人教版小学数学总复习专题讲解及训练
人教版小学六年级数学知识点归纳梳理及总复习归类讲解及训练中(含答案)附公式大全

5
2. 圆 弧 和 弦 :圆 上 任 意 两 点 间 的 部 分 叫 做 圆 弧 ,简 称 弧 。大 于 半 圆 的 弧 称 为 优 弧 ,小 于 半 圆 的 弧 称 为 劣 弧 ,半 圆 既 不 是 优 弧 ,也 不 是 劣 弧 。连 接 圆 上 任 意 两 点 的 线 段 叫 做 弦。圆中最长的弦为直径。 3. 圆 心 角 和 圆 周 角 :顶 点 在 圆 心 上 的 角 叫 做 圆 心 角 。顶 点 在 圆 周 上 ,且 它 的 两 边 分 别 与圆有另一个交点的角叫做圆周角。 4. 内 心 和 外 心 :和 三 角 形 三 边 都 相 切 的 圆 叫 做 这 个 三 角 形 的 内 切 圆 ,其 圆 心 称 为 内 心 。 过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。 5. 扇 形 :在 圆 上 ,由 两 条 半 径 和 一 段 弧 围 成 的 图 形 叫 做 扇 形 。圆 锥 侧 面 展 开 图 是 一 个 扇形。这个扇形的半径称为圆锥的母线。 6.圆 的 种 类 : ( 1) 整 体 圆 形 , ( 2) 弧 形 圆 , ( 3) 扁 圆 , ( 4) 椭 形 圆 , ( 5) 缠 丝 圆 ,( 6)螺 旋 圆 ,( 7)圆 中 圆 、圆 外 圆 ,( 8)重 圆 ,( 9)横 圆 ,( 10 )竖 圆 ,( 11 ) 斜圆。 7.圆和其他图形的位置关系:圆和点的位置关系:以点 P 与圆 O 的为例(设 P 是一点, 则 PO 是点到圆心的距离),P 在⊙O 外,PO>r;P 在⊙O 上,PO=r;P 在⊙O 内,0≤ PO<r。 8.百分数的由来
比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式 子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等, 有四项。因此,比和比例的意义也有所不同。 而且,比号没有括号的含义 而另一种 形式,分数有括号的含义! 19.比和比例的联系:
2020小学六年级数学(人教版)专题总复习讲解带训练附答案

2020 小学六年级数学(人教版)专题总复习讲解带训练附答案复习要点:(一)数与代数1、百分数的应用百分数的应用是在六年级(上册)认识百分数的基础上编排的,是本册教材的重点内容之一。
要联系实际解决一些求一个数比另一个数多(或少)百分之几的问题,解决较简单的有关纳税、利息、折扣的问题,解决已知一个数的百分之几是多少,求这个数的问题。
通过这些内容的教学,能让学生进一步理解百分数的意义,学会在日常生活中应用百分数。
2、比例的有关知识比例的知识有比例的意义、比例的基本性质和解比例。
这些知识有助于理解图形的放大与缩小,能用来解决有关比例尺的问题。
3、成正比例和成反比例的量教学正比例和反比例,着重理解正比例的意义和反比例的意义,让学生在现实的情境中作出相应的判断。
根据《标准》的精神,教材适当加强了正比例关系图像的教学,不再安排解答正比例或反比例的应用题。
(二)空间与图形1、圆柱和圆锥圆柱与圆锥是本册教材的又一个重点内容,包括圆柱和圆锥的形状特征,圆柱的表面积及计算方法,圆柱和圆锥的体积及计算方法等知识。
2、图形的放大或缩小图形的放大和缩小是小学数学新增加的教学内容,让学生初步了解图形可以按一定的比例发生大小变换。
这个内容安排在第三单元里,结合比例的知识进行教学。
3、确定位置等内容确定位置也是新增的教学内容,在初步认识方向的基础上,用"北偏东几度"" 南偏西几度"的形式量化描述物体所在的具体方向,还要联系比例尺的知识,用" 距离多少"的形式描述物体所在的位置。
知识点梳理(一)数与代数1、百分数的应用(1)求一个数比另一个数多(少)百分之几的实际问题①要点:一个数比另一个数多(少)百分之几= 一个数比另一个数多(少)的量÷另一个数②例题:六年级男生有180 人,女生有160 人,男生比女生多百分之几?女生比男生少百分只几?男生比女生多的人数÷女生人数= 百分之几(180 - 160 )÷ 160 = 12.5 %女生比男生少的人数÷男生人数= 百分之几(180 - 160 )÷ 180 ≈ 11.1%(2)纳税问题①要点:应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,应纳税额= 收入× 税率②例题:张强编写的书在出版后得到稿费1400 元,稿费收入扣除800 元后按14% 的税率缴纳个人所得税,张强应该缴纳个人所得税多少元?(1400 - 800 )×14% = 84 (元)(3)利息问题①要点:存入银行的钱叫做本金,取款时银行除还给本金外,另外付给的钱叫做利息,利息占本金的百分率叫做利率。
人教版小学数学三年级上册总复习知识点归纳及专项练习

-人教版小学数学三年级上册【知识点】第1单元时分秒1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。
2、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。
3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。
4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。
时针走1圈,分针要走(12)圈。
5、分针走1小格,秒针正好走(1)圈,秒针走1圈是(60)秒,也就是(1)分钟。
、6、时针从一个数走到下一个数是(1小时)。
分针从一个数走到下一个数是(5分钟)。
秒针从一个数走到下一个数是(5秒钟)。
7、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。
8、公式。
(每两个相邻的时间单位之间的进率是60)1时=60分 1分=60秒半时=30分 60分=1时 60秒=1分 30分=半时9、简单经过时间计算:(1)可以用钟面的数格计数法,(2)用算式:经过时间=结束时间-开始时间第2、4单元万以内数的加法和减法^1、口算计算:一般先算整百加减整百数、整十加减整十数,一位数加减一位数,再把结果相加。
(注意进位与退位)2、估算:把加数看成接近它的整十、整百的数,再进行口算。
3、万以内的加法笔算:相同数位对齐,从个位算起,哪位满十就要向前进1.4、万以内的减法笔算:相同数位对齐,从个位算起,哪一位不够减,就要从前一位退1当10;如果要从十位退1,而十位上是0,就要从百位退1当10,再从这个退下的10中退1到个位当10,这时十位上的数是9。
5、加法的验算:(1)用交换两个加数的位置,和相.(2)用和减去一个加数等于另一个加数。
减法的验算:(1)用差加减数等于被减数。
(2)用被减数减去差等于减数。
6、识记以下关系式:]加数+加数=和验算(1)交换加数位置和不变(2)和-加数=加数被减数-减数=差验算(1)被减数-差=减数(2)差+减数=被减数7、解决问题:计算连加、连减、加减混合运算时(没有小括号),要从左往左依次计算,有小括号的要先算括号内的数。
人教版小学五年级上册数学总复习分类讲解题_

人教版小学五年级上册数学总复习分类讲解题单位换算一、方法:大单位到小单位,乘进率。
小单位到大单位,除以进率。
换算单位主要注意;(1)想清楚进率(2)判断清楚是“大到小”,还是“小到大”。
记忆进率的巧办法:首先记住长度单位间的进率,面积单位间的进率就是长度单位间进率的平方。
如果你忘记了面积单位间的进率,可以用这种方法找到正确的进率。
二、具体方法介绍:(1) 37厘米=( )米 小到大,除以进率 37÷100=0.37(2) 0.035千克=( )克 大到小,乘进率 0.035×1000=35(3) 求6千克50克=( )千克时,可以这样想:把千克数( 6 )写在整数部分,把( 50 )克改写成( 50÷1000=0.05 )千克,合起来就是( 6.05 )千克。
(4)求2.15小时=( )小时( )分,可以这样想:整数部分的2就表示( 2 )小时,把0.15时改写成( 0.15×60=9 )分三、练习:(每道题要在题后列出算式)3千克150克=( )千克10千米700米=( )千米13元4角8分=( )元6米5厘米=( )米=( )厘米3吨700千克=( )千克65米7厘米=( )米8平方米65平方分米=( )平方米2.06千克=( )克210分=( )小时( )分35.9公顷=( )公顷( )平方米4平方千米=( )公顷1800公顷=( )平方千米9平方厘米=( )平方分米32000000平方米=( )公顷0.86千克=( )克4公顷500平方米=( )公顷4.5平方分米 =( )平方分米( )平方厘米9000平方米 =( )公顷1吨20千克=( )吨7.2平方千米 =( )公顷=( )平方米13.5米=( )分米=( )厘米1.25吨=( )吨( )千克图形面积计算一、基本练习:1、一个平行四边形底是 2.8米,高是0.5米,与它等底等高的三角形的面积是( )平方米。
小学数学-有答案人教版四年级下册期末数学复习《小数的加减法》专题讲义(知识归纳 典例讲解 同步测试)

小学数学-有答案-人教版四年级下册期末数学复习《小数的加减法》专题讲义(知识归纳+典例讲解+同步测试)一、选择题1. 两个数相加,一个数增加1.4,另一个数减少0.7,和()。
A.增加2.1B.增加0.7C.减少0.7二、填空题皮皮在用竖式计算两个一位小数的加法时,把数位从前面对齐了,得到的结果是67.7,如图,正确的结果是(________)。
三、判断题小数加减法中,小数点对齐就是相同数位上的数对齐。
________四、其他计算列竖式计算.3.1−1.9= 5.6+2.3=7.8+4.3=9.4−6.5= 2.6+4.9= 6.1−5.3=五、连线题蜜蜂采蜜。
(连一连)六、选择题下列算式中,得数小于1的是()。
A.3.6−2.8B.0.6+0.9C.4.2−2.7下列各数中,与10最接近的是().A.9.98B.10.101C.9.99D.10.001甲−3.8=乙−0.8,则甲()乙.A.大于B.小于C.等于D.无法确定小明用竖式计算1.68加一个一位小数时,把数的末尾对齐了,结果得到2.2,正确的结果应该是()。
A.0.52B.3.88C.6.88D.1.16两个小数相加,一个加数增加1.2,另一个加数减少5.8,和()。
A.增加4.6B.增加7C.减少4.6D.减少7甲数比乙数多1.89,甲数是12.03,乙数是()A.13.92B.9.14C.10.14D.9.41甲数与乙数的和比甲数多4.3,比乙数多1.07,则甲数比乙数少().A.3.23B.5.37C.2.238.465−4.365的得数中的0()。
A.可以去掉B.不能去掉C.不能确定小华在计算1.39加一个一位小数时,错误地把数的末尾对齐,结果得到1.84,正确的得数应该是()A.5.89B.4.5C.0.45D.5.27计算3−2.75+时,比较合理的方法是()A.把小数化成分数计算B.把分数化成小数计算C.以上两种方法都可以七、填空题奇思在计算13.5+A时,把A的小数点向右移动了一位,得出的结果是19.3,正确的结果是(________)。
人教版小学数学总复习知识点归纳讲解及练习大全和答案

小学数学总复习归类讲解及训练(一)主要内容求一个数比另一个数多(少)百分之几、纳税问题学习目标1、使学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。
2、使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。
3、使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。
4、初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。
5、培养和解决简单的实际问题的能力,体会生活中处处有数学。
考点分析1、一个数比另一个数多(少)百分之几 = 一个数比另一个数多(少)的量÷另一个数。
2、应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,应纳税额 = 收入×税率典型例题例1、(解决“求一个数比另一个数多百分之几”的实际问题)向阳客车厂原计划生产客车5000辆,实际生产5500辆。
实际比计划多生产百分之几?分析与解:要求“实际比计划多生产百分之几”,就是求实际比计划多生产的辆数占计划产量的百分之几,把原计划产量看作单位“1”。
两者之间的关系可用线段图表示。
计划产量5000辆实际比计划多的实际产量5500辆解答:方法1:5500 – 5000 = 500(辆)……实际比计划多生产500辆500 ÷ 5000 = 0.1 = 10%……实际比计划多生产百分之几方法2:5500 ÷ 5000 = 110%……实际产量相当于原计划的110%110% - 100% = 10%……实际比计划多生产百分之几答:实际比计划多生产10%。
例2、(解决“求一个数比另一个数少百分之几”的实际问题)向阳客车厂原计划生产客车5000辆,实际生产5500辆。
计划比实际少生产百分之几?分析与解:要求“计划比实际少生产百分之几”,就是求计划比实际少生产的辆数占实际产量的百分之几,把实际产量看作单位“1”。
精选人教版小学数学总复习归类讲解及训练

小学数学总复习归类讲解及训练(一)主要内容求一个数比另一个数多(少)百分之几、纳税问题学习目标1、使学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。
2、使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。
3、使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。
4、初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。
5、培养和解决简单的实际问题的能力,体会生活中处处有数学。
考点分析1、一个数比另一个数多(少)百分之几 = 一个数比另一个数多(少)的量÷另一个数。
2、应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,应纳税额 = 收入×税率典型例题例1、(解决“求一个数比另一个数多百分之几”的实际问题)向阳客车厂原计划生产客车5000辆,实际生产5500辆。
实际比计划多生产百分之几?分析与解:要求“实际比计划多生产百分之几”,就是求实际比计划多生产的辆数占计划产量的百分之几,把原计划产量看作单位“1”。
两者之间的关系可用线段图表示。
例2、(解决“求一个数比另一个数少百分之几”的实际问题)向阳客车厂原计划生产客车5000辆,实际生产5500辆。
计划比实际少生产百分之几?分析与解:要求“计划比实际少生产百分之几”,就是求计划比实际少生产的辆数占实际产量的百分之几,把实际产量看作单位“1”。
两者之间的关系可用线段图表示。
点评:想一想,在分数乘法应用题中的最基本的数量关系式:“单位1 ×分率 = 分率对应的量”,如果和百分数应用题结合起来,求一种量比另一种量多(少)百分之几,实际上就是求分率。
就用“多(少)的量÷单位1”。
例3、(难点突破)一筐苹果比一筐梨重20%,那么一筐梨就比一筐苹果轻20%分析与解:苹果比梨重20%,表示苹果比梨重的部分占梨的20%,把梨的质量看作单位“1”;而梨比苹果轻20%则表示梨比苹果轻的部分占苹果的20%,把苹果的质量看作单位“1”,两个单位“1”不同,切忌将两个问题混为一谈。
人教版六年级上册数学总复习知识点和典型例题

小学六年级上册数学复习资料第一单元:位置与方向(一)用数对表示位置 如:第三列第二行 表示为(3,2)。
一般情况下表示为(列,行) 位置与方向(二)用方向和距离表示位置同一方向的不同描述:小明在小华的东偏北30°方向上,距离15米。
也可以说成:小明在小华的 方向上,距离 。
相对位置:小明在小华的东偏北30°方向上,距离15米。
小华在小明的 方向上,距离 。
第二单元:分数乘法1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
(如:75×4表示4个75是多少或75的4倍是多少。
) 2、一个数乘分数的意义就是求这个数的几分之几是多少。
(如:6×53表示6的53是多少; 65×52表示65的52是多少。
) 分数乘法的计算法则:分子相乘的积作分子,分母相乘的积作分母。
(能约分的先约分) 4、 小于1的数,积小于这个数,一个数(0除外) 乘 等于1的数,积等于这个数, 大于1的数,积大于这个数。
5、乘积是1的两个数互为倒数。
1的倒数是1,0没有倒数。
[典型练习题](1)38 +38 +38 +38 =( )×( )=( ) (2)12个 56 是( );24的 23 是( )。
(3)边长 12 分米的正方形的周长是( )分米。
第三单元:分数除法1、分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。
2、分数除法的计算法则:被除数除以除数(0除外)等于被除数乘除数的倒数。
3、一个数除以真分数,商大于这个数(如:4÷21﹥4); 一个数除以大于1 的假分数,商小于这个数 (如:3÷ 23﹤3)。
4、两个数相除又叫做两个数的比。
在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比 的前项除以后项所得的商,叫做比值。
比值通常用分数表示,也可以用小数或整数表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学总复习专题讲解及训练主要内容比例尺、面积变化、确定位置学习目标1、使学生在具体情境中理解比例尺的意义,能看懂线段比例尺。
会求一幅图的比例尺,能按给定的比例尺求相应的实际距离或图上距离,会把数值比例尺与线段比例尺进行转化。
2、使学生在经历“猜想-验证”的过程中,自主发现平面图形按比例放大后面积的变化规律。
3、在解决问题的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略。
4、使学生在具体情境中初步理解北偏东(西)、南偏东(西)的含义,初步掌握用方向和距离确定物体位置的方法,能根据给定方向和距离在平面图上确定物体的位置或描述简单的行走路线。
5、使学生在用方向和距离确定物体位置的过程中,进一步培养观察能力、识图能力和有条理的进行表达的能力。
发展空间观念。
6、使学生积极参与观察、测量、画图、交流等活动,获得成功的体验,体会数学知识与生活实际的联系,拓展知识视野,激发学习兴趣。
考点分析1、图上距离和实际距离的比,叫做这幅图的比例尺。
2、比例尺 = 实际距离图上距离,比例尺有两种形式:数值比例尺和线段比例尺。
3、把一个平面图形按照一定的倍数(n )放大或缩小到原来的几分之一(n 1)后,放大(或缩小)后与放大(或缩小)前图形的面积比是n ²:1(或1:n ²)。
4、知道 了物体的方向和距离,就能确定物体的位置。
5、根据物体的位置,结合比例尺的相关知识,可以在平面图上画出物体的位置。
画的时候先按方向画一条射线,在根据图上距离找出点所在的位置。
6、描述行走路线要依次逐段地说,每一段都应说出行走的方向与路程。
典型例题:例1、(认识比例尺)王伯伯家有一块长方形的菜地,长40米,宽30米。
把这块菜地按一定的比例缩小,画在平面图上长4厘米,宽3厘米。
你能分别写出菜地长、宽的图上距离和实际距离的比吗?分析与解:图上距离和实际距离的单位不同,先要统一成相同的单位,写出比后再化简。
40米 = 4000厘米 3厘米 = 0.03米40004 = 10001 3003.0 = 30003 = 10001 图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离 : 实际距离 = 比例尺或实际距离图上距离 = 比例尺 图上距离和实际距离的比是1:1000,这幅图的比例尺是1:1000,也可写成10001,仍读作1比1000。
点评:求一幅地图的比例尺是一种比较简单的题目。
做的时候唯一要注意的就是末尾0的问题:一是米、千米化成厘米的时候要在米、千米那个数的末尾加上2、5个0;二是在求比例尺的结果时要注意0的个数。
多数一数、想一想,是不会有错的。
例2、(对比例尺的理解及比例尺的两种表示方法)比例尺1:1000表示图上距离是实际距离的几分之几?实际距离是图上距离的多少倍?图上1厘米表示实际距离多少米?分析与解:比例尺1:1000表示图上距离是实际距离的10001,实际距离是图上距离的1000倍,图上1厘米的距离代表实际距离1000厘米,即10米。
像形如1:1000这样的比例尺叫做数值比例尺。
比例尺1:1000还可以这样表示0 10 20 30米 ,这是线段比例尺,它表示图上1厘米的距离代表实际距离10米。
例3、一个手表零件长2毫米,画在一幅图上长4厘米,这幅图的比例尺是多少? 错误解法:4厘米 = 40毫米 2 : 40 = 1 : 20思路分析:无论什么样的图纸,比例尺始终是图上距离与实际距离的比,根据比例尺的定义,用“图上距离 : 实际距离 = 比例尺”去求。
正确解答:4厘米 = 40毫米 40 : 2 = 20 : 1点评:比例尺通常情况下都应该写成前项是1的比。
但比例尺的作用除了把实际距离缩小,还可以把实际距离扩大,这样比例尺的前项就比后项大,这时后项通常化成1。
在解答时,只要坚持好“图上距离 : 实际距离 = 比例尺”,图上距离在前就可以了。
例4、(根据比例尺求图上距离或实际距离)在比例尺是600001的地图上,量得甲、乙两地的距离是2.5厘米。
两地的实际距离是多少米? 分析与解:方法1:比例尺是600001,说明实际距离是图上距离的60000倍。
2.5×60000 = 150000(厘米)150000(厘米)= 1500米方法2:比例尺是600001,也就是图上1厘米的距离代表实际距离60000厘米,即600米。
2.5×600 = 1500(米)方法3:根据 实际距离图上距离 = 比例尺,可以用“图上距离 ÷ 比例尺”或“解比例”的方法来求实际距离。
2.5 ÷600001 = 2.5×60000 = 150000(厘米)= 1500米 解:设两地的实际距离是ⅹ厘米。
χ5.2 = 600001 1ⅹ = 2.5 × 60000ⅹ = 150000150000(厘米)= 1500米答:两地的实际距离是1500厘米。
例5、(平面图形按照一定的比放大后,面积扩大了比的平方倍)下面的大长方形是由一个小长方形按比例放大后得到的图形。
分别量出它们的长和宽,算算大长方形与小长方形面积的比是几比几。
分析与解:量得小长方形的长是2.5厘米,宽是1厘米;大长方形的长是7.5厘米,宽是3厘米。
大长方形与小长方形长的比是7.5 : 2.5 = 3 : 1,宽的比是3 : 1。
小长方形的面积大长方形的面积 = 15.235.7⨯⨯ = 5.25.7 × 13 = 9 : 1 = 3² : 1 答:大长方形与小长方形面积的比是9 : 1。
例6、(认识北偏东(西)若干度、南偏东(西)若干度等方向)如图,一辆汽车向正北方向行驶,你能说出商场和书店分别在汽车的什么方向吗?N商场北45º60º书店0 3 6 9千米汽车分析与解:从图上可以看出,以汽车为中心,书店在汽车的东北方向,商场在汽车的西北方向。
怎样才能更准确地表示它们的位置呢?东北方向也叫做北偏东方向,书店在汽车的北偏东60º方向。
西北方向也叫做北偏西方向,商场在汽车的北偏西45º方向。
答:书店在汽车的北偏东60º方向,商场在汽车的北偏西45º方向。
例7、(知道了物体的方向和距离,才能确定物体的具体位置)量出上图中书店到汽车的图上距离,根据比例尺算一算,书店在汽车北偏东60º方向的多少千米处?商场呢?分析与解:从图中量得书店和商场到汽车的图上距离分别是1.2厘米和2.3厘米,根据比例尺,图上距离1厘米代表实际距离3千米,分别算出实际距离。
1.2 × 3 = 3.6(千米)┄┄┄书店2.3 × 3 = 6.9(千米)┄┄┄商场答:书店在汽车北偏东60º方向的3.6千米处,商场在汽车北偏西45º方向的6.9千米处。
点评:只有在方向词的后面添上角的度数,才能准确描述物体所在的位置。
确定方向时,一定要先确定好南或北,再看是偏东还是偏西,如果图中没有画线,要先连线。
算实际距离就根据前面比例尺的相关知识去求。
例8、(辨析)书店在汽车的北偏东60º方向,表示汽车也在书店的北偏东60º方向。
分析与解:书店在汽车的北偏东60º方向,是以汽车为中心,由北向东旋转60º;而以书店为中心,汽车在书店的西南方向,即南偏西60º方向。
书店在汽车的北偏东60º方向,表示汽车在书店的南偏西60º方向。
例9、(根据给定的方向和距离,有序地确定物体的具体位置)海面上有一座灯塔,灯塔北偏西30º方向30千米处是凤凰岛。
N北W西东E千米南S你能在图上指出凤凰岛大约在什么位置吗?分析与解:(1)先确定北偏西30º的方向,画一条射线。
(2)再算出灯塔到凤凰岛的图上距离是多少厘米。
30 ÷ 10 = 3(厘米)点评:在表示凤凰岛的具体位置时,先要画出表示方向的射线,再确定灯塔到凤凰岛的图上距离。
且在画表示方向的射线时,应从表示灯塔的点开始画起,并注意正确摆好量角器。
例10、(用方向和距离描述简单的行走路线)下图是某市旅游1号车行驶的线路图,请根据线路图填空。
(1)旅游1号车从起点站出发,向()行驶到达青水公园,再向()偏()()的方向行()千米到达抗战纪念碑。
(2)由绿博园向南偏()()的方向行()千米到达购物中心,再向北偏()()的方向行()千米到达人民公园。
分析与解:先找准方向,再说出具体的路程。
(1)旅游1号车从起点站出发,向(东)行驶到达青水公园,再向(北)偏(东)(40º)的方向行(1.8 )千米到达抗战纪念碑。
(2)由绿博园向南偏(东)(60º)的方向行(1.7)千米到达购物中心,再向北偏(东)(70º)的方向行(1.5)千米到达人民公园。
点评:在进行描述的时候,一定要先说清楚方向再说路程。
说方向的时候为了说清楚,通常情况下不用东北、西北、东南、西南等说法,而用南偏东、南偏西、北偏东、北偏西多少度的说法更为准确。