输电线路微机继电保护系统设计

合集下载

微机电流保护装置的设计

微机电流保护装置的设计

摘要在电力系统中,输电线路是最重要的部分,因此,输电线路的保护对于整个电力系统的稳定运行有非常重要的意义。

电力系统继电保护装置是反映电力系统故障和不正常运行状态、并且作用于断路器跳闸和发出告警信号的设备。

随着电力工业的发展和电压等级的不断升高,对微机保护装置的要求也越来越高,因此,研制出一种高性能的继电保护装置对于电力系统有重要的理论和现实意义。

论文论述了微机保护装置在国内外的发展历史和研究现状,详细的分析了短路故障的形成,原理及产生的危害,对线路设备造成的影响,以及三段式保护的相关设计原理和整定方法。

并为此设计了一套由电压、电流采集电路;A/DMAX197转换电路;数据采集电路和发光二极管显示电路组成的微机保护装置。

关键词:微机保护;三段式保护;短路故障;A/D转换;ABSTRACTIn the power system, the transmission lines is the most important part, therefore, the transmission line protection for the whole of the stable operation of the power system has a very important significance. And the safe and stable operation of the power system to the national economy and people's life and social stability has a very significant influence. Power system protection device is a reflection of the electric power system fault and not normal working conditions, and has an effect on circuit breaker tripped and issued a warning signal equipment. Along with the development of the electric power industry and the voltage level upwards, to the requirements of the microcomputer protection device more and more is also high, therefore, to develop a kind of high performance relay protection device for electric power system is of great theoretical and practical significance.This paper discusses the microcomputer protection device in the domestic and foreign development history and status, and detailed analysis of the formation of the short circuit faults, principle and dangers, the impact of the line equipment, and the protection of three design principle and relevant setting method. And for this design by a set of voltage, current acquisition circuit; A/DMAX197 transform circuit; Data acquisition circuit and leds display circuit composed of microcomputer protection device.Keywords:Microcomputer protection; Tasting protection; Short circuit fault; A/D conversion目录1 绪论 (1)1.1 微机保护的意义 (1)1.2 微机继电保护系统的发展历史及国内外研究现状 (1)1.3 微机保护装置的特点 (2)2 故障分析与保护 (4)2.1 电力系统故障分析的目的与内容 (4)2.2 短路的种类 (5)2.3 短路的危害 (6)2.4 谐波概述 (6)2.5 继电保护的分类 (7)2.5.1 线路保护 (7)2.5.2 变压器保护 (7)2.5.3 发电机保护 (8)2.5.4 母线保护 (8)3 保护原理及整定方法 (8)3.1 电流速断保护 (8)3.2 瞬时电流速断保护 ( I 段) (9)3.3 限时电流速断保护(II 段) (12)3.4 定时限过电流保护(III 段) (15)3.5 三段式电流保护的特点 (18)3.6 零序电流保护 (18)4 微机式保护设计 (19)4.1 保护装置实现的功能 (19)4.2 结构框图 (19)4.3 数据采集电路硬件设计 (20)4.3.1电压、电流采集电路 (20)4.3.2数据采集电路 (21)4.3.3硬件电路器件的介绍 (22)4.3.4 数据采集系统完成的功能 (27)4.4 按键和显示电路设计 (27)4.5 装置实现的功能 (29)4.6 装置的硬件抗干扰措施 (30)4.7 本章总结 (31)结论 (32)参考文献 (33)附录一 (35)附录二 (36)附录三 (37)附录四 (38)翻译部分英文原文 (39)中文译文 (50)致谢 (58)1 绪论1.1 微机保护的意义电力在国民经济和人民生活中处于非常重要的位置。

电力系统继电保护课程设计-输电线路方向电流保护设计

电力系统继电保护课程设计-输电线路方向电流保护设计

电力系统继电保护课程设计-输电线路方向电流保护设计电力系统机电保护课程设计论文设计课题电力系统继电保护课程设计论文题目输电线路方向电流保护设计学部专业电气工程及其自动化班级学号学生姓名指导教师年月日广东工业大学华立学院课程设计(论文)任务书一、课程设计(论文)的内容输电线路方向电流保护设计二、设计(论文)的要求与数据1、设计技术参数:,20,3/1151Ω==G X kV E φ,12,1232Ω=Ω=G G X XL1=L2=60km,L3=50km,LB-C=40km,LC-D=50km,LD-E=20km,线路阻抗0.4Ω/km,2.1=I rel K ,=∏rel K 15.1=I ∏relK , 最大负荷电流IB-C.Lmax=360A,IC-D.Lmax=210A, ID-E.Lmax=110A,2、、统接线图如图:三、课程设计(论文)应完成的工作1、值电抗计算、短路电流计算。

2、整定保护4、5的电流速断保护定值,并尽可能在一端加装方向元件。

3、定保护5、7、9限时电流速断保护的电流定值,并校验灵敏度。

4、定保护4、5、6、7、8、9过电流保护的时间定值,并说明何处需要安装方向元件。

5、制方向过电流保护的原理接线图。

并分析动作过程。

6、采用MATLAB 建立系统模型进行仿真分析。

四、课程设计(论文)进程安排五、应收集的资料及主要参考文献[1]谷水清.电力系统继电保护[M].北京:中国电力出版社,2005[2]贺家礼.电力系统继电保护[M].北京:中国电力出版社,2004[3]能源部西北电力设计院.电力工程电气设计手册(电气二次部分).北京:中国电力出版社,1982[4]方大千.实用继电保护技术[M].北京:人民邮电出版社,2003[5]崔家佩等.电力系统继电保护及安全自动装置整定计算[M].北京:水利电力出版社,1993[6]卓有乐.电力工程电气设计200例[M].北京:中国电力出版社,2002[7]陈德树.计算机继电保护原理与技术[M].北京:水利电力出版社,1992[8]陈曾田.电力变压器保护[M].北京:水利电力出版社,1989[9]许建安.电力系统继电保护[M].北京:水利电力出版社,2003发出任务书日期:年月日指导教师签名:计划完成日期:年月日教学单位责任人签章:目录第1章绪论------------------------------------------------------6 1.1 输电线路电流保护概述--------------------------------------------7 1.2 本文主要内容-----------------------------------------------------7 第2章输电线路方向电流保护整定计算-------------------------9 2.1 方向电流Ι段整定计算----------------------------------------------------- 92.1.1 保护4、5的Ι段动作电流的整定------------------------------------- 10 2.1.2 灵敏度校验---------------------------------------------102.1.3 动作时间的整定------------------------------------------------------ 102.2 保护5、7、9方向电流Ⅱ段整定计算------------------------11 2.3方向电流Ⅲ段动作时间整定计算及方向元件的安装-------------12 第3章方向电流保护原理图的绘制与动作过程分析-----123.1 保护原理图--------------------------------------------------------------- 123.2 动作过程分析----------------------------------------------------------- 12第4章MATLAB建模仿真分析---------------------------- 13第5章课程设计总结------------------------------------------ 15摘要电力系统的输、配线路因各种原因可能会发生相间或相地短路故障,因此,必须有相应的保护装置来反映这些故障,方向保护是利用电压和电流的乘积判明电流流向(相位)的继电保护。

110kV输电线路继电保护设计

110kV输电线路继电保护设计

电工材料2021No.2刘春:110kV输电线路继电保护设计110kV输电线路继电保护设计刘春(三峡大学,湖北宜昌443000)摘要:针对110kV输电线路的继电保护设计,重点介绍线路的电流速断保护和定时限过流保护的作用原理、范围,动作时限的特性,整定原则等,对输电线路进行了短路计算及其保护的整定计算,灵敏度校验和动作时间整定,通过计算和比较从而确定了输电线路保护的选型。

最后介绍了自动重合闸的要求与类型。

关键词:继电保护;整定计算;短路电流中图分类号:TM77文献标志码:A文章编号:1671-8887(2021)02-0041-02DOI:10.16786/ki.1671-8887.eem.2021.02.014Relay Protection Design of110kV Transmission LineLIU Chun(Three Gorges University,Hubei Yichang443000,China)Abstract:Aiming at the relay protection design of110kV transmission line,this paper focuses on the action principle,scope,characteristics of action time limit and setting principle of current quick break protection and time limit over-current protection.The short-circuit calculation,setting calculation of protection,sensitivity check and action time setting of transmission line are carried out.Through calculation and comparison,the selection of transmission line protection is determined.Finally,the requirements and types of auto reclosing are introduced.Key words:relay protection;setting calculation;short circuit current引言电力系统的规模随着时代的发展越来越大,结构越来越复杂。

35Kv输电线路的继电保护设计

35Kv输电线路的继电保护设计

35Kv输电线路的继电保护设计在电力系统中,35kV输电线路扮演着重要的角色,负责将发电厂产生的电能传输到各个用电点。

然而,由于外部环境、设备老化等原因,输电线路可能会出现故障,导致电力系统的不稳定甚至瘫痪。

为了确保电力系统的安全稳定运行,35kV输电线路的继电保护设计至关重要。

本文将深入探讨35kV输电线路继电保护的设计原则、方法和应用。

首先,我们需要了解什么是继电保护。

继电保护是电力系统中一种自动保护装置,它通过检测电力系统中的异常信号,如电流、电压、功率等,来判断系统是否存在故障。

一旦检测到故障,继电保护会发出信号,触发断路器等设备,切断故障点与系统的连接,从而保护电力系统的安全运行。

在35kV输电线路的继电保护设计中,我们需要遵循以下原则:1. 快速响应:继电保护应能够迅速响应输电线路的故障,切断故障点与系统的连接,避免故障扩大。

2. 准确判断:继电保护应能够准确判断输电线路的故障类型和位置,避免误判和漏判。

3. 可靠操作:继电保护应具备高度可靠性,确保在任何情况下都能正常工作。

4. 易于维护:继电保护应具备易维护性,便于日常检查、调试和更换。

在35kV输电线路的继电保护设计中,常用的方法包括电流保护、电压保护、距离保护和差动保护等。

这些方法各自有其特点和适用场景。

1. 电流保护:电流保护是通过检测输电线路中的电流变化来判断故障的存在。

当电流超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。

2. 电压保护:电压保护是通过检测输电线路中的电压变化来判断故障的存在。

当电压超过或低于设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。

3. 距离保护:距离保护是通过检测输电线路中的阻抗变化来判断故障的存在。

当阻抗超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。

4. 差动保护:差动保护是通过比较输电线路两端的电流和电压差异来判断故障的存在。

当差动电流或差动电压超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。

220kV输电线路继电保护设计

220kV输电线路继电保护设计

本科课程设计课程名称:电力系统继电保护原理设计题目:220kV输电线路继电保护设计院(部):专业:__________________班级:______________________姓名:________________________学号:_________________成绩:_____________________________指导教师:摘要继电保护是一种电力系统的反事故自动装置,它在电力系统中的地位十分重要。

继电保护伴随着电力系统而生,继电保护原理及继电保护装置的应用,是电力系统实用技术的重要环节。

继电保护技术的应用繁杂广泛,伴随着现代科技的飞速发展,继电保护在更新自身技术的基础上与现代的微机、通信技术相结合,使继电保护系统日趋先进。

电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的发展不断地注入新的活力,继电保护技术未来发展趋势是计算机化、网络化、智能化和数据通信一体化发展。

本次设计主要内容是220KV输电线路继电保护的配置和整定,设计内容包括:220KV电网元件参数的计算、中性点接地的选择、输电线路纵联保护、自动重合闸等。

关键词:参数计算接地的选择纵联保护自动重合闸目录1:220KV电网元件参数的计算 (1)1.1:设计原则和一般规定 (1)1.2:220KV电网元件参数计算原则 (1)1.3:变压器参数的计算 (2)1.4:输电线路参数的计算 (5)2:输电线路上TA、TV及中性点接地的选择 (6)2.1:输电线路上T A、TV变比的选择 (6)3: 输电线路纵联保护 (8)3.1:纵联保护的基本概念 (8)3.2: 各种差动保护及其动作方程 (9)3.3:纵联电流差动保护的原理 (9)3.4: 算例 (9)3.5: 纵联差动保护计算参数列表 (11)4:自动重合闸 (11)4.1: 自动重合闸的作用 (11)4.2:重合闸的前加速和后加速 (11)4.3: 自动重合闸动作时间整定应考虑问题 (12)4.4: 双侧电源线路三相跳闸后的重合闸检查条件 (13)4.5:综合重合闸的主要元件 (13)4.6: 综合重合闸整定计算算例 (14)5:参考文献 (15)6:致谢 (19)1:220KV电网元件参数的计算1.1:设计原则和一般规定电网继电保护和安全自动装置是电力系统的重要组成部分,对保证电力系统的正常运行,防止事故发生或扩大起了重要作用。

输电线路继电保护设计

输电线路继电保护设计

输电线路继电保护设计输电线路继电保护是电力系统中非常重要的组成部分。

它的主要目的是在输电线路发生故障时,迅速切除故障段,保护线路的安全运行,同时最大程度地减少电网运行的受影响范围和时间。

本文将从输电线路基本原理、故障类型和继电保护的设计等方面进行详细阐述。

一、输电线路基本原理输电线路是将发电厂产生的电能输送到用户终端的通道,它主要由输电塔、导线和绝缘子等组成。

输电塔起到支撑导线和绝缘子的作用,导线用于传输电能,而绝缘子则用于保护导线在输电过程中不受地面和大气环境的影响。

在正常情况下,输电线路是处于正常运行状态的,电流和电压的波动很小。

然而,在发生故障时,可能出现短路、接地故障、过流和过压等问题,这些故障会导致电流和电压急剧增加,给输电线路带来很大的压力。

二、故障类型1.短路故障:当输电线路的两相或三相之间出现直接连接导致电流异常增大时,称为短路故障。

短路故障通常由于导线之间的绝缘破损或接触不良所引起。

2.接地故障:当输电线路中的导线与地面接触时,称为接地故障。

接地故障通常由于绝缘子破损或输电塔漏电引起。

3.过流:当输电线路中的电流超过额定值时,称为过流。

过流故障通常由于负荷过大或电网异常而引起。

4.过压:当输电线路中的电压超过额定值时,称为过压。

过压故障通常由于电压调节装置故障或电网异常而引起。

三、继电保护的设计继电保护是针对不同故障类型设计的一种保护装置,它通过检测输电线路的电流、电压、频率和绝缘电阻等参数,及时切除故障段,保护线路的安全运行。

1.短路保护:短路保护主要通过测量线路电流来实现。

当电流超过额定值或达到触发电流时,保护装置会启动切除装置,迅速切除故障段,保护线路不受损坏。

2.接地保护:接地保护主要通过测量线路的绝缘电阻来实现。

当绝缘电阻超过一定阈值或达到触发值时,保护装置会启动切除装置,迅速切除故障段,保护线路和运行设备。

3.过流保护:过流保护主要通过测量线路电流的大小和变化来实现。

35Kv输电线路的继电保护设计

35Kv输电线路的继电保护设计

35Kv输电线路的继电保护设计
35kV输电线路的继电保护设计需要考虑以下几个方面:
1. 选择合适的继电保护装置:根据35kV输电线路的特点和要求,
选择适合的继电保护装置,例如差动保护装置、过电流保护装置、
跳闸保护装置等。

2. 确定保护区域:根据线路的拓扑结构和电气参数,确定继电保护
的保护区域,即需要保护的线路段和设备。

3. 设置保护动作条件:根据线路的额定电流、短路容量和故障类型,设置继电保护的动作条件,例如过电流保护的动作电流、时间等。

4. 确定保护动作时间:根据线路的长度和传输速度,计算继电保护
的动作时间,以确保故障发生时能够及时切除故障区域。

5. 设置保护动作逻辑:根据线路的拓扑结构和故障类型,确定继电
保护的动作逻辑,即保护装置的动作顺序和动作方式。

6. 考虑通信和互锁功能:根据线路的通信需求和操作要求,设计继
电保护的通信和互锁功能,以实现线路的自动化控制和远程监控。

7. 进行保护设备的参数设置和校验:根据线路的实际运行情况,设
置继电保护装置的参数,并进行校验和测试,以确保保护装置的可
靠性和准确性。

8. 编制继电保护接线图和操作手册:根据继电保护设计的结果,编
制继电保护接线图和操作手册,以供操作人员参考和使用。

需要注意的是,35kV输电线路的继电保护设计需要根据具体的工程
要求和标准进行,以上仅为一般性的设计步骤,具体设计还需根据
实际情况进行细化和调整。

35kv输电线路继电保护设计

35kv输电线路继电保护设计

35kv输电线路继电保护设计一、继电保护系统介绍继电保护系统是电力系统中必不可少的一种保护方式,其主要作用是对电力设备的异常电气状态进行检测,并对检测结果进行处理,判断是否需要执行保护操作。

继电保护系统包括主保护、备用保护和辅助保护三个部分,其中主保护是最重要的一部分,主要负责检测系统中出现的故障,在故障出现时能够及时地切断故障电路,以保证系统的安全可靠运行。

二、35kv输电线路特点35kv输电线路是电力系统中的一种电力输送方式,其主要特点包括输送距离较长、输电线路具有较高的电压和电流等。

35kv输电线路的保护设计需要考虑到以下几个方面的因素:•信号传输时间:由于35kv输电线路的长度较长,信号传输时间需要考虑,不能超过电路本身的保护时间。

•保护等级:35kv输电线路属于中压线路,保护等级要求较高,能够检测到多种故障类型并对其进行快速处理。

•大电流防护:由于35kv输电线路的电流比较大,保护设计的时候需要考虑到电流对继电保护元件的影响。

•兼容性:35kv输电线路需要兼容各类继电保护装置,以便于之后的维护操作。

三、35kv输电线路继电保护设计要点35kv输电线路的继电保护设计需要依据上述特点,具体要点包括:3.1 继电保护装置选型在设计35kv输电线路的继电保护装置时,需要考虑信号传输时间、保护等级和兼容性等方面因素。

选用符合要求的保护装置,以保证保护的准确性、灵敏度和可靠性。

3.2 装置接线方式装置的接线方式是保护系统中的重要环节,需要考虑到电流对继电保护元件的影响,以保证继电保护装置能够准确地检测异常的电气状态。

3.3 保护投入时间35kv输电线路的长度比较长,保护投入的时间需要考虑信号传输的时间、距离等因素,保护投入时间一般要小于电路保护时间。

3.4 设备故障检测35kv输电线路的保护设计需要考虑到多种故障类型的检测,包括短路、接地、相间故障等,继电保护装置能够快速准确地判读故障类型,并采取相应措施进行处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

—继电保护课程设计输电线路微机继电保护系统设计~学院:物理与电子电气工程专业:电气工程及其自动化姓名:学号:摘要输电线路继电保护是整个电力系统的重要组成部分,它的任务是快速准确地切除线路故障,保证电网安全运行。

本文采用微机控制方法,对高压输电线路故障进行诊断和切除,取代传统电磁型继电保护装置。

线路保护装置采用STC12C5A60S2芯片作为控制核心,硬件电路主要包括芯片外围电路,模拟信号处理和采样电路,开关量输入输出电路,电源电路等。

本文首先对整个控制系统进行软件仿真,然后再将设计应用到实际当中,阐述三段式电流保护的控制流程和软件实现方法。

关键词单片机;继电保护;整流;电流互感器、@:目录1 绪论...................................................... 错误!未定义书签。

设计背景................................................. 错误!未定义书签。

微机继电保护的发展趋势及特点............................. 错误!未定义书签。

本文主要工作 (2)2 系统硬件设计.............................................. 错误!未定义书签。

系统框架................................................. 错误!未定义书签。

系统仿真................................................. 错误!未定义书签。

仿真设计............................................... 错误!未定义书签。

部分电路分析........................................... 错误!未定义书签。

仿真结果............................................... 错误!未定义书签。

系统硬件 (7)主要芯片和器件的选择................................... 错误!未定义书签。

单片机最小系统设计..................................... 错误!未定义书签。

三段式电流保护理论....................................... 错误!未定义书签。

电流速断保护(第I段)................................. 错误!未定义书签。

限时电流速断保护(第II段)............................ 错误!未定义书签。

定时限过电流保护(第III段)........................... 错误!未定义书签。

三段式电流保护小结..................................... 错误!未定义书签。

3 系统软件设计.............................................. 错误!未定义书签。

系统软件设计方案......................................... 错误!未定义书签。

总结.. (14)参考文献 (15)1 绪论设计背景当今社会,电能已经成为人类最重要的能源之一,它几乎已经渗透到人类一切的活动当中。

由于电能的生产是在相对集中的区域完成,所以电能的输送成为电力系统中重要组成部分。

随着电网电压等级的不断升高和用电负荷的不断增加,输电安全也逐渐成为重要研究课题。

传统电力系统继电保护经历了机电型、整流型、晶体管型和集成电路型几个阶段。

20世纪70年代以后,电力系统继电保护进入微机时代。

微机继电保护降低了设备成本,提高了设备可靠性,同时具有控制灵活、准确,性能优良等特点,成为当今主流的继保控制核心。

本文采用51单片机为核心,通过低压数字微机信号采集、数据分析、动作输出,实现对高压输电线路的诊断、分析、故障切除,保护电力系统安全运行。

微机继电保护的发展趋势及特点继电保护技术发展趋势向计算机化、网络化、智能化、保护、控制、测量和数据通信一体化发展。

随着计算机技术的飞速发展及计算机在电力系统继电保护领域中的普遍应用,新的控制原理和方法被不断应用于计算机继电保护中,以期取得更好的效果,从而使微机继电保护的研究向更高的层次发展,出现了一些引人注目的新趋势[1]。

微机继电保护主要有以下特点:1.改善和提高继电保护的动作特征和性能,动作正确率高。

主要表现在能得到常规保护不易获得的特性;其很强的记忆力能更好地实现故障分量保护;可引进自动控制、新的数学理论和技术如自适应、状态预测、模糊控制及人工神经网络等,其运行正确率很高也已在运行实践中得到证明。

2.可以方便地扩充其他辅助功能。

如故障录波、波形分析等,可以方便地附加低频减载、自动重合闸、故障录波、故障测距等功能。

3.工艺结构条件优越。

体现在硬件比较通用,制造容易统一标准;装置体积小,减少了盘位数量;功耗低。

4.可靠性容易提高。

体现在数字元件的特性不易受温度变化、电源波动、使用年限的影响,不易受元件更换的影响;且自检和巡检能力强,可用软件方法检测主要元件、部件的工况以及功能软件本身。

5.使用灵活方便,人机界面越来越友好。

其维护调试也更方便,从而缩短维修时间;同时依据运行经验,在现场可通过软件方法改变特性、结构。

6.可以进行远方监控。

微机保护装置具有串行通信功能,与变电所微机监控系统的通信联络使微机保护具有远方监控特性等等。

本文主要工作本文在借鉴国内外微机继电保护发展的成功经验结合现有资源对输电线路继电保护系统进行了软件仿真以及硬件实物的设计。

其主要内容包括以下几个方面: 1.简单概述了微机继电保护技术[2]。

主要介绍了国内国外微机继电保护的发展史、继电保护的几大特点、主要的理论技术和成果以及今后总的发展要求和趋势。

2.三段式电流继电保护的原理,及整定方法。

3.利用protues软件进行系统的电路设计并仿真。

4.与仿真软件配合进行单片机软件编程。

5.系统硬件设计原理与过程。

包括单片机最小系统电路设计、A/D模块、AC/DC整流稳压电路设计、三段式电流速断保护电路连接。

6.系统联合调试。

2 系统硬件设计系统框架随着电力系统的发展,电网结构的日益复杂,对其保护、控制、变量、通信等功能的要求越来越高,而且由于新一代、高性能微控制器的出现,微机保护装置将逐步实现高集成度、全功能化。

本系统着重考虑了保护的特殊性和实验的灵活性要求,采用了STC新型的高性能FLASH型MCU,从而使本装置既满足了继电保护的“四性”要求,又能灵活的适应各种保护原理的需要。

本系统硬件核心采用中国STC公司STC12C5A60S2芯片作为微制器,并配以适当的外围电路来完成各项功能。

本系统的硬件结构主要包括:中央处理单元、数据采集单元(模拟量和数字量)、人机接口(键盘与显示)单元、开关量输出单元,各部分如图所示。

仿真设计本系统采用Proteus软件仿真。

Proteus是世界上著名的EDA工具(仿真软件),从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。

其处理器模型支持8051、HC11、PIC10/12/16/18/24/30/DsPIC33、AVR、ARM、8086和MSP430等,2010年又增加了Cortex和DSP系列处理器,并持续增加其他系列处理器模型。

在编译方面,它也支持IAR、Keil和MATLAB等多种编译器。

由于Protues不对stc12系列单片机提供支持,我暂且用AT89系列代替。

用外部AD转换芯片进行模数转换。

并且用变压器来代替电流互感器。

根据系统设计要求作如下仿真:图2-2系统仿真图部分电路分析1、本系统采用桥式整流电路,整流电路的作用是将交流降压电路输出的电压较低的交流电转换成单向脉动性直流电,这就是交流电的整流过程,整流电路主要由整流二极管组成。

经过整流电路之后的电压已经不是交流电压,而是一种含有直流电压和交流电压的混合电压。

此时需要在电路中加入滤波电容,让电流波形更加趋于平滑。

电路如下:图2-3整流电路图如下图所示,在整流电路电压输入输出端加入示波器来对比显示整流效果a(整流前) b(整流后)图2-4 整流前后对比图2、光电隔离。

光电隔离的目的是使测控装置与现场仅保持信号联系,而不直接发生电的联系。

隔离的实质是把引进的干扰通道切断,从而达到隔离现场干扰的目的。

由于本系统现场信号是从高压输电线路中取得,而控制装置是低压的数字芯片,两者必须隔离才能工作,否则低压芯片很容易被烧毁。

见图2-5,光耦合器一般由三部分组成:光的发射、光的接收及信号放大。

输入的电信号驱动发光二极管,使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。

这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。

由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。

又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力图2-5光耦合器图3、仿真中选用ADC0832芯片作为模数转换模块。

ADC0832 为8位分辨率A/D转换芯片,其最高分辨可达256级,可以适应一般的模拟量转换要求。

其内部电源输入与参考电压的复用,使得芯片的模拟电压输入在0-5V之间。

芯片转换时间仅为32μS,据有双数据输出可作为数据校验,以减少数据误差,转换速度快且稳定性能强。

独立的芯片使能输入,使多器件挂接和处理器控制变的更加方便。

通过DI 数据输入端,可以轻易的实现通道功能的选择。

图2-6 ADC0832图4、本系统用5V直流继电器作为开关量输出单元,再接一个LED发光二极管来直观的显示继电器是否动作。

由于一般单片机的I/O口并不具备直接带负载能力,我们可以用三极管来驱动直流继电器。

此外,因继电器的内部是一个线圈绕组,相当于一个大容量的电感。

而电感具有缓存电流的作用,如果电流过大则可能击穿三极管。

因此,在继电器回路中加入一个二极管来释放电感中的大电流。

图2-7开关量输出模块图仿真结果图 2-8 系统仿真图经过调试,当变压器一次侧电压升高,二次侧及整流电路输出电压也随之升高,经模数转换后如果AD值大于预先设定的值,则可认为线路发生短路故障。

此时,继电器动作,指示灯亮。

系统硬件主要芯片和器件的选择1.主控芯片本设计的主控芯片是STC12C5A60S2。

此芯片是STC生产的单时钟/机器周期(1T)的单片机,是高速、低功耗、超强抗干扰的新一代8051单片机,指令代码完全兼容传统8051,但速度快8-12倍。

相关文档
最新文档