(2)()020141201431133π---=--+=-. 考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值.12.计算: 212)31()23)(23(0+---+ 【答案】2.【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法. 试题解析:解:原式=2123+-- =2考点:二次根式的混合运算.130(2013)|+-+-.【答案】1. 【解析】0(2013)|-+-1=+1=.考点:二次根式化简. 14.计算12)824323(÷+- 【答案】262.【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:248)12(62622)23(226)23 26考点: 二次根式的混合运算.15112 2322.【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.1122343222323考点: 二次根式的运算.16.化简:(1)83250+(2)2163)1526(-⨯-【答案】(1)92;(2)-【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式92=;(2)原式==-考点:二次根式的混合运算;17.计算(1)2(2)2【答案】(1)3(2)3.【解析】试题分析:(1)根据运算顺序计算即可;.(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)233=-=.(2)(2223===.考点:二次根式化简.181)(1+- 【答案】17. 【解析】,运用平方差公式计算1)(1+,再进行计算求解.181--=17考点:实数的运算.19.计算:231|21|27)3(0++-+--【答案】-.【解析】试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=11-+=-考点:1.实数的运算;2.零指数幂;3.分母有理化. 20.计算:①1 2⎛⎫+- ⎪⎝⎭ ② ⎛ ⎝ ③⎛- ⎝1;②143;③a3-. 【解析】试题分析:①针对算术平方根,绝对值,零指数3个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.1112⎛⎫+-= ⎪⎝⎭.②143⎛⎛=÷ ⎝⎝.1a 2a 63⎛-=-⋅=- ⎝. 考点:1.二次根式计算;2.绝对值;3.0指数幂.21.计算:(1)2012101(1)5()1)2----++(2)【答案】(1)0;(2)【解析】 试题分析:(1)原式=152310-++-=;(2)原式==. 考点:1.实数的运算;2.二次根式的加减法. 22.计算与化简(1(0π (2)2(3(4+-【答案】(1)1;(2)5.【解析】 试题分析:(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1(011π==.(2)((()2344951675+--=+--=.考点:1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式. 23.(1)18282-+(2)3127112-+(3)0)31(33122-++(4))2332)(2332(-+【答案】(1)-(3)6;(4)6- 【解析】试题分析:本题主要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除.法,是分式应该先将分式转化为整式,再按运算法则计算。

二次根式计算专题——30题教师版含答案

二次根式计算专题——30题教师版含答案

二次根式计算专题1.计算:⑴ ()()24632463+- ⑵ 20(2π+【答案】(1)22; (2) 6-【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.(2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) ()()24632463+-22=-=54-32=22.(2)20(2π+312=+-6=-考点: 实数的混合运算.2.计算(1)﹣× (2)(6﹣2x )÷3. 【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案.试题解析:3=-⨯32=-1=;(2)2÷2()2x=-÷=÷=13=.考点: 二次根式的混合运算.3.计算:⎛÷⎝【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--.【答案】22.【解析】试题分析:根据二次根式的运算法则计算即可.22-==.考点:二次根式的计算.7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.1)=31-2. 考点:二次根式的化简.8⎝ 【答案】0.【解析】试题分析: 根据二次根式运算法则计算即可.0+=⎝. 考点:二次根式计算.9.计算:()0+1π.【答案】1-【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:()0+1π11=-=-考点:二次根式的化简.10.计算:435.03138+-+ 【答案】323223+. 【解析】试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2322322+-+=323223+. 考点:二次根式的化简.11.计算:(1)(2)()020********π---【答案】(1)1(2)3-【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:(1)(1==+(2)()020141201431133π---=--+=-. 考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值.12.计算: 212)31()23)(23(0+---+ 【答案】2.【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式=2123+-- =2考点:二次根式的混合运算.130(2013)|-+-.【答案】1.【解析】0(2013)|+-+-1=+1=.考点:二次根式化简.14.计算12)824323(÷+-【答案】23-.【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:???=- 考点: 二次根式的混合运算.15-2-. 【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.22=-=- 考点: 二次根式的运算.16.化简:(1)83250+ (2)2163)1526(-⨯-【答案】(1)92;(2)- 【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式92=;(2)原式==-考点:二次根式的混合运算;17.计算(1)2(2)2【答案】(1)3(2)3.【解析】试题分析:(1)根据运算顺序计算即可;(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)233=-=.(2)(2223===.考点:二次根式化简.181)(1+- 【答案】17.【解析】,运用平方差公式计算1)(1+,再进行计算求解.181-- =17考点:实数的运算.19.计算:231|21|27)3(0++-+--【答案】-【解析】试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=11-+=-考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:① 01 2⎛⎫+- ⎪⎝⎭ ② ⎛ ⎝ ③⎛- ⎝1;②143;③a 3-. 【解析】试题分析:①针对算术平方根,绝对值,零指数3个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.1112⎛⎫+-= ⎪⎝⎭.②143⎛⎛=÷== ⎝⎝.1a 2a 63⎛---⋅=- ⎝. 考点:1.二次根式计算;2.绝对值;3.0指数幂.21.计算:(1)2012101(1)5()1)2----++(2)【答案】(1)0;(2)【解析】试题分析:(1)原式=152310-++-=;(2)原式==.考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1(0π (2)2(3(4+-【答案】(1)1;(2)5.【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1(011π+-==.(2)((()2344951675+--=+--=. 考点:1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.23.(1)18282-+(2)3127112-+ (3)0)31(33122-++(4))2332)(2332(-+【答案】(1)-(3)6;(4)6- 【解析】试题分析:本题主要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除法,是分式应该先将分式转化为整式,再按运算法则计算。

二次根式计算专题——30题教师版含答案

二次根式计算专题——30题教师版含答案

二次根式计算专题1.计算:⑴ ()()24632463+- ⑵ 20(2π+【答案】(1)22; (2) 6-【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.(2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) ()()24632463+-22=-=54-32=22.(2)20(2π+312=+-6=-考点: 实数的混合运算.2.计算(1)﹣× (2)(6﹣2x )÷3. 【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案.试题解析:3=-⨯32=-1=;(2)2÷2()2x=-÷=÷=13=.考点: 二次根式的混合运算.3.计算:⎛÷⎝【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--.【答案】22.【解析】试题分析:根据二次根式的运算法则计算即可.22-==.考点:二次根式的计算.7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.1)=31-2. 考点:二次根式的化简.8⎝ 【答案】0.【解析】试题分析: 根据二次根式运算法则计算即可.0+=⎝. 考点:二次根式计算.9.计算:()0+1π.【答案】1-【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:()0+1π11=-=-考点:二次根式的化简.10.计算:435.03138+-+ 【答案】323223+. 【解析】试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2322322+-+=323223+. 考点:二次根式的化简.11.计算:(1)(2)()020********π---【答案】(1)1(2)3-【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:(1)(1==+(2)()020141201431133π---=--+=-. 考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值.12.计算: 212)31()23)(23(0+---+ 【答案】2.【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式=2123+-- =2考点:二次根式的混合运算.130(2013)|-+-.【答案】1.【解析】0(2013)|+-+-1=+1=.考点:二次根式化简.14.计算12)824323(÷+-【答案】23-.【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:???=- 考点: 二次根式的混合运算.15-2-. 【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.22=-=- 考点: 二次根式的运算.16.化简:(1)83250+ (2)2163)1526(-⨯-【答案】(1)92;(2)- 【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式92=;(2)原式==-考点:二次根式的混合运算;17.计算(1)2(2)2【答案】(1)3(2)3.【解析】试题分析:(1)根据运算顺序计算即可;(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)233=-=.(2)(2223===.考点:二次根式化简.181)(1+- 【答案】17.【解析】,运用平方差公式计算1)(1+,再进行计算求解.181-- =17考点:实数的运算.19.计算:231|21|27)3(0++-+--【答案】-【解析】试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=11-+=-考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:① 01 2⎛⎫+- ⎪⎝⎭ ② ⎛ ⎝ ③⎛- ⎝1;②143;③a 3-. 【解析】试题分析:①针对算术平方根,绝对值,零指数3个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.1112⎛⎫+-= ⎪⎝⎭.②143⎛⎛=÷== ⎝⎝.1a 2a 63⎛---⋅=- ⎝. 考点:1.二次根式计算;2.绝对值;3.0指数幂.21.计算:(1)2012101(1)5()1)2----++(2)【答案】(1)0;(2)【解析】试题分析:(1)原式=152310-++-=;(2)原式==.考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1(0π (2)2(3(4+-【答案】(1)1;(2)5.【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1(011π+-==.(2)((()2344951675+--=+--=. 考点:1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.23.(1)18282-+(2)3127112-+ (3)0)31(33122-++(4))2332)(2332(-+【答案】(1)-(3)6;(4)6- 【解析】试题分析:本题主要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除法,是分式应该先将分式转化为整式,再按运算法则计算。

二次根式计算专题——30题教师版含问题详解

二次根式计算专题——30题教师版含问题详解

标准文案大全二次根式计算专题1.计算:⑴ ()()24632463+- ⑵20(2π+ 【答案】(1)22; (2) 6-【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.(2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) ()()24632463+-22=-=54-32=22.(2)20(2π+312=+--6=-考点: 实数的混合运算.2.计算(1)﹣× (2)(6﹣2x )÷3. 【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案.试题解析:3=-⨯32=-1=;(2)2÷2()2x=-÷=÷=13=.考点: 二次根式的混合运算.3.计算:⎛-÷⎝【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--.【答案】22.【解析】试题分析:根据二次根式的运算法则计算即可.22-==.考点:二次根式的计算.试卷第2页,总10页标准文案大全7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.1)=31-2.考点:二次根式的化简.8⎝ 【答案】0.【解析】试题分析: 根据二次根式运算法则计算即可.0==⎝. 考点:二次根式计算.9.计算:()0+1π错误!未找到引用源。

二次根式计算专题——30题教师版含答案

二次根式计算专题——30题教师版含答案

二次根式计算专题1.计算:⑴ ()()24632463+- ⑵ 20(2π+【答案】(1)22; (2) 6-【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.(2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) ()()24632463+-22=-=54-32=22.(2)20(2π+312=+-6=-考点: 实数的混合运算.2.计算(1)﹣× (2)(6﹣2x )÷3. 【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案.试题解析:3=-⨯32=-1=;(2)2÷2()2x=-÷=÷=13=.考点: 二次根式的混合运算.3.计算:⎛÷⎝【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--.【答案】22.【解析】试题分析:根据二次根式的运算法则计算即可.22-==.考点:二次根式的计算.7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.1)=31-2. 考点:二次根式的化简.8⎝ 【答案】0.【解析】试题分析: 根据二次根式运算法则计算即可.0+=⎝. 考点:二次根式计算.9.计算:()0+1π.【答案】1-【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:()0+1π11=-=-考点:二次根式的化简.10.计算:435.03138+-+ 【答案】323223+. 【解析】试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2322322+-+=323223+. 考点:二次根式的化简.11.计算:(1)(2)()020********π---【答案】(1)1(2)3-【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:(1)(1==+(2)()020141201431133π---=--+=-. 考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值.12.计算: 212)31()23)(23(0+---+ 【答案】2.【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式=2123+-- =2考点:二次根式的混合运算.130(2013)|-+-.【答案】1.【解析】0(2013)|+-+-1=+1=.考点:二次根式化简.14.计算12)824323(÷+-【答案】23-.【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:???=- 考点: 二次根式的混合运算.15-2-. 【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.22=-=- 考点: 二次根式的运算.16.化简:(1)83250+ (2)2163)1526(-⨯-【答案】(1)92;(2)- 【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式92=;(2)原式==-考点:二次根式的混合运算;17.计算(1)2(2)2【答案】(1)3(2)3.【解析】试题分析:(1)根据运算顺序计算即可;(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)233=-=.(2)(2223===.考点:二次根式化简.181)(1+- 【答案】17.【解析】,运用平方差公式计算1)(1+,再进行计算求解.181-- =17考点:实数的运算.19.计算:231|21|27)3(0++-+--【答案】-【解析】试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=11-+=-考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:① 01 2⎛⎫+- ⎪⎝⎭ ② ⎛ ⎝ ③⎛- ⎝1;②143;③a 3-. 【解析】试题分析:①针对算术平方根,绝对值,零指数3个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.1112⎛⎫+-= ⎪⎝⎭.②143⎛⎛=÷== ⎝⎝.1a 2a 63⎛---⋅=- ⎝. 考点:1.二次根式计算;2.绝对值;3.0指数幂.21.计算:(1)2012101(1)5()1)2----++(2)【答案】(1)0;(2)【解析】试题分析:(1)原式=152310-++-=;(2)原式==.考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1(0π (2)2(3(4+-【答案】(1)1;(2)5.【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1(011π+-==.(2)((()2344951675+--=+--=. 考点:1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.23.(1)18282-+(2)3127112-+ (3)0)31(33122-++(4))2332)(2332(-+【答案】(1)-(3)6;(4)6- 【解析】试题分析:本题主要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除法,是分式应该先将分式转化为整式,再按运算法则计算。

二次根式计算专题——30题教师版含答案

二次根式计算专题——30题教师版含答案

二次根式计算专题1.计算:⑴ ()()24632463+- ⑵ 20(2π+【答案】(1)22; (2) 6-【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.(2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) ()()24632463+-22=-=54-32=22.(2)20(2π+312=+-6=-考点: 实数的混合运算.2.计算(1)﹣× (2)(6﹣2x )÷3. 【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案.试题解析:3=-⨯32=-1=;(2)2÷2()2x=-÷=÷=13=.考点: 二次根式的混合运算.3.计算:⎛÷⎝【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--.【答案】22.【解析】试题分析:根据二次根式的运算法则计算即可.22-==.考点:二次根式的计算.7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.1)=31-2. 考点:二次根式的化简.8⎝ 【答案】0.【解析】试题分析: 根据二次根式运算法则计算即可.0+=⎝. 考点:二次根式计算.9.计算:()0+1π.【答案】1-【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:()0+1π11=-=-考点:二次根式的化简.10.计算:435.03138+-+ 【答案】323223+. 【解析】试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2322322+-+=323223+. 考点:二次根式的化简.11.计算:(1)(2)()020********π---【答案】(1)1(2)3-【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:(1)(1==+(2)()020141201431133π---=--+=-. 考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值.12.计算: 212)31()23)(23(0+---+ 【答案】2.【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式=2123+-- =2考点:二次根式的混合运算.130(2013)|-+-.【答案】1.【解析】0(2013)|+-+-1=+1=.考点:二次根式化简.14.计算12)824323(÷+-【答案】23-.【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:???=- 考点: 二次根式的混合运算.15-2-. 【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.22=-=- 考点: 二次根式的运算.16.化简:(1)83250+ (2)2163)1526(-⨯-【答案】(1)92;(2)- 【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式92=;(2)原式==-考点:二次根式的混合运算;17.计算(1)2(2)2【答案】(1)3(2)3.【解析】试题分析:(1)根据运算顺序计算即可;(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)233=-=.(2)(2223===.考点:二次根式化简.181)(1+- 【答案】17.【解析】,运用平方差公式计算1)(1+,再进行计算求解.181-- =17考点:实数的运算.19.计算:231|21|27)3(0++-+--【答案】-【解析】试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=11-+=-考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:① 01 2⎛⎫+- ⎪⎝⎭ ② ⎛ ⎝ ③⎛- ⎝1;②143;③a 3-. 【解析】试题分析:①针对算术平方根,绝对值,零指数3个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.1112⎛⎫+-= ⎪⎝⎭.②143⎛⎛=÷== ⎝⎝.1a 2a 63⎛---⋅=- ⎝. 考点:1.二次根式计算;2.绝对值;3.0指数幂.21.计算:(1)2012101(1)5()1)2----++(2)【答案】(1)0;(2)【解析】试题分析:(1)原式=152310-++-=;(2)原式==.考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1(0π (2)2(3(4+-【答案】(1)1;(2)5.【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1(011π+-==.(2)((()2344951675+--=+--=. 考点:1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.23.(1)18282-+(2)3127112-+ (3)0)31(33122-++(4))2332)(2332(-+【答案】(1)-(3)6;(4)6- 【解析】试题分析:本题主要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除法,是分式应该先将分式转化为整式,再按运算法则计算。

二次根式计算专题——30题(教师版含答案)

二次根式计算专题——30题(教师版含答案)

二次根式计算专题——30题(教师版含答案)二次根式计算专题——30题(教师版含答案)在代数学中,二次根式是指形如√a的数,其中a是非负实数。

二次根式的计算是代数学的重要组成部分,对于学生来说也是一项基本技能。

本文将介绍30道关于二次根式的计算题,并附上教师版含答案,供教师参考。

题目1: 计算√9的值。

解答: 由于9是一个完全平方数,所以√9=3。

题目2: 计算√25的值。

解答: 由于25是一个完全平方数,所以√25=5。

题目3: 计算√2的值。

解答: √2是一个无理数,无法精确计算,可以使用近似值1.414进行计算。

题目4: 计算√32的值。

解答: 首先将32分解为16×2,再将16分解为4×4,可以得到√32=√(4×4×2)=4√2。

题目5: 计算√(3×5)的值。

解答: √(3×5)=√15。

题目6: 计算√(8×12)的值。

解答: 首先将8和12分别分解为2×2×2和2×2×3,可以得到√(8×12)=√(2×2×2×2×2×3)=4√6。

题目7: 计算√(a^2×b^2)的值。

解答: √(a^2×b^2)=√(a^2)×√(b^2)=|a|×|b|。

题目8: 计算√(16÷4)的值。

解答: 首先计算16÷4=4,然后√4=2,所以√(16÷4)=2。

题目9: 计算√(x^2÷y^2)的值。

解答: √(x^2÷y^2)=√(x^2)÷√(y^2)=|x|÷|y|。

题目10: 计算√(4^2÷2^2)的值。

解答: 首先计算4^2=16和2^2=4,然后16÷4=4,所以√(4^2÷2^2)=√4=2。

二次根式计算专题30题(教师版含答案解析)

二次根式计算专题30题(教师版含答案解析)
进行化简即可.
试题解析:
0
+1123123313.
考点:二次根式的化简.
10.计算:
83
1
3
0.5
3
4
33
【答案】3
2
22
【解析】

试题分析:先化成最简二次根式,再进行运算.
试题解析:原式=
2333
223=23
2222

考点:二次根式的化简.
11.计算:
(1)
271245
1
3
(2)
0
2014
1182014223
3
28
3
323
14
3

考点:二次根式运算.
6
4.计算:3623
2
【答案】22.
【解析】
试题分析:先算乘除、去绝对值符号,再算加减.
试题解析:原式=32332
=22
考点:二次根式运算.
5.计算:2183(32)
【答案】33.
【解析】
试题分析:先将二次根式化成最简二次根式,再化简.
试题解析:2183(32)=23233633.
考点:二次根式化简.
2
14.计算(3248)12
3
【答案】
26
-+.
23
试卷第4页,总10页
完美WORD格式
【解析】
试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.
试题解析:
2
(3-24 +8)?12(6-26+22) ?23(22-6) ?23
3
26
=-+
23
考点:二次根式的混合运算.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式计算专题——30题(教师版含答案)work Information Technology Company.2020YEAR二次根式计算专题1.计算:⑴ ()()24632463+- ⑵ 20(3)(3)2732π++-+-【答案】(1)22; (2) 643-【解析】 试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.(2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案.试题解析:(1) ()()24632463+-22(36)(42)=- =54-32=22.(2)20(3)(3)2732π++-+-313323=+-+-643=-考点: 实数的混合运算.2.计算(1)﹣× (2)(6﹣2x )÷3.【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案. 试题解析:20511235+2553235+=32=-1=;(2)1(62)34x x x÷62)3x x x x =÷=÷=13=.考点: 二次根式的混合运算.3.计算:⎛÷⎝【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--. 【答案】22. 【解析】试题分析:根据二次根式的运算法则计算即可.==. 考点:二次根式的计算.7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.1)=31-2. 考点:二次根式的化简.8⎝ 【答案】0.【解析】试题分析: 根据二次根式运算法则计算即可.0==⎝.考点:二次根式计算.9.计算:()0+1π.【答案】1-【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:()0+1π11=-=考点:二次根式的化简.10.计算:435.03138+-+ 【答案】323223+. 【解析】试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2322322+-+=323223+. 考点:二次根式的化简.11.计算:(1)(2)()020********π---【答案】(1)1(2)3--【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:(1)(1==(2)()020141201431133π---=--+=--. 考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值.12.计算: 212)31()23)(23(0+---+ 【答案】2.【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式=2123+-- =2考点:二次根式的混合运算.130(2013)|+-+-.【答案】1.【解析】0(2013)|+-+-1=+1=.考点:二次根式化简.14.计算12)824323(÷+- 【答案】2623. 【解析】 试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案. 试题解析:248)12(62622)23(226)23 26 考点: 二次根式的混合运算.1511223【答案】232. 【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.11223432223232332考点: 二次根式的运算.16.化简:(1)83250+ (2)2163)1526(-⨯-【答案】(1)92;(2)- 【解析】 试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式92=;(2)原式==- 考点:二次根式的混合运算;17.计算(1)2(2)2【答案】(1)3+(2)3.【解析】试题分析:(1)根据运算顺序计算即可;(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)233=-+.(2)(2223===.考点:二次根式化简.181)(1+ 【答案】17.【解析】,运用平方差公式计算1)(1+,再进行计算求解.181-- =17考点:实数的运算. 19.计算:231|21|27)3(0++-+--【答案】-.【解析】 试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=11-+=-考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:①01 2⎛⎫+- ⎪⎝⎭ ② ⎛ ⎝③⎛- ⎝1;②143;③a 3-. 【解析】 试题分析:①针对算术平方根,绝对值,零指数3个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.1112⎛⎫+-= ⎪⎝⎭.②143⎛⎛=÷= ⎝⎝.1a 2a 63⎛-=-⋅=- ⎝. 考点:1.二次根式计算;2.绝对值;3.0指数幂.21.计算:(1)2012101(1)5()1)2----+(2)-【答案】(1)0;(2)【解析】试题分析:(1)原式=152310-++-=;(2)原式==.考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1(0π+- (2)2(3(4+-【答案】(1)1+;(2)5.【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1(011π+-==.(2)((()2344951675+-+=+--=. 考点:1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.23.(1)18282-+(2)3127112-+ (3)0)31(33122-++(4))2332)(2332(-+【答案】(1)-3)6;(4)6- 【解析】试题分析:本题主要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除法,是分式应该先将分式转化为整式,再按运算法则计算。

试题解析:(1)==-原式试题解析:(2)==原式试题解析:(3)116=+==原式试题解析:(4)22439212186=-=⨯-⨯=-=-原式(( 考点:1.根式运算2.幂的运算243-【答案】0【解析】试题分析:先根据立方根的性质、绝对值的规律、二次根式的性质化简,再合并同类二次根式即可.解:原式=25232+--+=0.考点:实数的运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.25.求下列各式的值(1(2)()2331422-⨯--+ 【答案】⑴12⑵11 【解析】试题分析:(11132242=-⨯-=(2)()2331422-⨯--+=328211-++= 考点:整式运算点评:本题难度较低,主要考查学生对整式计算知识点的掌握。

为中考常考题型,要求学生牢固掌握。

26.计算:⎛÷ ⎝2+ 【答案】5【解析】试题分析:解:原式13⎛=÷ ⎝ 153== 考点:实数运算点评:本题难度较低,主要考查学生对实数运算知识点的额掌握,为中考常考题型,要求学生牢固掌握。

27.计算:(1))3127(12+- (2)()()6618332÷-+- 【答案】(1)334- (2)2【解析】试题分析:(1-====(2312考点:实数运算点评:本题难度较低,主要考查学生对平方根实数运算知识点的掌握。

要求学生牢固掌握解题技巧。

28.(-【答案】1【解析】⨯⨯试题分析:(-=(32=1考点:二次根式的化简和计算点评:本题考查二次根式的化简和计算,关键是二次根式的化简,掌握二次根式的除法法则,本题难度不大29.计算(每小题4分,共8分)(1(2)【答案】(1)3【解析】试题分析:(2)原式+原式==3考点:实数的运算点评:实数运算常用的公式:(1)2(0)a a =≥(2,a =(3)0,0)a b =≥≥(40,0)a b=≥≥. 30.计算:(1)(2)(3(4)14【答案】(1)2)3)194-13,(4【解析】本题考查二次根式的加减法.根据二次根式的加减法法则进行计算解:(1)原式=(2)原式=-(3)原式24+-= 4(4)原式32。

相关文档
最新文档