输电线路的继电保护方案设计书

合集下载

电力系统继电保护课程设计-输电线路方向电流保护设计

电力系统继电保护课程设计-输电线路方向电流保护设计

电力系统继电保护课程设计-输电线路方向电流保护设计电力系统机电保护课程设计论文设计课题电力系统继电保护课程设计论文题目输电线路方向电流保护设计学部专业电气工程及其自动化班级学号学生姓名指导教师年月日广东工业大学华立学院课程设计(论文)任务书一、课程设计(论文)的内容输电线路方向电流保护设计二、设计(论文)的要求与数据1、设计技术参数:,20,3/1151Ω==G X kV E φ,12,1232Ω=Ω=G G X XL1=L2=60km,L3=50km,LB-C=40km,LC-D=50km,LD-E=20km,线路阻抗0.4Ω/km,2.1=I rel K ,=∏rel K 15.1=I ∏relK , 最大负荷电流IB-C.Lmax=360A,IC-D.Lmax=210A, ID-E.Lmax=110A,2、、统接线图如图:三、课程设计(论文)应完成的工作1、值电抗计算、短路电流计算。

2、整定保护4、5的电流速断保护定值,并尽可能在一端加装方向元件。

3、定保护5、7、9限时电流速断保护的电流定值,并校验灵敏度。

4、定保护4、5、6、7、8、9过电流保护的时间定值,并说明何处需要安装方向元件。

5、制方向过电流保护的原理接线图。

并分析动作过程。

6、采用MATLAB 建立系统模型进行仿真分析。

四、课程设计(论文)进程安排五、应收集的资料及主要参考文献[1]谷水清.电力系统继电保护[M].北京:中国电力出版社,2005[2]贺家礼.电力系统继电保护[M].北京:中国电力出版社,2004[3]能源部西北电力设计院.电力工程电气设计手册(电气二次部分).北京:中国电力出版社,1982[4]方大千.实用继电保护技术[M].北京:人民邮电出版社,2003[5]崔家佩等.电力系统继电保护及安全自动装置整定计算[M].北京:水利电力出版社,1993[6]卓有乐.电力工程电气设计200例[M].北京:中国电力出版社,2002[7]陈德树.计算机继电保护原理与技术[M].北京:水利电力出版社,1992[8]陈曾田.电力变压器保护[M].北京:水利电力出版社,1989[9]许建安.电力系统继电保护[M].北京:水利电力出版社,2003发出任务书日期:年月日指导教师签名:计划完成日期:年月日教学单位责任人签章:目录第1章绪论------------------------------------------------------6 1.1 输电线路电流保护概述--------------------------------------------7 1.2 本文主要内容-----------------------------------------------------7 第2章输电线路方向电流保护整定计算-------------------------9 2.1 方向电流Ι段整定计算----------------------------------------------------- 92.1.1 保护4、5的Ι段动作电流的整定------------------------------------- 10 2.1.2 灵敏度校验---------------------------------------------102.1.3 动作时间的整定------------------------------------------------------ 102.2 保护5、7、9方向电流Ⅱ段整定计算------------------------11 2.3方向电流Ⅲ段动作时间整定计算及方向元件的安装-------------12 第3章方向电流保护原理图的绘制与动作过程分析-----123.1 保护原理图--------------------------------------------------------------- 123.2 动作过程分析----------------------------------------------------------- 12第4章MATLAB建模仿真分析---------------------------- 13第5章课程设计总结------------------------------------------ 15摘要电力系统的输、配线路因各种原因可能会发生相间或相地短路故障,因此,必须有相应的保护装置来反映这些故障,方向保护是利用电压和电流的乘积判明电流流向(相位)的继电保护。

35Kv输电线路的继电保护设计

35Kv输电线路的继电保护设计

35Kv输电线路的继电保护设计在电力系统中,35kV输电线路扮演着重要的角色,负责将发电厂产生的电能传输到各个用电点。

然而,由于外部环境、设备老化等原因,输电线路可能会出现故障,导致电力系统的不稳定甚至瘫痪。

为了确保电力系统的安全稳定运行,35kV输电线路的继电保护设计至关重要。

本文将深入探讨35kV输电线路继电保护的设计原则、方法和应用。

首先,我们需要了解什么是继电保护。

继电保护是电力系统中一种自动保护装置,它通过检测电力系统中的异常信号,如电流、电压、功率等,来判断系统是否存在故障。

一旦检测到故障,继电保护会发出信号,触发断路器等设备,切断故障点与系统的连接,从而保护电力系统的安全运行。

在35kV输电线路的继电保护设计中,我们需要遵循以下原则:1. 快速响应:继电保护应能够迅速响应输电线路的故障,切断故障点与系统的连接,避免故障扩大。

2. 准确判断:继电保护应能够准确判断输电线路的故障类型和位置,避免误判和漏判。

3. 可靠操作:继电保护应具备高度可靠性,确保在任何情况下都能正常工作。

4. 易于维护:继电保护应具备易维护性,便于日常检查、调试和更换。

在35kV输电线路的继电保护设计中,常用的方法包括电流保护、电压保护、距离保护和差动保护等。

这些方法各自有其特点和适用场景。

1. 电流保护:电流保护是通过检测输电线路中的电流变化来判断故障的存在。

当电流超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。

2. 电压保护:电压保护是通过检测输电线路中的电压变化来判断故障的存在。

当电压超过或低于设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。

3. 距离保护:距离保护是通过检测输电线路中的阻抗变化来判断故障的存在。

当阻抗超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。

4. 差动保护:差动保护是通过比较输电线路两端的电流和电压差异来判断故障的存在。

当差动电流或差动电压超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。

220kV输电线路继电保护设计

220kV输电线路继电保护设计

本科课程设计课程名称:电力系统继电保护原理设计题目:220kV输电线路继电保护设计院(部):专业:__________________班级:______________________姓名:________________________学号:_________________成绩:_____________________________指导教师:摘要继电保护是一种电力系统的反事故自动装置,它在电力系统中的地位十分重要。

继电保护伴随着电力系统而生,继电保护原理及继电保护装置的应用,是电力系统实用技术的重要环节。

继电保护技术的应用繁杂广泛,伴随着现代科技的飞速发展,继电保护在更新自身技术的基础上与现代的微机、通信技术相结合,使继电保护系统日趋先进。

电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的发展不断地注入新的活力,继电保护技术未来发展趋势是计算机化、网络化、智能化和数据通信一体化发展。

本次设计主要内容是220KV输电线路继电保护的配置和整定,设计内容包括:220KV电网元件参数的计算、中性点接地的选择、输电线路纵联保护、自动重合闸等。

关键词:参数计算接地的选择纵联保护自动重合闸目录1:220KV电网元件参数的计算 (1)1.1:设计原则和一般规定 (1)1.2:220KV电网元件参数计算原则 (1)1.3:变压器参数的计算 (2)1.4:输电线路参数的计算 (5)2:输电线路上TA、TV及中性点接地的选择 (6)2.1:输电线路上T A、TV变比的选择 (6)3: 输电线路纵联保护 (8)3.1:纵联保护的基本概念 (8)3.2: 各种差动保护及其动作方程 (9)3.3:纵联电流差动保护的原理 (9)3.4: 算例 (9)3.5: 纵联差动保护计算参数列表 (11)4:自动重合闸 (11)4.1: 自动重合闸的作用 (11)4.2:重合闸的前加速和后加速 (11)4.3: 自动重合闸动作时间整定应考虑问题 (12)4.4: 双侧电源线路三相跳闸后的重合闸检查条件 (13)4.5:综合重合闸的主要元件 (13)4.6: 综合重合闸整定计算算例 (14)5:参考文献 (15)6:致谢 (19)1:220KV电网元件参数的计算1.1:设计原则和一般规定电网继电保护和安全自动装置是电力系统的重要组成部分,对保证电力系统的正常运行,防止事故发生或扩大起了重要作用。

输电线路继电保护设计

输电线路继电保护设计

输电线路继电保护设计输电线路继电保护是电力系统中非常重要的组成部分。

它的主要目的是在输电线路发生故障时,迅速切除故障段,保护线路的安全运行,同时最大程度地减少电网运行的受影响范围和时间。

本文将从输电线路基本原理、故障类型和继电保护的设计等方面进行详细阐述。

一、输电线路基本原理输电线路是将发电厂产生的电能输送到用户终端的通道,它主要由输电塔、导线和绝缘子等组成。

输电塔起到支撑导线和绝缘子的作用,导线用于传输电能,而绝缘子则用于保护导线在输电过程中不受地面和大气环境的影响。

在正常情况下,输电线路是处于正常运行状态的,电流和电压的波动很小。

然而,在发生故障时,可能出现短路、接地故障、过流和过压等问题,这些故障会导致电流和电压急剧增加,给输电线路带来很大的压力。

二、故障类型1.短路故障:当输电线路的两相或三相之间出现直接连接导致电流异常增大时,称为短路故障。

短路故障通常由于导线之间的绝缘破损或接触不良所引起。

2.接地故障:当输电线路中的导线与地面接触时,称为接地故障。

接地故障通常由于绝缘子破损或输电塔漏电引起。

3.过流:当输电线路中的电流超过额定值时,称为过流。

过流故障通常由于负荷过大或电网异常而引起。

4.过压:当输电线路中的电压超过额定值时,称为过压。

过压故障通常由于电压调节装置故障或电网异常而引起。

三、继电保护的设计继电保护是针对不同故障类型设计的一种保护装置,它通过检测输电线路的电流、电压、频率和绝缘电阻等参数,及时切除故障段,保护线路的安全运行。

1.短路保护:短路保护主要通过测量线路电流来实现。

当电流超过额定值或达到触发电流时,保护装置会启动切除装置,迅速切除故障段,保护线路不受损坏。

2.接地保护:接地保护主要通过测量线路的绝缘电阻来实现。

当绝缘电阻超过一定阈值或达到触发值时,保护装置会启动切除装置,迅速切除故障段,保护线路和运行设备。

3.过流保护:过流保护主要通过测量线路电流的大小和变化来实现。

35Kv输电线路的继电保护设计

35Kv输电线路的继电保护设计

35Kv输电线路的继电保护设计
35kV输电线路的继电保护设计需要考虑以下几个方面:
1. 选择合适的继电保护装置:根据35kV输电线路的特点和要求,
选择适合的继电保护装置,例如差动保护装置、过电流保护装置、
跳闸保护装置等。

2. 确定保护区域:根据线路的拓扑结构和电气参数,确定继电保护
的保护区域,即需要保护的线路段和设备。

3. 设置保护动作条件:根据线路的额定电流、短路容量和故障类型,设置继电保护的动作条件,例如过电流保护的动作电流、时间等。

4. 确定保护动作时间:根据线路的长度和传输速度,计算继电保护
的动作时间,以确保故障发生时能够及时切除故障区域。

5. 设置保护动作逻辑:根据线路的拓扑结构和故障类型,确定继电
保护的动作逻辑,即保护装置的动作顺序和动作方式。

6. 考虑通信和互锁功能:根据线路的通信需求和操作要求,设计继
电保护的通信和互锁功能,以实现线路的自动化控制和远程监控。

7. 进行保护设备的参数设置和校验:根据线路的实际运行情况,设
置继电保护装置的参数,并进行校验和测试,以确保保护装置的可
靠性和准确性。

8. 编制继电保护接线图和操作手册:根据继电保护设计的结果,编
制继电保护接线图和操作手册,以供操作人员参考和使用。

需要注意的是,35kV输电线路的继电保护设计需要根据具体的工程
要求和标准进行,以上仅为一般性的设计步骤,具体设计还需根据
实际情况进行细化和调整。

35kv输电线路继电保护设计

35kv输电线路继电保护设计

35kv输电线路继电保护设计一、继电保护系统介绍继电保护系统是电力系统中必不可少的一种保护方式,其主要作用是对电力设备的异常电气状态进行检测,并对检测结果进行处理,判断是否需要执行保护操作。

继电保护系统包括主保护、备用保护和辅助保护三个部分,其中主保护是最重要的一部分,主要负责检测系统中出现的故障,在故障出现时能够及时地切断故障电路,以保证系统的安全可靠运行。

二、35kv输电线路特点35kv输电线路是电力系统中的一种电力输送方式,其主要特点包括输送距离较长、输电线路具有较高的电压和电流等。

35kv输电线路的保护设计需要考虑到以下几个方面的因素:•信号传输时间:由于35kv输电线路的长度较长,信号传输时间需要考虑,不能超过电路本身的保护时间。

•保护等级:35kv输电线路属于中压线路,保护等级要求较高,能够检测到多种故障类型并对其进行快速处理。

•大电流防护:由于35kv输电线路的电流比较大,保护设计的时候需要考虑到电流对继电保护元件的影响。

•兼容性:35kv输电线路需要兼容各类继电保护装置,以便于之后的维护操作。

三、35kv输电线路继电保护设计要点35kv输电线路的继电保护设计需要依据上述特点,具体要点包括:3.1 继电保护装置选型在设计35kv输电线路的继电保护装置时,需要考虑信号传输时间、保护等级和兼容性等方面因素。

选用符合要求的保护装置,以保证保护的准确性、灵敏度和可靠性。

3.2 装置接线方式装置的接线方式是保护系统中的重要环节,需要考虑到电流对继电保护元件的影响,以保证继电保护装置能够准确地检测异常的电气状态。

3.3 保护投入时间35kv输电线路的长度比较长,保护投入的时间需要考虑信号传输的时间、距离等因素,保护投入时间一般要小于电路保护时间。

3.4 设备故障检测35kv输电线路的保护设计需要考虑到多种故障类型的检测,包括短路、接地、相间故障等,继电保护装置能够快速准确地判读故障类型,并采取相应措施进行处理。

35kV输电线路继电保护系统设计

35kV输电线路继电保护系统设计

35 kV 输电线路继电保护系统设计摘要:在现在的电网中,输电线路显得尤其重要,输电线路和电网系统的安全有着紧密的联系,一个出问题,另一个也就会出故障。

所以,如何快速而有准确的去解决问题,这便给输电线路的保护提了很高的一个要求。

本文35kV输电线路继电保护系统的设计主要是利用距离保护原理,还得加上微机保护装置,在许多的高压电网中设计的一套保护系统。

距离保护可以很好的对所设计的输电线路进行保护,它可以看出来线路中是不是有故障,或者说是可以鉴定它有没有在保护区之内,然后来观察动作的大小,距离保护克服了很大的影响,因为电流和电压保护的缺点由系统运行模式去决定,还有很好的保护性能。

关键词:继电保护;继电保护;距离一、绪论由于在露天环境下,分布着许许多多的架空线路,而且长时间处于运行状态中,又因为平时可能会受到火灾,或者周围的一些自然环境发生改变等等诸多影响,可能会导致输电线路在运行的时候会发生一些故障。

在过去的很多时间里,因为要杜绝这类不安全事故(短路故障)的发生,但同时还得保证输电线路得保持运行状态,那么就有必要对线路进行检测,保护和修缮。

在高压输电线路保护的现实运用中,常常会发生故障,这就影响了继电保护装置的积极功能,在工作过程中,可能运行的设备就会特别多,保障电气设备的安全运行才可以提高输配电的服务质量水平。

对于35kV输电线路的运行而言,加强继电保护的应用是重中之重,而当高电压电力系统出现故障时,如果有继电保护的话,就会对它发出报警信号,从这一点就看出来了电气系统继电保护的必要性[1]。

二、输电线路故障分析与保护配置在外边的环境里,分布着许许多多的架空线路,而且长时间处于运行状态中,又因为平时可能会受到火灾,或者周围的一些自然环境发生改变等等诸多影响,可能会导致输电线路在运行的时候会发生一些突发性的意外。

(一)、引起故障的原因1. 雷击故障当输电线路正常工作的时候,突然来一声爆雷,很有可能会发生故障,而它可以分为好几种类型,导线和金属可能会对横担构件放电,而且第一片绝缘子也可能会对导线放电,复合绝缘子之间会相互放电等等很多类型,而且雷击状况的出现会让低零值绝缘子钢帽发生爆裂,可能会导致发生断电[2]。

110kV输电线路继电保护设计

110kV输电线路继电保护设计

本科课程设计课程名称:电力系统继电保护原理设计题目:110kV输电线路继电保护设计院部: 电力学院专业:电气工程及其自动化班级: 1304 姓名:学号: 1310240107指导教师:李莉李静日期:2016年6月20日—— 6月28 日课程设计成绩考核表设计说明书本次继电保护原理课程设计对110kV输电线路进行了全面的介绍,从110kV输电线路的故障原因及类型入手,重点分析了几大常见的故障类型(单相接地短路,两相短路,两相短路接地,三相短路),然后对110kV输电线路相关问题分析了具体的保护设置,110kV输电线路保护的主体是距离保护与零序电流保护,距离保护又分为相间距离保护与接地距离保护,分别反应相间短路故障于接地短路故障.最后对110kV输电线路的保护进行了实际案列分析。

针对110kV输电线路保护配置,重点对距离保护做了详细的案例分析。

目录1 110kV输电线路故障分析 (1)1.1故障引起原因 (1)1。

2故障状态及其危害 (3)1.3短路简介及类别 (4)2 110kV输电线路保护 (6)2。

1 110kV输电线路的保护方法 (6)2。

1.1距离保护的整定计算方法 (6)2。

1。

2阶段式零序电流保护 (8)2。

2 110kV输电线路的保护原理 (11)2。

2。

1距离保护的特点及基本原理 (11)2.2。

2 零序电流保护的特点及优缺点 (13)3 实际案例分析 (15)4 结论 (17)1 110kV输电线路故障分析1。

1故障引起原因由于架空线路分布很广,又长期处于露天之下运行,所以经常会受到周围环境和自然变化的影响,从而使线路在运行中会发生各种各样的故障。

以下介绍的八种最常见的因素:①雷害线路遭受雷击引起绝缘子串闪络故障,有时会引起绝缘子断串,可能在线夹到防振锤之间的导线上留下痕迹,而且闪络面积大或断线等事故.②大风风速超过或接近设计风速,加之线路木身的局部缺陷,如超过杆塔机械强度,使杆塔倾倒或损坏等,使导线产生振动、跳跃和碰线,从而引起故障;同塔双回线路若不同步风摆可能造成混线短路故障.③洪水暴雨雷雨季节、季节洪水冲刷杆塔基础,从而引起基础边坡塌方、塔基裂缝、沉降或是更严重的倒杆倒塔故障.④外力破坏线路遭到人为的破坏而引起故障。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

造成人身伤亡和电气设备的损坏。

系统事故的发生,除了由于自然条件的因素(如遭受雷击等)以外,一般者是由于设备制造上的缺陷、设计和安装的错误、检修质量不高或运行维护不当而引起的。

因此,只要充分发挥人的主观能动性,正确地掌握客观规律,加强对设备的维护和检修,就可能大大减少事故发生的机率,把事故消灭在发生之前。

在电力系统中,除应采取各项积极措施消除或减少发生故障的可能性以外,故障一旦发生,必须迅速而有选择性地切除故障元件,这是保证电力系统安全运行的最有效方法之一[摘要]为给35KV单电源双环形回路电网进行继电保护设计,首先选择过电流保护,对电网进行最大负荷路电流进行计算,然后再对其进行短路电流的计算整定电流保护的整定值。

在过电流保护不满足的情况下,相间故障选择距离保护,同时在变压器中间的线路采取纵联保护,通过电力线路载波通道传递线路信息,保证线路的安全。

最后再确定继电保护所需要的装置名称,并且对其进行总结[关键词]:继电保护符合电流短路电流整定计算装置选择1.4继电保护的基本原理电流速断保护:对于反应于短路电流幅值增大而瞬时动作的电流保护。

限时电流速断保护:用来切除本县线路上速断保护范围以外的故障,同时也能作为速断保护的后备。

过电流保护其启动电流按照躲开最大负荷电流来整定的保护,当电流的幅值超过最大负荷电流值是启动。

距离保护:利用短路时电压.电流同时变化的特征,测量电压与电流的比值,反应故障点到保护安装处的距离而工作的保护。

输电线路的纵联保护:将线路一侧电气量信息传到另一侧去,两侧的电气量同时比较.联合工作。

1. 35KV双回路接线图SK!2. 35KV 双回路线路的继电保护的原理图1243NMKL35KV35KV第二章 计算参数:Vn=35kv ,x=0.4(Ω/km),L=10(km),Vav=32.5kv cos Ψ=0.82.1最大负荷电流的计算: 1,2段和3,4段线路的阻抗值为: X=1/2*x*L=0.5*0.4*10=4(Ω) 1,2段和3,4段负荷电流为: I12=I34Vav*Vav/(X*Vn cos Ψ) =32.5*32.5/(4*35*0.8)=9.43(kv)2.2短路电流的计算:线路I=2*I12=2*9.43=18.86(kv)所以当K点或者L点发生短路的时候,流国12或者34的电流为Id=18.86(kv)2.3继电保护距离保护的整定计算和校验断路器1距离保护的整定计算和校验1距离保护І段的整定计算(1)动作阻抗对输电线路,按躲过本线路末端短路来整定。

取K K'=0.85;Z dz'=K K'Z12=0.85×4=3.4Ω;(2)动作时限距离保护І段的动作时限是由保护装置的继电器固有动作时限决定,人为延时为零,即t1=0s。

2距离保护П段的整定计算和校验(1)动作阻抗:按下列三个条件选择。

①与相邻线路34的保护的І段配合Zdz''=K K''(Z12+K'K f h·min Z34)式中,取K'=0.85, K K''=0 .8,K f h·min为保护2的І段末端发生短路时对保护2而言的最小分支系数。

当保护2的І段末端发生短路时,分支系数为:K f h·min=I12/I34=1于是Zdz''=K K''(Z L3+K'K f h·min Z L4)=0.8×(3.4+0.85×1×4)=5.44Ω;(2)动作时间,与相邻保护2的І段配合,则t1"=t2'+Δt=0.5 s它能同时满足与相邻线路34保护配合的要求。

(3) 灵敏性校验:Klm= Z dz''/Z12=5.44/3.4=1.6>1.5,满足要求。

3.距离保护Ш段的整定计算和校验(1)动作阻抗:按躲开最小负荷阻抗整定;Kzq=1,Kh=1.15,KK "'=1.2,If·max=8.43KAZ f·min=0.9Ue/1.732I f·max=0.9×35/1.732×8.43=2.16Ω于是Zdz '''= Zf·min/KK"'Kh Kzq=2.16/1.2×1.15×1=1.57Ω(2)动作时间:断路器1的动作时间为:t'''1= t'''dz+Δt=1.5+0.5=2 s断路器2的动作时间为:t'''2= t'''dz+Δt=2.0+0.5=2.5 s取其中较长者,于是断路器1的动作时间为:t'''1= t''1+Δt=2.0+0.5=2.5 s(3)灵敏性校验:①本线路末端短路时的灵敏系数为:Klm= Z dz'''/Z12=1.57/0=∞>1.5 ,满足要求断路器2距离保护的整定计算和校验1距离保护І段的整定计算(1)动作阻抗对输电线路,按躲过本线路末端短路来整定。

取K K'=0.85'=K K'Z12=0.85×8.43=7.17Ω;Zdz(2)动作时限距离保护І段的动作时限是由保护装置的继电器固有动作时限决定,人为延时为零,即t'=0s2.距离保护П段的整定计算和校验(1)动作阻抗:按下列三个条件选择。

①与相邻线路L2的保护的І段配合''=K K''(Z12+K'K f h·min Z34)Zdz式中,取K'=0.85, K K''=0 .8,K f h·min为保护2的І段末端发生短路时对保护2而言的最小分支系数。

当保护1的І段末端发生短路时,分支系数为:K f h·min=I L3/I L4=1于是Z''=K K''(Z12+K'K f h·min Z34)=0.8×(0+0.85×1×8.43)=5.7Ω;dz②按躲开相邻变压器低压侧出口短路整定''=K K''(Z12+K f h·min Z TC)Zdz式中,取K K''=0 .8,K f h·min为保护2的І段末端变压器低压侧出口发生短路时对变压器低压侧出口而言的最小分支系数。

当保护1的І段末端发生短路时,分支系数为:K f h·min=I L3/I L4=1于是Zdz''=K K''(Z12+K f h·min Z34)=0.7×(8.43+1×8.43)=5.7Ω;取以上二个计算值中最小者为П段整定值,即取Zdz''=5.7Ω;(2)动作时间,与相邻保护1的І段配合,则t1"=t4'+Δt=0.5 s它能同时满足与相邻线路12和变压器保护配合的要求。

(3) 灵敏性校验:Klm= Z dz''/Z L3=5.7/2=2.35>1.5,满足要求。

3.距离保护Ш段的整定计算和校验(1)动作阻抗:按躲开最小负荷阻抗整定;Kzq=1,Kh=1.15,KK "'=1.2,If·max=8.43KAZ f·min=0.9Ue/1.732I f·max=0.9×35/1.732×8.43=2.16Ω于是:Zdz '''= Zf·min/KK"'Kh Kzq=2.16/1.2×1.15×1=1.57Ω(2)动作时间:断路器2的动作时间为:t'''5= t'''dz+Δt=2+0.5=2 .5s(3)灵敏性校验:①本线路末端短路时的灵敏系数为:Klm= Z dz'''/Z12=1.57/0=∞>1.5 ,满足要求②相邻元件末端短路时的灵敏系数为:І相邻线路34末端短路时的灵敏系数为;最大分支系数:K f h·max=0/4=0Klm=Z dz'''/(Z12+ K f h·max Z34)= 1.57/(0+0×4)=∞>1.2 ,满足要求П相邻变压器末端短路时的灵敏系数为;最大分支系数:K fh·max=0/4=0Klm= Z dz'''/(Z12+ K f h·max Z34)== 1.57/(0+0×4)=∞>1.2 ,满足要求其中3和4断路器的整定保护的计算与1和2的整定保护的计算相同。

2.4输电线路的纵联保护1. 一般纵联保护有导引线纵联保护,电力载波纵联保护,微波纵联保护,以及光纤纵联保护。

其纵联保护的结构框图如下图所示:图1 输电线路纵联保护结构框图由于输电线路是双回路传输,传输线路为100km,属于长距离输电,因此对输电线路采取的纵联保护必须具备安全性高,易操作,易检修等的性能。

而此时若采取引线纵联保护以及光纤纵联保护就显得不够经济,虽然微波通道是理想的通道,但是保护专用微波通道及设备是不经济的,因此对于35KV长距离输电线路应该采用电力载波纵联保护。

其载波通道示意图如下图所示:图2 载波通信示意图2.5 电力变压器的继电保护1、继电保护装置的定义、用途(1)、当电力系统发生故障或异常现象时,利用一些电气自动装置将故障部分从系统中迅速切除或在发生异常时及时发出信号,以达到缩小故障范围,减少故障损失,保证系统安全运行的目的。

通常将执行上述任务的电气自动装置称作继电保护装置。

(2)、当电网发生足以损坏设备或危及电网安全运行的故障时,使被保护设备快速脱离电网:对电网的非正常运行及某些设备的非正常状态,能及时发出警报信号以便迅速处理,使之恢复正常,实现电力系统自动化和远动化,以及工业生产的自动控制。

2. 继电保护的组成及工作原理供电系统发生故障时,会引起电流的增加和电压的降低,以及电流电压间相位角的变化,因此故障时参数与正常运行的差别就可以构成不同原理和类型的继电保护。

例如,利用短路时电流增大的特征,可构成过电流保护:利用电压降低的特征可构成低电压保护:利用电压和电流比值的变化,可构成阻抗保护:利用电压和电流之间的相位关系的变化,可构成方向保护:利用比较被保护设备各端电流大小和相位的差别可构成差动保护等。

相关文档
最新文档