35kV输电线路继电保护设计92146
35kv线路继电保护设计

继电保护课程设计1、系统的等值电路图1.1 两台变压器的等值阻抗计算 电压百分数的计算:()()1(13)(12)(23)11%%%%17.510.5 6.510.7522k k k k U U U U ---=+-=+-=()()2(12)(23)(13)11%%%%10.5 6.517.50.2522k k k k U U U U ---=+-=+-=-()()3(13)(23)(12)11%%%%17.5 6.510.5 6.7522k k k k U U U U ---=+-=+-=变压器的等值阻抗计算:11%10.751000.1710010063k B T TN U S X S =•=•= 22%0.251000.00410010063k B T TN U S X S -=•=•=- 33% 6.751000.1110010063k B T TN U S X S =•=•= 1.2 系统的等值电路图系统的等值电路图如图1-1所示:图1-1 系统的等值电路图2、线路短路计算分别进行最大运行方式和最小运行方式下各条线路发生对称三相短路,单相接地短路,两相接地短路和两相短路。
2.1 各线路阻抗参数及计算公式经过查手册得:LGJ-400型线路=0x 0.396Ω/km ,LGJ-300型线路=0x 0.404Ω/km ,LGJ-150型线路=0x 0.425Ω/km ,LGJ-120型线路=0x 0.435Ω/km 。
利用计算公式:0x x l =• 2.2 各线路阻抗参数计算数值 2.2.1各线路阻抗参数计算数值各线路阻抗参数计算数值如下表2.1所示:2.2.2各线路阻抗参数标幺值计算数值标幺值计算为:2*BBU S x x ⋅= 计算数值如下表 2.2所示:(其中110 1.05115.5B U =⨯=Kv )表2.2 各线路阻抗标幺值计算数值L-3 L-4 L-5 L-6110KV0.18 0.15 0.23 0.102.3 三相短路计算2.3.1最大运行方式下短路电流计算 如图2-1所示发生(3)d 点短路时113B d L BS I X X U ε=•+。
35Kv输电线路的继电保护设计

3.1比较各保护的优缺点 (12)1电流保护的优缺点: (12)2距离保护的优缺点: (12)目录第一章:任务的提出与方案的提出1.1前言 (3)1.2绪论 (3)1.3摘要 (4)1.4基本原理 (4)第二章:详细设计:2.1短路和负荷电流的计算 (5)2.2线路电流保护的设计 (5)2.3线路距离保护的设计 (6)2.4输电线路的纵联保护 (8)2.5电力变压器的继电保护 (10)第三章:总体设计3.1比较各种保护的优缺点 (13)3.2继电保护装置的选择 (14)3.3结论 (15)第四章:结束4.1设计感言 (17)4.2参考文献 (18)1.1 前言:《电力系统继电保护》作为电气工程及其自动化专业的一门主要课程,主要包括课堂讲学、课程设计等几个主要部分。
电能是现代社会中最重要、也是最方便的能源。
而发电厂正是把其他形式的能量转换成电能,电能经过变压器和不同电压等级的输电线路输送并被分配给用户,再通过各种用电设备转换成适合用户需要的其他形式的能量。
在输送电能的过程中,电力系统希望线路有比较好的可靠性,因此在电力系统受到外界干扰时,保护线路的各种继电装置应该有比较可靠的、及时的保护动作,从而切断故障点极大限度的降低电力系统供电范围。
电力系统继电保护就是为达到这个目的而设置的。
本次设计的任务主要包括了五大部分,电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。
其中短路电流的计算和电气设备的选择是本设计的重点。
1.2、绪论(一)电力系统继电保护的作用电力系统在运行中,可能发生各种故障和不正常运行状态,最常见同时也是最危险的故障是发生各种型式的短路。
在发生短路时可能产生以下的后果.1.通过故障点的很大的短路电流和所燃起的电弧,使故障元件损坏;2.短路电流通过非故障元件,由于发热和电动力的作用,引起它们的损坏或缩短它们的使用寿命;3.电力系统中部分地区的电压大大降低,破坏用户工作的稳定性或影响工厂产品质量;4.破坏电力系统并列运行的稳定性,引起系统振动,甚至使整个系统瓦解;电气元件的正常工作遭到破坏,但没有发生故障,这种情况属于不正常运行状态。
35kV输电线路继电保护设计

本科课程设计课程名称:电力系统继电保护原理设计题目:35kV输电线路继电保护设计摘要力是当今世界使用最为广泛、地位最为重要的能源之一,电力系统的安全稳定运行对国民经济、人民生活乃至社会稳定都有着极为重大的影响。
电力系统继电保护是反映电力系统中电气设备发生故障或不正常运行状态而动作于断路器跳闸或发生信号的一种自动装置。
电力系统继电保护的根本作用是:全系统围,按指定分区实时地检测各种故障和不正常运行状态,快速与时地采取故障隔离或告警信号等措施,以求最大限度地维持系统的稳定、保持供电的连续性、保障人身的安全、防止或减轻设备的损坏。
随着电力系统的飞速开展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速开展又为继电保护技术的开展不断地注入了新的活力。
随着电力系统的迅速开展。
大量机组、超高压输变变电的投入运行,对继电保护不断提出新的更高要求。
继电保护是电力系统的重要组成局部,被称为电力系统的安全屏障,同时又是电力系统事故扩大的根源,做好继电保护工作是保证电力系统安全运行的必不可少的重要手段,电力系统事故具有连锁反响、速度快、涉与面广、影响大的特点,往往会给国民经济和人民生活造成社会性的灾难。
本次毕业设计的题目是35kv线路继电保护的设计。
主要任务是为保证电网的安全运行,需要对电网配置完善的继电保护装置.根据该电网的结构、电压等级、线路长度、运行方式以与负荷性质的要求,给35KV的输电线路设计适宜的继电保护。
关键词:35kv继电保护、整定计算、故障分析、设计原理目录继电保护的作用4继电保护的概念与任务4继电保护的根本原理和保护装置的组成4反响系统正常运行与故障时电器元件〔设备〕一端所测根本参数的变化而构成的原理〔单端测量原理,也称阶段式原理〕4反响电气元件部故障与外部故障〔与正常运行〕时两端所测电流相位和功率方向的差异而构成的原理〔双端测量原理,也称差动式原理〕5保护装置的组成局部5对电力系统继电保护的根本要求6选择性6速动性6灵敏性7可靠性7继电保护技术开展简史72.35KV线路故障分析82.1常见故障分析82相间短路82接地短路93、35KV线路继电保护的配置99104.1.1 瞬时电流速断保护的工作原理10111216164.2.2 限时电流速断保护的整定计算174.2.3 限时电流速断保护的单相原理接线202020224.3.3 定时限过电流保护的灵敏度校验和保护动作时间22 5:致256:参考文献261、继电保护概论继电保护的作用继电保护的概念与任务电力系统继电保护是反映电力系统中电气设备发生故障或不正常运行状态而动作于断路器跳闸或发生信号的一种自动装置。
35kv输电线路继电保护设计

1.3.2 速动性
继电保护的速动性是指继电保护装置应以尽可能快的速度切除故障设备。 故障后,为防 止并列运行的系统失步,减少用户在电压降低情况下工作的时间及故障元件损坏程度, 应尽 量地快速切除故障。 (快速保护:几个工频周期,微机保护:30ms 以下) 故障切除总时间等于保护装置和断路器动作时间之和。一般快速保护的动作时间为 0.06-0.12s, 最 快 的 可 达 0.02-0.04s; 一 般 断 路 器 动 作 时 间 为 0.06-0.15s , 最 快 的 有 0.02-0.06s。 目前常用的无时限整套保护的动作时间表
以 A-B 线路为例:
规定电流正方向:电流从母线流向线路 规定电压正方向:母线指向线路 利用以上差别,可构成差动原理保护。 如:纵联差动保护; 方向高频保护; 相差高频保护等。
1.2.3 保护装置的组成部分
5
┌──┐ ┌──┐ ┌──┐ 输入─→│测量│─→│逻辑│─→│执行│─→ 输出 信号 └──┘ └──┘ └──┘ 信号 ↑ └ 整定值
2.1.2 接地短路
在接地系统中,一相接地较大,可能构成系统短路。这时的接地电流叫做接地短路电流。 在高压接地系统中,接地短路电流可能很大。接地短路电流在 500A 及 500A 以下者称为小接地短 路电流系统;接地短路电流 500A 以上者均为大接地短路电流系统。
3、35KV 线路继电保护的配置
相间短路保护采用两相两继电流保护,它是一种阶段式电流保护。以第Ⅰ段、第Ⅱ段 电流速断保护作为主保护,以第Ⅲ段过电流保护作为后备保护。 2、单相接地故障的保护方式之一:
带方向或不带方向的电流电压速断保护装置 各型距离保护装置 高频保护装置 线路横差或纵差保护装置 元件纵差保护装置 0.06-0.1s 0.1-1.25s 0.04-0.15s 0.06-0.1s 0.06-0.1s
35千伏电网继电保护设计

《35千伏电网继电保护课程设计说明书》说明书二.电网继电保护配置设计(一)继电保护配置的一般原则电力系统继电保护设计与配置是否合理直接影响电力系统的安全运行。
若设计与配置不当,在出现保护不正确动作的情况时,会使得事故停电范围扩大,给国民经济带来程度不同的损失,还可能造成设备或人身安全事故。
因此,合理地选择继电保护的配置主案正确地进行整定计算,对保护电力系统安全运行具有十分重要的意义。
选择继电保护配置方案时,应尽可能全面满足可靠性、选择性、灵敏性和速动性的要求。
当存在困难时允许根据具体情况,在不影响系统安全运行的前提下适当地降低某些方面的要求。
选择继电保护装置方案时,应首先考虑采用最简单的保护装置,以要求可靠性较高、调试较方便和费用较省。
只有当简单的保护装置满足不了四个方面的基本要求时,才考虑近期电力系统结构的特点、可能的发展情况、经济上的合理性和国内外已有的成熟经验。
所选定的继电保护配置方案还应该满足电力系统和各站、所运行方式变化的要求。
35千伏及以上的电力系统,所有电力设备和输电线路均应装设反应于短路故障和异常运行状况的继电保护装置。
一般情况下应包括主保护和后备保护。
主保护是能满足从稳定及安全要求出发,有选择性地切除被保护设备或全线路故障设备或线路的保护。
后备保护可包括近后备和远后备两种作用。
主保护和后备保护都应满足《电力装置的继电保护和自动装置设计规范》所规定的对短路保护的最小灵敏系数的要求。
(二) 35千伏中性点不接地电网的继电保护配置原则1.相间短路保护保护电流回路的电流互感器采用不完全星形接线,各线路保护均装在相同的A、C两相上。
以保证在大多数两点接地的情况下只切除一个故障点。
在线路上发生短路时,若引起厂用电或重要用户母线的电压低于50~60%时,应快速切除故障,以保证无故障的电动机能继续运行。
在单侧电源的单回线路上,可装设不带方向元件的一段或两段式电流、电压速断保护和定时限过电流保护。
35KV输电线路保护设计_35KV输电线路保护

摘要电力系统的不断发展和安全稳定运行,给国民经济和社会发展带来了巨大动力和效益。
但是一旦发生故障如不能及时有效控制,就会破坏稳定运行,造成大面积停电,给社会带来灾难性的严重后果。
随着电力系统的迅速发展,大量机组、超高压输变电的投入运行,对继电保护不断提出新的更高要求。
继电保护是电力系统的重要组成部分,做好继电保护工作是保证电力系统安全运行的必不可少的重要手段。
因此,加强线路继电保护非常重要。
根据线路继电保护的要求,给35KV的输电线路设计合适的继电保护。
本次课程设计首先介绍了继电保护的作用和发展,然后详细介绍了35KV线路主保护及后备保护的选择与整定,35KV线路三相一次重合闸及防雷保护,最后介绍35KV系统的微机保护。
关键词:继电保护;主保护;整定;微机保护目录1 继电保护的作用和发展 01.1 继电保护的作用 (1)1.1.1 继电保护在电力系统中的作用 01.1.2 继电保护的基本原理和基本要求 01.2 继电保护的发展 (1)2 35KV线路主保护选择与整定 (3)2.1 电流、电压保护整定计算考虑原则 (3)2.1.1 电流、电压保护的构成原理及使用围 (3)2.2 电流闭锁电压保护 (4)3 35KV线路后备保护选择与整定 (10)4 35KV线路三相一次重合闸 (15)5 线路及变压器防雷保护 (16)6 微机保护 (17)6.1 微机保护的软硬件组成 (17)6.1.1微机保护的特点 (17)6.1.2微机保护装置硬件结构 (17)6.1.3微机保护的软件组成 (18)6.2 微机保护的算法 (19)6.3 35KV系统微机保护配置 (20)总结 (22)致 (23)参考文献 (24)1继电保护的作用和发展1.1 继电保护的作用1.1.1 继电保护在电力系统中的作用电力系统在生产过程中,有可能发生各类故障和各种不正常情况。
其中故障一般可分为两类:横向不对称故障和纵向不对称故障。
横向不对称故障包括两相短路、单相接地短路、两相接地短路三种,纵向对称故障包括单相断相和两相断相,又称非全相运行。
35Kv输电线路的继电保护设计

35Kv输电线路的继电保护设计在电力系统中,35kV输电线路扮演着重要的角色,负责将发电厂产生的电能传输到各个用电点。
然而,由于外部环境、设备老化等原因,输电线路可能会出现故障,导致电力系统的不稳定甚至瘫痪。
为了确保电力系统的安全稳定运行,35kV输电线路的继电保护设计至关重要。
本文将深入探讨35kV输电线路继电保护的设计原则、方法和应用。
首先,我们需要了解什么是继电保护。
继电保护是电力系统中一种自动保护装置,它通过检测电力系统中的异常信号,如电流、电压、功率等,来判断系统是否存在故障。
一旦检测到故障,继电保护会发出信号,触发断路器等设备,切断故障点与系统的连接,从而保护电力系统的安全运行。
在35kV输电线路的继电保护设计中,我们需要遵循以下原则:1. 快速响应:继电保护应能够迅速响应输电线路的故障,切断故障点与系统的连接,避免故障扩大。
2. 准确判断:继电保护应能够准确判断输电线路的故障类型和位置,避免误判和漏判。
3. 可靠操作:继电保护应具备高度可靠性,确保在任何情况下都能正常工作。
4. 易于维护:继电保护应具备易维护性,便于日常检查、调试和更换。
在35kV输电线路的继电保护设计中,常用的方法包括电流保护、电压保护、距离保护和差动保护等。
这些方法各自有其特点和适用场景。
1. 电流保护:电流保护是通过检测输电线路中的电流变化来判断故障的存在。
当电流超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。
2. 电压保护:电压保护是通过检测输电线路中的电压变化来判断故障的存在。
当电压超过或低于设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。
3. 距离保护:距离保护是通过检测输电线路中的阻抗变化来判断故障的存在。
当阻抗超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。
4. 差动保护:差动保护是通过比较输电线路两端的电流和电压差异来判断故障的存在。
当差动电流或差动电压超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。
kV输电线路继电保护设计精选文档

k V输电线路继电保护设计精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-本科课程设计课程名称:电力系统继电保护原理设计题目:35kV输电线路继电保护设计摘要力是当今世界使用最为广泛、地位最为重要的能源之一,电力系统的安全稳定运行对国民经济、人民生活乃至社会稳定都有着极为重大的影响。
电力系统继电保护是反映电力系统中电气设备发生故障或不正常运行状态而动作于断路器跳闸或发生信号的一种自动装置。
电力系统继电保护的基本作用是:全系统范围内,按指定分区实时地检测各种故障和不正常运行状态,快速及时地采取故障隔离或告警信号等措施,以求最大限度地维持系统的稳定、保持供电的连续性、保障人身的安全、防止或减轻设备的损坏。
随着电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。
随着电力系统的迅速发展。
大量机组、超高压输变变电的投入运行,对继电保护不断提出新的更高要求。
继电保护是电力系统的重要组成部分,被称为电力系统的安全屏障,同时又是电力系统事故扩大的根源,做好继电保护工作是保证电力系统安全运行的必不可少的重要手段,电力系统事故具有连锁反应、速度快、涉及面广、影响大的特点,往往会给国民经济和人民生活造成社会性的灾难。
本次毕业设计的题目是35kv线路继电保护的设计。
主要任务是为保证电网的安全运行,需要对电网配置完善的继电保护装置.根据该电网的结构、电压等级、线路长度、运行方式以及负荷性质的要求,给35KV的输电线路设计合适的继电保护。
关键词:35kv继电保护、整定计算、故障分析、设计原理目录1.1继电保护的作用 (5)1.1.1继电保护的概念及任务 (5)1.2继电保护的基本原理和保护装置的组成 (5)1.2.1反应系统正常运行与故障时电器元件(设备)一端所测基本参数的变化而构成的原理(单端测量原理,也称阶段式原理)51.2.2 反应电气元件内部故障与外部故障(及正常运行)时两端所测电流相位和功率方向的差别而构成的原理(双端测量原理,也称差动式原理) (6)1.2.3保护装置的组成部分 (6)1.3对电力系统继电保护的基本要求 (7)1.3.1选择性 (7)1.3.2速动性 (7)1.3.3灵敏性 (8)1.3.4可靠性 (8)1.4继电保护技术发展简史 (8)2.35KV线路故障分析 (9)2.1常见故障分析 (9)2.1.1相间短路 (9)2.1.2接地短路 (9)3、35KV线路继电保护的配置 (9)4.电网相间短路的电流保护 (10)4.1瞬时电流速断保护 (10)4.1.1 瞬时电流速断保护的工作原理 (10)4.1.2原理接线 (11)4.1.3瞬时电流速断保护的整定计算 (12)4.2限时电流速断电流保护 (15)4.2.1限时电流速断保护的工作原理 (16)4.2.2 限时电流速断保护的整定计算 (16)4.2.3 限时电流速断保护的单相原理接线 (19)4.3定时限过电流保护 (19)4.3.1定时限过电流保护的工作原理 (19)4.3.2定时限时电流保护的整定计算 (21)4.3.3 定时限过电流保护的灵敏度校验和保护动作时间 (21)5:致谢 (23)6:参考文献 (23)1、继电保护概论1.1继电保护的作用1.1.1继电保护的概念及任务电力系统继电保护是反映电力系统中电气设备发生故障或不正常运行状态而动作于断路器跳闸或发生信号的一种自动装置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科课程设计课程名称:电力系统继电保护原理设计题目:35kV输电线路继电保护设计摘要力是当今世界使用最为广泛、地位最为重要的能源之一,电力系统的安全稳定运行对国民经济、人民生活乃至社会稳定都有着极为重大的影响。
电力系统继电保护是反映电力系统中电气设备发生故障或不正常运行状态而动作于断路器跳闸或发生信号的一种自动装置。
电力系统继电保护的基本作用是:全系统围,按指定分区实时地检测各种故障和不正常运行状态,快速及时地采取故障隔离或告警信号等措施,以求最大限度地维持系统的稳定、保持供电的连续性、保障人身的安全、防止或减轻设备的损坏。
随着电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。
随着电力系统的迅速发展。
大量机组、超高压输变变电的投入运行,对继电保护不断提出新的更高要求。
继电保护是电力系统的重要组成部分,被称为电力系统的安全屏障,同时又是电力系统事故扩大的根源,做好继电保护工作是保证电力系统安全运行的必不可少的重要手段,电力系统事故具有连锁反应、速度快、涉及面广、影响大的特点,往往会给国民经济和人民生活造成社会性的灾难。
本次毕业设计的题目是35kv线路继电保护的设计。
主要任务是为保证电网的安全运行,需要对电网配置完善的继电保护装置.根据该电网的结构、电压等级、线路长度、运行方式以及负荷性质的要求,给35KV的输电线路设计合适的继电保护。
关键词:35kv继电保护、整定计算、故障分析、设计原理目录1.1继电保护的作用 (5)1.1.1继电保护的概念及任务 (5)1.2继电保护的基本原理和保护装置的组成 (5)1.2.1反应系统正常运行与故障时电器元件(设备)一端所测基本参数的变化而构成的原理(单端测量原理,也称阶段式原理) (5)1.2.2 反应电气元件部故障与外部故障(及正常运行)时两端所测电流相位和功率方向的差别而构成的原理(双端测量原理,也称差动式原理) (6)1.2.3保护装置的组成部分 (6)1.3对电力系统继电保护的基本要求 (7)1.3.1选择性 (7)1.3.2速动性 (7)1.3.3灵敏性 (8)1.3.4可靠性 (8)1.4继电保护技术发展简史 (8)2.35KV线路故障分析 (9)2.1常见故障分析 (9)2.1.1相间短路 (9)2.1.2接地短路 (9)3、35KV线路继电保护的配置 (9)4.电网相间短路的电流保护 (10)4.1瞬时电流速断保护 (10)4.1.1 瞬时电流速断保护的工作原理 (10)4.1.2原理接线 (11)4.1.3瞬时电流速断保护的整定计算 (12)4.2限时电流速断电流保护 (15)4.2.1限时电流速断保护的工作原理 (16)4.2.2 限时电流速断保护的整定计算 (16)4.2.3 限时电流速断保护的单相原理接线 (19)4.3定时限过电流保护 (19)4.3.1定时限过电流保护的工作原理 (19)4.3.2定时限时电流保护的整定计算 (21)4.3.3 定时限过电流保护的灵敏度校验和保护动作时间 (21)5:致 (23)6:参考文献 (23)1、继电保护概论1.1继电保护的作用1.1.1继电保护的概念及任务电力系统继电保护是反映电力系统中电气设备发生故障或不正常运行状态而动作于断路器跳闸或发生信号的一种自动装置。
继电保护的基本任务是:电力系统发生故障时,自动、快速、有选择地将故障设备从电力系统中切除,保证非故障设备继续运行,尽量缩小停电围;电力系统出现异常运行状态时,根据运行维护的要求能自动、及时、有选择地发出告警信号或者减负荷、跳闸。
1.2继电保护的基本原理和保护装置的组成1.2.1反应系统正常运行与故障时电器元件(设备)一端所测基本参数的变化而构成的原理(单端测量原理,也称阶段式原理)运行参数:I、U、Z∠φ反应 I↑→过电流保护反应 U↓→低电压保护反应 Z↓→低阻抗保护(距离保护)1.2.2 反应电气元件部故障与外部故障(及正常运行)时两端所测电流相位和功率方向的差别而构成的原理(双端测量原理,也称差动式原理)以A-B线路为例:规定电流正方向:电流从母线流向线路规定电压正方向:母线指向线路利用以上差别,可构成差动原理保护。
如:纵联差动保护;方向高频保护;相差高频保护等。
1.2.3保护装置的组成部分┌──┐┌──┐┌──┐输入─→│测量│─→│逻辑│─→│执行│─→输出信号└──┘└──┘└──┘信号↑└整定值1.3对电力系统继电保护的基本要求1.3.1选择性继电保护动作的选择性是指保护装置动作时,仅将故障元件从电力系统中切除,使停电围尽量缩小,以保证系统中的无故障部分仍能继续安全运行。
d3点短路:6动作:有选择性; 5动作:无选择性如果6拒动,5再动作:有选择性(5作为6的远后备保护)d1点短路:1、2动作:有选择性; 3、4动作:无选择性后备保护(本元件主保护拒动时):(1)由前一级保护作为后备叫远后备.(2)由本元件的另一套保护作为后备叫近后备.1.3.2速动性继电保护的速动性是指继电保护装置应以尽可能快的速度切除故障设备。
故障后,为防止并列运行的系统失步,减少用户在电压降低情况下工作的时间及故障元件损坏程度,应尽量地快速切除故障。
(快速保护:几个工频周期,微机保护:30ms以下)故障切除总时间等于保护装置和断路器动作时间之和。
一般快速保护的动作时间为0.06-0.12s,最快的可达0.02-0.04s;一般断路器动作时间为0.06-0.15s,最快的有0.02-0.06s。
目前常用的无时限整套保护的动作时间表1.3.3灵敏性继电保护的灵敏性是指保护装置对于其应保护的围发生故障的反应能力。
(保护不该动作情况与应该动作情况所测电气量相差越大→灵敏度↑)。
一般用灵敏系数Klm来衡量灵敏度。
1.3.4可靠性继电保护的可靠性是指保护装置在电力系统正常运行时不误动;再规定的保护围发生故障时,应可靠动作;而在不属于该保护动作的其他任何情况下,应可靠的不动作。
(主保护对动作快速性要求相对较高;后备保护对灵敏性要求相对较高。
)1.4继电保护技术发展简史上世纪90年代出现了装于断路器上并直接作用于断路器的一次式的电磁型过电流继电器,本世纪初,随着电力系统的发展,继电器才开始广泛应用于电力系统的保护。
这个时期可认为是继电保护技术发展的开端。
1901年出现了感应型过电流继电器。
1908年提出了比较被保护元件两端的电流差动保护原理。
1910年方向性电流保护开始得到应用,在此时期也出现了将电流与电压比较的保护原理,并导致了本世纪29年代初距离保护的出现。
随着电力系统载波通讯的发展,在1927年前后,出现了利用高压输电线上高频载波电流传送和比较输电线两端功率或相位的高频保护装置。
在50年代,微波中继通讯开始应用与电力系统,从而出现了利用微波传送和比较输电线两端故障电气量的微波保护。
早在50年代就出现了利用故障点产生的行波实现快速继电保护的设想。
经过20余年的研究,终于诞生了行波保护装置。
显然,随着光纤通讯将在电力系统中的大量采用,利用光纤通道的继电保护必将得到广泛的应用。
以上是继电保护原理的发展过程。
与此同时,构成继电保护装置的元件、材料、保护装置的结构型式和制造工艺也发生了巨大的变革.50年代以前的继电保护装置都是由电磁型感应型或电动型继电器组成的这些继电器统称为机电式继电器.本世纪50年代初由于半导体晶体管的发展开始出现了晶体管式继电保护装置称之为电子式静态保护装置.70年代是晶体管继电保护装置在我国大量采用的时期满足了当时电力系统向超高压大容量方向发展的需要.80年代后期标志着静态继电保护从第一代(晶体管式)向第二代(集成电路式)的过渡.目前后者已成为静态继电保护装置的主要形式.在60年代末有人提出用小型计算机实现继电保护的设想由此开始了对继电保护计算机算法的大量研究对后来微型计算机式继电保护(简称微机保护)的发展奠定了理论基础.70年代后半期比较完善的微机保护样机开始投入到电力系统中试运行.80年代微机保护在硬件结构和软件技术方面已趋于成熟并已在一些国家推广应用这就是第三代的静态继电保护装置.微机保护装置具有巨大的优越性和潜力因而受到运行人员的欢迎.进入90年代以来它在我国得到了大量的应用将成为继电保护装置的主要型式.可以说微机保护代表着电力系统继电保护的未来将成为未来电力系统保护控制运行调度及事故处理的统一计算机系统的组成部分.2.35KV线路故障分析2.1常见故障分析2.1.1相间短路这里的“相”指三相对称制交流电源,是由三个单相交流电源所组成的电源系统——简称三相交流电源。
我国所采用的供电方式称为三相四线制交流电源,三相发电机的绕组作星形连接。
各绕组的首端称端线,端线与端线之间的电压称为线电压。
各绕组的末端连接在一起称中线,与端线之间的电压称为相电压。
相间短路是指端线与端线之间未经过负载(即用电器)而相连接所造成的电源短路。
2.1.2接地短路在接地系统中,一相接地较大,可能构成系统短路。
这时的接地电流叫做接地短路电流。
在高压接地系统中,接地短路电流可能很大。
接地短路电流在500A及500A以下者称为小接地短路电流系统;接地短路电流500A以上者均为大接地短路电流系统。
3、35KV线路继电保护的配置相间短路保护采用两相两继电流保护,它是一种阶段式电流保护。
以第Ⅰ段、第Ⅱ段电流速断保护作为主保护,以第Ⅲ段过电流保护作为后备保护。
2、单相接地故障的保护方式之一:4.电网相间短路的电流保护在电网中35kv及以下的较低电压的网络中主要采用三段式电流保护,最主要的优点就是简单、可靠,并且在一般情况下也能够满足快速切除故障的要求。
三段式过流保护包括:1、瞬时电流速断保护(简称电流速断保护或电流ⅰ段)2、限时电流速断保护(电流ⅱ段)3、过电流保护(电流ⅲ段)。
电流速断、限时电流速断和过电流保护都是反应电流增大而动作的保护,它们相互配合构成一整套保护,称做三段式电流保护,它们的不同是保护围不同。
三段的区别主要在于起动电流的选择原则不同。
其中速断和限时速断保护是按照躲开某一点的最大短路电流来整定的,而过电流保护是按照躲开最大负荷电流来整定的。
1、瞬时电流速断保护:保护围小于被保护线路的全长一般设定为被保护线路的全长的85%2、限时电流速断保护:保护围是被保护线路的全长或下一回线路的15%3、过电流保护:保护围为被保护线路的全长至下一回线路的全长4.1瞬时电流速断保护输电线路发生短路时,电流突然增大,电压降低。
利用电流突然增大使保护动作而构成的保护装置,称为电流保护。
通常输电线路电流保护采用阶段式电流保护,采用三套电流保护共同构成三段式电流保护。