【推荐】小学数学总复习专题讲解及训练全套
小学数学六年级毕业总复习:全册专题讲解和训练【推荐】

注:此文档为2020年小学数学总复习全套精选资料,含专题讲解和专项训练,附参考答案,助您成功。
小学数学总复习专题讲解及训练主要内容比例尺、面积变化、确定位置学习目标1、使学生在具体情境中理解比例尺的意义,能看懂线段比例尺。
会求一幅图的比例尺,能按给定的比例尺求相应的实际距离或图上距离,会把数值比例尺与线段比例尺进行转化。
2、使学生在经历“猜想-验证”的过程中,自主发现平面图形按比例放大后面积的变化规律。
3、在解决问题的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略。
4、使学生在具体情境中初步理解北偏东(西)、南偏东(西)的含义,初步掌握用方向和距离确定物体位置的方法,能根据给定方向和距离在平面图上确定物体的位置或描述简单的行走路线。
5、使学生在用方向和距离确定物体位置的过程中,进一步培养观察能力、识图能力和有条理的进行表达的能力。
发展空间观念。
6、使学生积极参与观察、测量、画图、交流等活动,获得成功的体验,体会数学知识与生活实际的联系,拓展知识视野,激发学习兴趣。
考点分析1、图上距离和实际距离的比,叫做这幅图的比例尺。
2、比例尺 =实际距离图上距离,比例尺有两种形式:数值比例尺和线段比例尺。
3、把一个平面图形按照一定的倍数(n )放大或缩小到原来的几分之一(n1)后,放大(或缩小)后与放大(或缩小)前图形的面积比是n ²:1(或1:n ²)。
4、知道 了物体的方向和距离,就能确定物体的位置。
5、根据物体的位置,结合比例尺的相关知识,可以在平面图上画出物体的位置。
画的时候先按方向画一条射线,在根据图上距离找出点所在的位置。
6、描述行走路线要依次逐段地说,每一段都应说出行走的方向与路程。
典型例题:例1、(认识比例尺)王伯伯家有一块长方形的菜地,长40米,宽30米。
把这块菜地按一定的比例缩小,画在平面图上长4厘米,宽3厘米。
小学数学六年级毕业总复习:专题讲解及训练-全套

注:此文档为2020年小学数学总复习全套精选资料,含专题讲解和专项训练,附参考答案,助您成功。
小学数学总复习专题讲解及训练主要内容比例尺、面积变化、确定位置学习目标1、使学生在具体情境中理解比例尺的意义,能看懂线段比例尺。
会求一幅图的比例尺,能按给定的比例尺求相应的实际距离或图上距离,会把数值比例尺与线段比例尺进行转化。
2、使学生在经历“猜想-验证”的过程中,自主发现平面图形按比例放大后面积的变化规律。
3、在解决问题的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略。
4、使学生在具体情境中初步理解北偏东(西)、南偏东(西)的含义,初步掌握用方向和距离确定物体位置的方法,能根据给定方向和距离在平面图上确定物体的位置或描述简单的行走路线。
5、使学生在用方向和距离确定物体位置的过程中,进一步培养观察能力、识图能力和有条理的进行表达的能力。
发展空间观念。
6、使学生积极参与观察、测量、画图、交流等活动,获得成功的体验,体会数学知识与生活实际的联系,拓展知识视野,激发学习兴趣。
考点分析1、图上距离和实际距离的比,叫做这幅图的比例尺。
2、比例尺 =实际距离图上距离,比例尺有两种形式:数值比例尺和线段比例尺。
3、把一个平面图形按照一定的倍数(n )放大或缩小到原来的几分之一(n1)后,放大(或缩小)后与放大(或缩小)前图形的面积比是n ²:1(或1:n ²)。
4、知道 了物体的方向和距离,就能确定物体的位置。
5、根据物体的位置,结合比例尺的相关知识,可以在平面图上画出物体的位置。
画的时候先按方向画一条射线,在根据图上距离找出点所在的位置。
6、描述行走路线要依次逐段地说,每一段都应说出行走的方向与路程。
典型例题:例1、(认识比例尺)王伯伯家有一块长方形的菜地,长40米,宽30米。
把这块菜地按一定的比例缩小,画在平面图上长4厘米,宽3厘米。
小学数学总复习归类讲解及训练人教版-推荐

人生无草稿,所以每一个字每一道题目都要认真学习,每一天每一年(一)一、知识点回顾主要内容求一个数比另一个数多(少)百分之几、纳税问题学习目标1、使学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。
2、使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。
3、使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。
4、初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。
5、培养和解决简单的实际问题的能力,体会生活中处处有数学。
考点分析1、一个数比另一个数多(少)百分之几= 一个数比另一个数多(少)的量÷另一个数。
2、应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,应纳税额= 收入×税率二、典型例题例1、(解决“求一个数比另一个数多百分之几”的实际问题)向阳客车厂原计划生产客车5000辆,实际生产5500辆。
实际比计划多生产百分之几?例2、(解决“求一个数比另一个数少百分之几”的实际问题)向阳客车厂原计划生产客车5000辆,实际生产5500辆。
计划比实际少生产百分之几?点评:想一想,在分数乘法应用题中的最基本的数量关系式:“单位1 ×分率= 分率对应的量”,如果和百分数应用题结合起来,求一种量比另一种量多(少)百分之几,实际上就是求分率。
就用“多(少)的量÷单位1”。
例3、(难点突破)一筐苹果比一筐梨重20%,那么一筐梨就比一筐苹果轻20%点评:在求一个数比另一个数多(少)百分之几的百分数应用题中,关键还是要找准单位“1”的量。
从结论可以得出“一个数比另一个数多百分之几,另一个数就比一个数少百分之几。
”这句话是错的。
为什么呢?把两个百分之几比较一下,就可以得出这两个百分之几对应的量是一个数比另一个数多的量或另一个数比一个数少的量,而这两种说法是相同的,也就表示的是同一个量;而单位“1”一个是梨,一个是苹果,所以这两个百分之几是不可能相等的。
小学数学总复习教案知识点+习题

小学数学总复习教案知识点+习题一、数的概念复习1. 知识点:(1) 自然数、整数、分数、小数的概念及性质;(2) 数的分类:正数、负数、零;(3) 数的比较:大小比较、顺序比较;(4) 数的运算:加、减、乘、除、乘方、开方等基本运算方法及运算定律。
2. 习题:(1) 填空题:1、2、3、4、5;(2) 选择题:A、B、C、D;(3) 判断题:对或错;(4) 应用题:1、2、3。
二、几何图形复习1. 知识点:(1) 平面几何图形:三角形、四边形、五边形、六边形等;(2) 立体几何图形:正方体、长方体、圆柱体、圆锥体等;(3) 图形的性质:边长、面积、体积、角度、对角线等;(4) 图形的变换:平移、旋转、轴对称、镜像等。
2. 习题:(1) 填空题:1、2、3、4、5;(2) 选择题:A、B、C、D;(3) 判断题:对或错;(4) 应用题:1、2、3。
三、量的计量复习1. 知识点:(1) 长度的计量:米、厘米、毫米等;(2) 面积的计量:平方米、平方厘米、平方毫米等;(3) 体积的计量:立方米、立方厘米、立方毫米等;(4) 质量的计量:克、千克、吨等;(5) 时间的计量:时、分、秒等。
2. 习题:(1) 填空题:1、2、3、4、5;(2) 选择题:A、B、C、D;(3) 判断题:对或错;(4) 应用题:1、2、3。
四、方程与比例复习1. 知识点:(1) 方程的概念:一元一次方程、一元二次方程等;(2) 解方程的方法:加减法、乘除法、代入法、公式法等;(3) 比例的概念:正比例、反比例、比例尺等;(4) 解比例的方法:交叉相乘法、等比例法等。
2. 习题:(1) 填空题:1、2、3、4、5;(2) 选择题:A、B、C、D;(4) 应用题:1、2、3。
五、统计与概率复习1. 知识点:(1) 统计的基本概念:平均数、中位数、众数等;(2) 数据的收集与处理:调查、图表、频数等;(3) 概率的基本概念:随机事件、必然事件、不可能事件等;(4) 概率的计算方法:古典概率、条件概率、联合概率等。
小学数学总复习专题讲解及训练全套(带答案)

小学数学总复习专题讲解及训练(一)主要内容求一个数比另一个数多(少)百分之几、纳税问题学习目标1、使学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。
2、使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。
3、使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。
4、初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。
5、培养和解决简单的实际问题的能力,体会生活中处处有数学。
考点分析1、一个数比另一个数多(少)百分之几 = 一个数比另一个数多(少)的量÷另一个数。
2、应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,应纳税额 = 收入×税率典型例题例1、(解决“求一个数比另一个数多百分之几”的实际问题)向阳客车厂原计划生产客车5000辆,实际生产5500辆。
实际比计划多生产百分之几?分析与解:要求“实际比计划多生产百分之几”,就是求实际比计划多生产的辆数占计划产量的百分之几,把原计划产量看作单位“1”。
两者之间的关系可用线段图表示。
计划产量5000辆实际比计划多的实际产量5500辆解答:方法1:5500 – 5000 = 500(辆)……实际比计划多生产500辆500 ÷ 5000 = 0.1 = 10%……实际比计划多生产百分之几方法2:5500 ÷ 5000 = 110%……实际产量相当于原计划的110%110% - 100% = 10%……实际比计划多生产百分之几答:实际比计划多生产10%。
例2、(解决“求一个数比另一个数少百分之几”的实际问题)向阳客车厂原计划生产客车5000辆,实际生产5500辆。
计划比实际少生产百分之几?分析与解:要求“计划比实际少生产百分之几”,就是求计划比实际少生产的辆数占实际产量的百分之几,把实际产量看作单位“1”。
小学数学六年级毕业总复习:专题讲解及训练(全套)-精编

注:此文档为2020年小学数学总复习全套精选资料,含专题讲解和专项训练,附参考答案,助您成功。
小学数学总复习专题讲解及训练主要内容比例尺、面积变化、确定位置学习目标1、使学生在具体情境中理解比例尺的意义,能看懂线段比例尺。
会求一幅图的比例尺,能按给定的比例尺求相应的实际距离或图上距离,会把数值比例尺与线段比例尺进行转化。
2、使学生在经历“猜想-验证”的过程中,自主发现平面图形按比例放大后面积的变化规律。
3、在解决问题的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略。
4、使学生在具体情境中初步理解北偏东(西)、南偏东(西)的含义,初步掌握用方向和距离确定物体位置的方法,能根据给定方向和距离在平面图上确定物体的位置或描述简单的行走路线。
5、使学生在用方向和距离确定物体位置的过程中,进一步培养观察能力、识图能力和有条理的进行表达的能力。
发展空间观念。
6、使学生积极参与观察、测量、画图、交流等活动,获得成功的体验,体会数学知识与生活实际的联系,拓展知识视野,激发学习兴趣。
考点分析1、图上距离和实际距离的比,叫做这幅图的比例尺。
2、比例尺 =实际距离图上距离,比例尺有两种形式:数值比例尺和线段比例尺。
3、把一个平面图形按照一定的倍数(n )放大或缩小到原来的几分之一(n1)后,放大(或缩小)后与放大(或缩小)前图形的面积比是n ²:1(或1:n ²)。
4、知道 了物体的方向和距离,就能确定物体的位置。
5、根据物体的位置,结合比例尺的相关知识,可以在平面图上画出物体的位置。
画的时候先按方向画一条射线,在根据图上距离找出点所在的位置。
6、描述行走路线要依次逐段地说,每一段都应说出行走的方向与路程。
典型例题:例1、(认识比例尺)王伯伯家有一块长方形的菜地,长40米,宽30米。
把这块菜地按一定的比例缩小,画在平面图上长4厘米,宽3厘米。
2023年小学数学总复习专题讲解及训练全套

小学数学总复习专题讲解及训练(一)一、圆柱体积1.求下面各圆柱旳体积。
(1)底面积0.6平方米, 高0.5米(2)底面半径是3厘米, 高是5厘米。
(3)底面直径是8米, 高是10米。
(4)底面周长是25.12分米, 高是2分米。
2.有两个底面积相等旳圆柱, 第一种圆柱旳高是第二个圆柱旳4/7。
第一种圆柱旳体积是24立方厘米, 第二个圆柱旳旳体积比第一种圆柱多多少立方厘米?3.在直径0.8米旳水管中, 水流速度是每秒2米, 那么1分钟流过旳水有多少立方米?4.牙膏出口处直径为5毫米, 小红每次刷牙都挤出1厘米长旳牙膏。
这支牙膏可用36次。
该品牌牙膏推出旳新包装只是将出口处直径改为6毫米, 小红还是按习惯每次挤出1厘米长旳牙膏。
这样, 这一支牙膏只能用多少次?5.一根圆柱形钢材, 截下1.5米, 量得它旳横截面旳直径是4厘米。
假如每立方厘米钢重7.8克, 截下旳这段钢材重多少公斤?(得数保留整公斤数。
)6.把一种棱长6分米旳正方体木块, 削成一种最大旳一圆柱体, 这个圆柱旳体积是多少立方分米?7、右图是一种圆柱体, 假如把它旳高截短3厘米, 它旳表面积减少94.2平方厘米。
这个圆柱体积减少多少立方厘米?二、圆锥体积 1.选择题。
(1)一种圆锥体旳体积是a 立方米, 和它等底等高旳圆柱体体积是( ) ①31a 立方米 ② 3a 立方米 ③ 9立方米 (2)把一段圆钢切削成一种最大旳圆锥体, 圆柱体体积是6立方米, 圆锥体体积是( )立方米① 6立方米 ② 3立方米 ③ 2立方米 2.判断对错。
(1)圆柱旳体积相称于圆锥体积旳3倍 ………( )(2)一种圆柱体木料, 把它加工成最大旳圆锥体, 削去旳部分旳体积和圆锥旳体积比是2 : 1 ………( )(3)一种圆柱和圆锥等底等高, 体积相差21立方厘米, 圆锥旳体积是7立方厘米………()3、填空(1)一种圆柱体积是18立方厘米, 与它等底等高旳圆锥旳体积是()立方厘米。
小学数学六年级毕业总复习:专题讲解及训练-全套【最新精品】

注:此文档为2020年小学数学总复习全套精选资料,含专题讲解和专项训练,附参考答案,助您成功。
小学数学总复习专题讲解及训练主要内容比例尺、面积变化、确定位置学习目标1、使学生在具体情境中理解比例尺的意义,能看懂线段比例尺。
会求一幅图的比例尺,能按给定的比例尺求相应的实际距离或图上距离,会把数值比例尺与线段比例尺进行转化。
2、使学生在经历“猜想-验证”的过程中,自主发现平面图形按比例放大后面积的变化规律。
3、在解决问题的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略。
4、使学生在具体情境中初步理解北偏东(西)、南偏东(西)的含义,初步掌握用方向和距离确定物体位置的方法,能根据给定方向和距离在平面图上确定物体的位置或描述简单的行走路线。
5、使学生在用方向和距离确定物体位置的过程中,进一步培养观察能力、识图能力和有条理的进行表达的能力。
发展空间观念。
6、使学生积极参与观察、测量、画图、交流等活动,获得成功的体验,体会数学知识与生活实际的联系,拓展知识视野,激发学习兴趣。
考点分析1、图上距离和实际距离的比,叫做这幅图的比例尺。
2、比例尺 =实际距离图上距离,比例尺有两种形式:数值比例尺和线段比例尺。
3、把一个平面图形按照一定的倍数(n )放大或缩小到原来的几分之一(n1)后,放大(或缩小)后与放大(或缩小)前图形的面积比是n ²:1(或1:n ²)。
4、知道 了物体的方向和距离,就能确定物体的位置。
5、根据物体的位置,结合比例尺的相关知识,可以在平面图上画出物体的位置。
画的时候先按方向画一条射线,在根据图上距离找出点所在的位置。
6、描述行走路线要依次逐段地说,每一段都应说出行走的方向与路程。
典型例题:例1、(认识比例尺)王伯伯家有一块长方形的菜地,长40米,宽30米。
把这块菜地按一定的比例缩小,画在平面图上长4厘米,宽3厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学总复习专题讲解及训练(一)一、圆柱体积1、求下面各圆柱的体积。
(1)底面积0.6平方米,高0.5米(2)底面半径是3厘米,高是5厘米。
(3)底面直径是8米,高是10米。
(4)底面周长是25.12分米,高是2分米。
2、有两个底面积相等的圆柱,第一个圆柱的高是第二个圆柱的4/7。
第一个圆柱的体积是24立方厘米,第二个圆柱的的体积比第一个圆柱多多少立方厘米?3、在直径0.8米的水管中,水流速度是每秒2米,那么1分钟流过的水有多少立方米?4、牙膏出口处直径为5毫米,小红每次刷牙都挤出1厘米长的牙膏。
这支牙膏可用36次。
该品牌牙膏推出的新包装只是将出口处直径改为6毫米,小红还是按习惯每次挤出1厘米长的牙膏。
这样,这一支牙膏只能用多少次?5、一根圆柱形钢材,截下1.5米,量得它的横截面的直径是4厘米。
如果每立方厘米钢重7.8克,截下的这段钢材重多少千克?(得数保留整千克数。
)6、把一个棱长6分米的正方体木块,削成一个最大的一圆柱体,这个圆柱的体积是多少立方分米?7、右图是一个圆柱体,如果把它的高截短3厘米,它的表面积减少94.2平方厘米。
这个圆柱体积减少多少立方厘米?二、圆锥体积1、选择题。
(1)一个圆锥体的体积是a 立方米,和它等底等高的圆柱体体积是( ) ①31a 立方米 ② 3a 立方米 ③ 9立方米 (2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是( )立方米① 6立方米 ② 3立方米 ③ 2立方米2、判断对错。
(1)圆柱的体积相当于圆锥体积的3倍 ………( )(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1 ………( )(3)一个圆柱和圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米………( )3、填空(1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是( )立方厘米。
(2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是()立方厘米。
(3)一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。
圆柱的体积是( )立方厘米,圆锥的体积是( )立方厘米。
4、求下列圆锥体的体积。
(1)底面半径4厘米,高6厘米。
(2)底面直径6分米,高8厘米。
(3)底面周长31.4厘米,高12厘米。
5、一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。
这堆沙约重多少吨?6、一个近似圆锥形的麦堆,底面周长12.56米,高1.2米,如果每立方米小麦重750千克,这堆小麦重多少千克?7、一个长方体容器,长5厘米,宽4厘米,高3厘米,装满水后将水全部倒入一个高6厘米的圆锥形的容器内刚好装满。
这个圆锥形容器的底面积是多少平方厘米?参考答案:一、圆柱体积1、求下面各圆柱的体积。
(1)底面积0.6平方米,高0.5米 0.6 × 0.5 = 0.3(立方米)(2)底面半径是3厘米,高是5厘米。
3.14 ×3 ²× 5 = 141.3(立方厘米)(3)底面直径是8米,高是10米。
3.14 ×(8÷2)²×10 = 502.4(立方米)(4)底面周长是25.12分米,高是2分米。
3.14 ×(25.12÷3.14÷2)²× 2 = 100.48(立方分米)2、有两个底面积相等的圆柱,第一个圆柱的高是第二个圆柱的4/7。
第一个圆柱的体积是24立方厘米,第二个圆柱的的体积比第一个圆柱多多少立方厘米?底面积相等的两个圆柱,第一个圆柱的高是第二个圆柱的4/7,第一个圆柱的体积也就是是第二个圆柱的4/7。
24 ÷ 4/7 – 24 = 18(立方厘米)答:第二个圆柱的的体积比第一个圆柱多18立方厘米。
3、在直径0.8米的水管中,水流速度是每秒2米,那么1分钟流过的水有多少立方米?3.14 ×(0.8÷2)²× 2 × 60 = 60.288(立方米)答:那么1分钟流过的水有60.288立方米。
4、牙膏出口处直径为5毫米,小红每次刷牙都挤出1厘米长的牙膏。
这支牙膏可用36次。
该品牌牙膏推出的新包装只是将出口处直径改为6毫米,小红还是按习惯每次挤出1厘米长的牙膏。
这样,这一支牙膏只能用多少次?牙膏体积:1厘米 = 10毫米3.14 ×(5÷2)²× 10 × 36 = 7065(立方毫米)7065 ÷ [3.14 ×(6÷2)²× 10] = 25(次)答:这样,这一支牙膏只能用25次。
5、一根圆柱形钢材,截下1.5米,量得它的横截面的直径是4厘米。
如果每立方厘米钢重7.8克,截下的这段钢材重多少千克?(得数保留整千克数。
)1.5米 = 150厘米3.14 ×(4÷2)²× 150 × 7.8 = 14695.2(克)= 14.6952(千克)≈15(千克)答:截下的这段钢材重15千克。
6、把一个棱长6分米的正方体木块,削成一个最大的一圆柱体,这个圆柱的体积是多少立方分米?3.14 ×(6÷2)²× 6 = 169.56(立方分米)答:这个圆柱的体积是169.56立方分米。
7、右图是一个圆柱体,如果把它的高截短3厘米,它的表面积减少94.2平方厘米。
这个圆柱体积减少多少立方厘米?底面周长:94.2÷3 = 31.4厘米3.14 ×(31.4÷3.14÷2)²× 3 = 235.5(立方厘米)答:这个圆柱体积减少235.5立方厘米。
二、圆锥体积1、选择题。
(1)一个圆锥体的体积是a 立方米,和它等底等高的圆柱体体积是( ② ) ①31a 立方米 ② 3a 立方米 ③ 9立方米 (2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是( ③ )立方米① 6立方米 ② 3立方米 ③ 2立方米2、判断对错。
(1)圆柱的体积相当于圆锥体积的3倍 ………( × )(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1 ………( √ )(3)一个圆柱和圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米………( × )3、填空(1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是( 6 )立方厘米。
(2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是(54)立方厘米。
(3)一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。
圆柱的体积是( 108 )立方厘米,圆锥的体积是( 36 )立方厘米。
4、求下列圆锥体的体积。
(1)底面半径4厘米,高6厘米。
31×3.14 ×4 ²×6 = 100.48(立方厘米) (2)底面直径6分米,高8厘米。
31×3.14×(60÷2)²×8 = 7536(立方厘米) (3)底面周长31.4厘米,高12厘米。
31×3.14×(31.4÷3.14÷2)²×12 = 314(立方厘米) 5、一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。
这堆沙约重多少吨?31×3.14 ×2 ²×1.5×1.8 = 11.304(吨) 答:这堆沙约重11.304吨。
6、一个近似圆锥形的麦堆,底面周长12.56米,高1.2米,如果每立方米小麦重750千克,这堆小麦重多少千克?31×3.14×(12.56÷3.14÷2)²×1.2 ×750 = 3768(千克) 答:这堆小麦重3768千克。
7、一个长方体容器,长5厘米,宽4厘米,高3厘米,装满水后将水全部倒入一个高6厘米的圆锥形的容器内刚好装满。
这个圆锥形容器的底面积是多少平方厘米?5 × 4 × 3 = 60(立方厘米)60 × 3 ÷ 6 = 30(平方厘米)答:这个圆锥形容器的底面积是30平方厘米小学数学总复习专题讲解及训练(二)主要内容比例的意义和基本性质学习目标1、使学生初步理解图形的放大和缩小,能利用方格纸按一定比例将简单图形放大或缩小,初步体会图形的相似,进一步发展空间观念。
2、使学生联系图形的放大和缩小理解比例的意义和作用,认识比例的“项”、“内项”和“外项”;理解并掌握比例的基本性质,会应用比例的基本性质解比例。
3、使学生在认识比例、应用比例的过程中,进一步体会不同领域数学内容的内在联系,增强用数和图形描述现实问题的意义和能力,丰富解决问题的策略,发展对数学的积极情感。
考点分析1、把一个图形按一定比放大或缩小,就是把它的每条边按一定的比放大或缩小。
2、表示两个比相等的式子叫做比例。
3、组成比例的四个数,叫做比例的项。
两端的两项叫做比例的外项,中间的两项叫做比例的内项。
4、在比例里,两个外项的积等于两个内项的积。
这叫做比例的基本性质。
5、根据比例的基本性质,如果已知比例中的任意三项,就可以求出这个比例中的另一个未知项。
求比例的未知项,叫做解比例。
典型例题例1、(把图形按某个比相应放大或缩小,形状没有改变,只是大小变了)A BC(1)长方形A 的长是1.5厘米,宽是1厘米;长方形B 的长是3厘米,宽是2厘米。
这两个长方形的长有什么关系?宽呢?(2)如果要把长方形A 按 1:2的比缩小,长和宽应是原来的几分之几?各是多少? 分析与解:(1)长方形B 的长是长方形A 的2倍,宽也是长方形A 的2倍。
或者说长方形B 和长方形A 长的比是2:1,宽的比也是2:1。
把长方形的每条边放大到原来的2倍,放大后的长方形的长和宽与原来长方形的比是2:1,就是把长方形A 的长和宽按2:1的比进行放大。
(2)把长方形A 按1:2的比缩小后为长方形C ,长、宽缩小为原来的21,图C 的长是0.75厘米,图C 的宽是0.5厘米。
由此可见,放大或缩小前后图形形状没有改变,还是长方形,只是大小变了。
例2、(根据指定的比,将图形按要求放大或缩小)先按3:2的比画出长方形A 放大后的图形B ,再按1:2的比画出长方形A 缩小后的图形C 。
(1)图B 的长、宽各是几格?(2)图C 呢?(3)观察这三幅图形,你有什么发现? ABC分析与解:(1)按3:2的比将长方形A 放大,即将长方形A 的长与宽分别扩大1.5倍,那么图B 的长为6×1.5 = 9格,宽为4×1.5 = 6格。