35kV输电线路继电保护设计

合集下载

35kV降压变电站继电保护设计

35kV降压变电站继电保护设计
3 5 k V降压 变 电站继 电保 护 设计
赵 培 谢 欣 莹
湖南 娄底 4 1 7 0 0 0 ) ( 湖南省电力公司娄底 电业局 摘 要: 随着 社会经济 的不断发展 , 我 国科 学技术 的水 平也得到 了很大 的提 高, 而 电缆系统 随着科学 技术 的提高 , 也对继 电保护 的要求越来 越高 。继 电保护 技术是需要通讯技 术、 计算机技术 以及电子技术 的共 同促进才 能得 以实现 , 所 以, 继电保护技 术有着其特 殊性 。本文主要介绍 了继 电保护的任务 、 作 用以及整定 , 分析 了其接 电方案 的选 择, 阐述 了短路计 算方式。 关键词 : 降 压 变 电站 ; 3 5 k V; 继 电保 护 中图分类 号 : T M7 7 文献标识码 : B 文章编号 : 1 0 0 4 — 7 3 4 4 ( 2 0 1 3 ) 1 3 — 0 0 6 2 — 0 2
毁 电动 机 ; 电 力 系 统 电压 下 降 , 可 能 破 坏 电力 系 统 的稳 定 。 在 电力系统 中, 想要保证 电力系统安全运行 , 最有效 的方法是最 发
引 言
继 电保护主要 是发生在电力系统 内部出现故障的时候 , 用有触点 的 继电器来对 系统 中的输 电线路、 变压器、 发电机等元件进行保护 , 使元件 的损害降到最 小。继电保 护主要是用来研究 电力系统故障以及危机安全 运 行的状 况。作为电力系统的重要组成部分 , 变 电站对于整个 电力系统 都有着很大 的影响, 它能直接 影响系统 的安全 与经 济运行 , 是 联系发 电 厂和用户 的中间环节 , 起着变换和分配电能的作用 。
l - 2继 电保 护 的 作用
由于 电气设备 内部绝缘 的老化 、 损坏或工作人员 的误操作 、 雷击、 外 力破坏 等原因 , 会使 正在运行的系统遭 到破 坏 , 从而导致 系统 的不 正常 运行 。最常见的系统故障就是短路 , 主要包括两相对地 短路 、 两相短路、 三相短路 以及中性点直接接地系统 中的一相对地 短路、 电气设备绕组层 间和匝 间短路等 。各种短路均会产 生很大 的短路 电流, 同时使 电力系统 的 电压 水 平 下 降 , 从 而 引 发 如 下严 重 后果 : 短路 电流产 生的电弧将 短路点的电气 设备烧 坏 ,缩短其使用寿命 ; 电力系统 电压水平下 降, 影 响用 电单位 的生产 , 出现次品及废品 , 甚至烧

35KV变电站继电保护方案

35KV变电站继电保护方案

35KV变电站继电保护方案摘要:继电保护是电网不可分割的一部分,它的作用是当电力系统发生故障时,迅速地有选择地将故障设备从电力系统中切除,保证系统的其余部分快速恢复正常运行;当发生不正常工作情况时,迅速地有选择地发出报警信号,由运行人员手工切除那些继续运行会引起故障的电气设备。

可见,继电保护对保证电网安全、稳定和经济运行,阻止故障的扩大和事故的发生,发挥着极其重要的作用。

关键词:35KV变电站;继电保护;短路电流;电路配置1 引言继电保护及自动化是研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。

因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。

基本任务是:当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。

2 继电保护相关知识2.1 继电保护的概述研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。

因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。

当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。

2.2 继电保护基本原理继电保护装置的作用是起到反事故的自动装置的作用,必须正确地区分“正常”与“不正常”运行状态、被保护元件的“外部故障”与“内部故障”,以实现继电保护的功能。

因此,通过检测各种状态下被保护元件所反映的各种物理量的变化并予以鉴别。

依据反映的物理量的不同,保护装置可以构成下述各种原理的保护。

2.3 对继电保护装置的要求继电保护装置为了完成它的任务,必须在技术上满足选择性、速动性、灵敏性和可靠性四个基本要求。

35Kv输电线路的继电保护设计

35Kv输电线路的继电保护设计

35Kv输电线路的继电保护设计在电力系统中,35kV输电线路扮演着重要的角色,负责将发电厂产生的电能传输到各个用电点。

然而,由于外部环境、设备老化等原因,输电线路可能会出现故障,导致电力系统的不稳定甚至瘫痪。

为了确保电力系统的安全稳定运行,35kV输电线路的继电保护设计至关重要。

本文将深入探讨35kV输电线路继电保护的设计原则、方法和应用。

首先,我们需要了解什么是继电保护。

继电保护是电力系统中一种自动保护装置,它通过检测电力系统中的异常信号,如电流、电压、功率等,来判断系统是否存在故障。

一旦检测到故障,继电保护会发出信号,触发断路器等设备,切断故障点与系统的连接,从而保护电力系统的安全运行。

在35kV输电线路的继电保护设计中,我们需要遵循以下原则:1. 快速响应:继电保护应能够迅速响应输电线路的故障,切断故障点与系统的连接,避免故障扩大。

2. 准确判断:继电保护应能够准确判断输电线路的故障类型和位置,避免误判和漏判。

3. 可靠操作:继电保护应具备高度可靠性,确保在任何情况下都能正常工作。

4. 易于维护:继电保护应具备易维护性,便于日常检查、调试和更换。

在35kV输电线路的继电保护设计中,常用的方法包括电流保护、电压保护、距离保护和差动保护等。

这些方法各自有其特点和适用场景。

1. 电流保护:电流保护是通过检测输电线路中的电流变化来判断故障的存在。

当电流超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。

2. 电压保护:电压保护是通过检测输电线路中的电压变化来判断故障的存在。

当电压超过或低于设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。

3. 距离保护:距离保护是通过检测输电线路中的阻抗变化来判断故障的存在。

当阻抗超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。

4. 差动保护:差动保护是通过比较输电线路两端的电流和电压差异来判断故障的存在。

当差动电流或差动电压超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。

输电线路继电保护设计

输电线路继电保护设计

输电线路继电保护设计输电线路继电保护是电力系统中非常重要的组成部分。

它的主要目的是在输电线路发生故障时,迅速切除故障段,保护线路的安全运行,同时最大程度地减少电网运行的受影响范围和时间。

本文将从输电线路基本原理、故障类型和继电保护的设计等方面进行详细阐述。

一、输电线路基本原理输电线路是将发电厂产生的电能输送到用户终端的通道,它主要由输电塔、导线和绝缘子等组成。

输电塔起到支撑导线和绝缘子的作用,导线用于传输电能,而绝缘子则用于保护导线在输电过程中不受地面和大气环境的影响。

在正常情况下,输电线路是处于正常运行状态的,电流和电压的波动很小。

然而,在发生故障时,可能出现短路、接地故障、过流和过压等问题,这些故障会导致电流和电压急剧增加,给输电线路带来很大的压力。

二、故障类型1.短路故障:当输电线路的两相或三相之间出现直接连接导致电流异常增大时,称为短路故障。

短路故障通常由于导线之间的绝缘破损或接触不良所引起。

2.接地故障:当输电线路中的导线与地面接触时,称为接地故障。

接地故障通常由于绝缘子破损或输电塔漏电引起。

3.过流:当输电线路中的电流超过额定值时,称为过流。

过流故障通常由于负荷过大或电网异常而引起。

4.过压:当输电线路中的电压超过额定值时,称为过压。

过压故障通常由于电压调节装置故障或电网异常而引起。

三、继电保护的设计继电保护是针对不同故障类型设计的一种保护装置,它通过检测输电线路的电流、电压、频率和绝缘电阻等参数,及时切除故障段,保护线路的安全运行。

1.短路保护:短路保护主要通过测量线路电流来实现。

当电流超过额定值或达到触发电流时,保护装置会启动切除装置,迅速切除故障段,保护线路不受损坏。

2.接地保护:接地保护主要通过测量线路的绝缘电阻来实现。

当绝缘电阻超过一定阈值或达到触发值时,保护装置会启动切除装置,迅速切除故障段,保护线路和运行设备。

3.过流保护:过流保护主要通过测量线路电流的大小和变化来实现。

35KV输电线路保护设计-35KV输电线路保护

35KV输电线路保护设计-35KV输电线路保护

摘要电力系统的不断发展和安全稳定运行,给国民经济和社会发展带来了巨大动力和效益。

但是一旦发生故障如不能及时有效控制,就会破坏稳定运行,造成大面积停电,给社会带来灾难性的严重后果。

随着电力系统的迅速发展,大量机组、超高压输变电的投入运行,对继电保护不断提出新的更高要求。

继电保护是电力系统的重要组成部分,做好继电保护工作是保证电力系统安全运行的必不可少的重要手段。

因此,加强线路继电保护非常重要。

根据线路继电保护的要求,给35KV的输电线路设计合适的继电保护。

本次课程设计首先介绍了继电保护的作用和发展,然后详细介绍了35KV线路主保护及后备保护的选择与整定,35KV线路三相一次重合闸及防雷保护,最后介绍35KV系统的微机保护。

关键词:继电保护;主保护;整定;微机保护目录1 继电保护的作用和发展 (1)1.1 继电保护的作用 (1)1.1.1 继电保护在电力系统中的作用 (1)1.1.2 继电保护的基本原理和基本要求 (1)1.2 继电保护的发展 (2)2 35KV线路主保护选择与整定 (4)2.1 电流、电压保护整定计算考虑原则 (4)2.1.1 电流、电压保护的构成原理及使用范围 (4)2.2 电流闭锁电压保护 (5)3 35KV线路后备保护选择与整定 (12)4 35KV线路三相一次重合闸 (17)5 线路及变压器防雷保护 (18)6 微机保护 (19)6.1 微机保护的软硬件组成 (19)6.1.1微机保护的特点 (19)6.1.2微机保护装置硬件结构 (19)6.1.3微机保护的软件组成 (20)6.2 微机保护的算法 (21)6.3 35KV系统微机保护配置 (22)总结 (24)致谢 (25)参考文献 (26)1继电保护的作用和发展1.1 继电保护的作用1.1.1 继电保护在电力系统中的作用电力系统在生产过程中,有可能发生各类故障和各种不正常情况。

其中故障一般可分为两类:横向不对称故障和纵向不对称故障。

35Kv输电线路的继电保护设计

35Kv输电线路的继电保护设计

35Kv输电线路的继电保护设计
35kV输电线路的继电保护设计需要考虑以下几个方面:
1. 选择合适的继电保护装置:根据35kV输电线路的特点和要求,
选择适合的继电保护装置,例如差动保护装置、过电流保护装置、
跳闸保护装置等。

2. 确定保护区域:根据线路的拓扑结构和电气参数,确定继电保护
的保护区域,即需要保护的线路段和设备。

3. 设置保护动作条件:根据线路的额定电流、短路容量和故障类型,设置继电保护的动作条件,例如过电流保护的动作电流、时间等。

4. 确定保护动作时间:根据线路的长度和传输速度,计算继电保护
的动作时间,以确保故障发生时能够及时切除故障区域。

5. 设置保护动作逻辑:根据线路的拓扑结构和故障类型,确定继电
保护的动作逻辑,即保护装置的动作顺序和动作方式。

6. 考虑通信和互锁功能:根据线路的通信需求和操作要求,设计继
电保护的通信和互锁功能,以实现线路的自动化控制和远程监控。

7. 进行保护设备的参数设置和校验:根据线路的实际运行情况,设
置继电保护装置的参数,并进行校验和测试,以确保保护装置的可
靠性和准确性。

8. 编制继电保护接线图和操作手册:根据继电保护设计的结果,编
制继电保护接线图和操作手册,以供操作人员参考和使用。

需要注意的是,35kV输电线路的继电保护设计需要根据具体的工程
要求和标准进行,以上仅为一般性的设计步骤,具体设计还需根据
实际情况进行细化和调整。

35KV降压变电所继电保护设计

35KV降压变电所继电保护设计

35KV降压变电所继电保护设计35KV降压变电所继电保护设计引言降压变电所是输电线路与配电线路之间的重要组成部分,起到将高电压输电线路的电压降低至适合配电网的电压水平的作用。

为了确保降压变电所的运行安全和稳定,继电保护系统在其中起着至关重要的作用。

本文将针对35KV降压变电所继电保护设计进行详细探讨。

一、继电保护的基本原理继电保护是一种用来保护电力系统设备免受电流过大、电压过高、频率不稳定等异常情况造成的损坏的系统。

其基本原理是通过在电网中布置感应元件(如电流互感器、电压互感器等)检测电流、电压等参数,并根据这些参数的变化来触发保护装置,切断故障电路,保护变电设备的安全运行。

二、降压变电所继电保护设计的要求1. 保护性能要求高。

由于降压变电所处于电力系统的输电与配电之间的过渡区域,其部分电流和电压参数高于配电线路,因此继电保护系统需要具备较高的抗干扰能力,能够准确快速地识别和保护故障。

2. 系统可靠性要求高。

降压变电所所处地域一般是电力负荷比较密集的地区,电网运行的可靠性要求较高。

因此,继电保护系统需要具备较高的可靠性,能够正常运行并及时发现、切除故障。

3. 考虑灵活性和扩展性。

降压变电所的规模和负荷有可能随着用电需求的变化而增加,因此继电保护系统需要具备一定的灵活性和扩展性,以便满足未来的需求。

三、继电保护的主要功能在35KV降压变电所的继电保护设计中,主要应包含以下功能:1. 电缆故障保护电缆故障保护是降压变电所继电保护系统中最重要的功能之一。

通过设置不同的保护区域,可以实现对电缆线路中的短路、接地故障的保护。

2. 变压器保护降压变电所主要功能是将高压输电线路的电压降低到适合配电的电压,因此变压器是降压变电所的核心设备。

继电保护系统需要对变压器进行过电流、过温度、过电压等故障的保护。

3. 线路保护降压变电所连接着输电线路和配电线路,因此对输电线路和配电线路进行继电保护是非常重要的。

主要包括对线路的过流、短路、接地等故障进行保护。

浅论35kV输电线路继电保护整定计算

浅论35kV输电线路继电保护整定计算
电 力科 技
浅论 35kV输 电线路继电保护整定计算
吴 素芬
(水城供 电局 ,贵州 六盘水 553001)
【摘 要 】继 电保护整定计算是继 电系统保护 中一项重要工作 。
继电保 护又分为线路保护和元件保护 。随着电力 系统运行 状况不断
变化,参数改变 时,就 需要我们对部分 乃至全部保 护值进 行重新整
1.1处理好选择性 、灵敏性 、速动性 、可靠性 的协调 关系 依据 系统 目前网架结构同时结合 出现的各种运行方式 ,对 电网 内的各种继 电保 护装 置给 出合适的定值是继龟保护整定计算 的基本 任务 。所说 的给 出合 适的定值,事实上就是在继 电保护 的灵敏性 、 选择性 、可靠性 、速动 性上相 互平 衡之后给 出定值 因为这 四个 性
面可以保护的状 况时,也可以通过重合闸从而确保 其选 择性 。B,由 于在保 护安装的位置 其主变过流的保护成为低压 闭锁过流 以及复压
闭锁过流 的时候 ,它是不可 以跟主变过流进行配合 的。C,如果线路 比较长 并且 是较为规则时,则线路上的用户就会 比较少 ,此 时,就 可以应用躲过线路末端 的最大短路 电流进行整 定,取可靠系数在 1.3
(3)在 特殊线路上进行处理时 ,可 以通过几个方 面:A, 由于 线路很短 ,所 以应用最小方式是没有保护区 的,而当下一 级作 为相 对重要用户 的变 电所时,便可 以把速断保护变成时 限速断保护 。此
时 的动作 电流便 会同下级保护速断相配合 ,此时 的动作时 限会 比下 级 的速断提 高一个 时间级差 (但这种情况 是常见 于城 区,而在新 建的 变 电所 以及用于 改造 的变 电所 时 则保护配置必须要通过全面微机 进行保护 ,从而相对简单 了改变保护的方式)。如果 当没有在其它方
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科课程设计课程名称:电力系统继电保护原理设计题目:35kV输电线路继电保护设计摘要力是当今世界使用最为广泛、地位最为重要的能源之一,电力系统的安全稳定运行对国民经济、人民生活乃至社会稳定都有着极为重大的影响。

电力系统继电保护是反映电力系统中电气设备发生故障或不正常运行状态而动作于断路器跳闸或发生信号的一种自动装置。

电力系统继电保护的基本作用是:全系统范围内,按指定分区实时地检测各种故障和不正常运行状态,快速及时地采取故障隔离或告警信号等措施,以求最大限度地维持系统的稳定、保持供电的连续性、保障人身的安全、防止或减轻设备的损坏。

随着电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。

随着电力系统的迅速发展。

大量机组、超高压输变变电的投入运行,对继电保护不断提出新的更高要求。

继电保护是电力系统的重要组成部分,被称为电力系统的安全屏障,同时又是电力系统事故扩大的根源,做好继电保护工作是保证电力系统安全运行的必不可少的重要手段,电力系统事故具有连锁反应、速度快、涉及面广、影响大的特点,往往会给国民经济和人民生活造成社会性的灾难。

本次毕业设计的题目是35kv线路继电保护的设计。

主要任务是为保证电网的安全运行,需要对电网配置完善的继电保护装置.根据该电网的结构、电压等级、线路长度、运行方式以及负荷性质的要求,给35KV的输电线路设计合适的继电保护。

关键词:35kv继电保护、整定计算、故障分析、设计原理目录1.1继电保护的作用 (3)1.1.1继电保护的概念及任务 (3)1.2继电保护的基本原理和保护装置的组成 (3)1.2.1反应系统正常运行与故障时电器元件(设备)一端所测基本参数的变化而构成的原理(单端测量原理,也称阶段式原理) (3)1.2.2 反应电气元件内部故障与外部故障(及正常运行)时两端所测电流相位和功率方向的差别而构成的原理(双端测量原理,也称差动式原理) (3)1.2.3保护装置的组成部分 (4)1.3对电力系统继电保护的基本要求 (4)1.3.1选择性 (4)1.3.2速动性 (5)1.3.3灵敏性 (5)1.3.4可靠性 (5)1.4继电保护技术发展简史 (5)2.35KV线路故障分析 (6)2.1常见故障分析 (6)2.1.1相间短路 (6)2.1.2接地短路 (7)3、35KV线路继电保护的配置 (7)4.电网相间短路的电流保护 (7)4.1瞬时电流速断保护 (8)4.1.1 瞬时电流速断保护的工作原理 (8)4.1.2原理接线 (9)4.1.3瞬时电流速断保护的整定计算 (9)4.2限时电流速断电流保护 (13)4.2.1限时电流速断保护的工作原理 (13)4.2.2 限时电流速断保护的整定计算 (14)4.2.3 限时电流速断保护的单相原理接线 (16)4.3定时限过电流保护 (17)4.3.1定时限过电流保护的工作原理 (17)4.3.2定时限时电流保护的整定计算 (18)4.3.3 定时限过电流保护的灵敏度校验和保护动作时间 (18)5:致谢 (20)6:参考文献 (21)1、继电保护概论1.1继电保护的作用1.1.1继电保护的概念及任务电力系统继电保护是反映电力系统中电气设备发生故障或不正常运行状态而动作于断路器跳闸或发生信号的一种自动装置。

继电保护的基本任务是:电力系统发生故障时,自动、快速、有选择地将故障设备从电力系统中切除,保证非故障设备继续运行,尽量缩小停电范围;电力系统出现异常运行状态时,根据运行维护的要求能自动、及时、有选择地发出告警信号或者减负荷、跳闸。

1.2继电保护的基本原理和保护装置的组成1.2.1反应系统正常运行与故障时电器元件(设备)一端所测基本参数的变化而构成的原理(单端测量原理,也称阶段式原理)运行参数:I、U、Z∠φ反应 I↑→过电流保护反应 U↓→低电压保护反应 Z↓→低阻抗保护(距离保护)1.2.2 反应电气元件内部故障与外部故障(及正常运行)时两端所测电流相位和功率方向的差别而构成的原理(双端测量原理,也称差动式原理)以A-B线路为例:规定电流正方向:电流从母线流向线路规定电压正方向:母线指向线路利用以上差别,可构成差动原理保护。

如:纵联差动保护;方向高频保护;相差高频保护等。

1.2.3保护装置的组成部分┌──┐┌──┐┌──┐输入─→│测量│─→│逻辑│─→│执行│─→输出信号└──┘└──┘└──┘信号↑└整定值1.3对电力系统继电保护的基本要求1.3.1选择性继电保护动作的选择性是指保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统中的无故障部分仍能继续安全运行。

d3点短路:6动作:有选择性; 5动作:无选择性如果6拒动,5再动作:有选择性(5作为6的远后备保护)d1点短路:1、2动作:有选择性; 3、4动作:无选择性后备保护(本元件主保护拒动时):(1)由前一级保护作为后备叫远后备.(2)由本元件的另一套保护作为后备叫近后备.1.3.2速动性继电保护的速动性是指继电保护装置应以尽可能快的速度切除故障设备。

故障后,为防止并列运行的系统失步,减少用户在电压降低情况下工作的时间及故障元件损坏程度,应尽量地快速切除故障。

(快速保护:几个工频周期,微机保护:30ms以下)故障切除总时间等于保护装置和断路器动作时间之和。

一般快速保护的动作时间为0.06-0.12s,最快的可达0.02-0.04s;一般断路器动作时间为0.06-0.15s,最快的有0.02-0.06s。

目前常用的无时限整套保护的动作时间表1.3.3灵敏性继电保护的灵敏性是指保护装置对于其应保护的范围内发生故障的反应能力。

(保护不该动作情况与应该动作情况所测电气量相差越大→灵敏度↑)。

一般用灵敏系数Klm来衡量灵敏度。

1.3.4可靠性继电保护的可靠性是指保护装置在电力系统正常运行时不误动;再规定的保护范围内发生故障时,应可靠动作;而在不属于该保护动作的其他任何情况下,应可靠的不动作。

(主保护对动作快速性要求相对较高;后备保护对灵敏性要求相对较高。

)1.4继电保护技术发展简史上世纪90年代出现了装于断路器上并直接作用于断路器的一次式的电磁型过电流继电器,本世纪初,随着电力系统的发展,继电器才开始广泛应用于电力系统的保护。

这个时期可认为是继电保护技术发展的开端。

1901年出现了感应型过电流继电器。

1908年提出了比较被保护元件两端的电流差动保护原理。

1910年方向性电流保护开始得到应用,在此时期也出现了将电流与电压比较的保护原理,并导致了本世纪29年代初距离保护的出现。

随着电力系统载波通讯的发展,在1927年前后,出现了利用高压输电线上高频载波电流传送和比较输电线两端功率或相位的高频保护装置。

在50年代,微波中继通讯开始应用与电力系统,从而出现了利用微波传送和比较输电线两端故障电气量的微波保护。

早在50年代就出现了利用故障点产生的行波实现快速继电保护的设想。

经过20余年的研究,终于诞生了行波保护装置。

显然,随着光纤通讯将在电力系统中的大量采用,利用光纤通道的继电保护必将得到广泛的应用。

以上是继电保护原理的发展过程。

与此同时,构成继电保护装置的元件、材料、保护装置的结构型式和制造工艺也发生了巨大的变革.50年代以前的继电保护装置都是由电磁型感应型或电动型继电器组成的这些继电器统称为机电式继电器.本世纪50年代初由于半导体晶体管的发展开始出现了晶体管式继电保护装置称之为电子式静态保护装置.70年代是晶体管继电保护装置在我国大量采用的时期满足了当时电力系统向超高压大容量方向发展的需要.80年代后期标志着静态继电保护从第一代(晶体管式)向第二代(集成电路式)的过渡.目前后者已成为静态继电保护装置的主要形式.在60年代末有人提出用小型计算机实现继电保护的设想由此开始了对继电保护计算机算法的大量研究对后来微型计算机式继电保护(简称微机保护)的发展奠定了理论基础.70年代后半期比较完善的微机保护样机开始投入到电力系统中试运行.80年代微机保护在硬件结构和软件技术方面已趋于成熟并已在一些国家推广应用这就是第三代的静态继电保护装置.微机保护装置具有巨大的优越性和潜力因而受到运行人员的欢迎.进入90年代以来它在我国得到了大量的应用将成为继电保护装置的主要型式.可以说微机保护代表着电力系统继电保护的未来将成为未来电力系统保护控制运行调度及事故处理的统一计算机系统的组成部分.2.35KV线路故障分析2.1常见故障分析2.1.1相间短路这里的“相”指三相对称制交流电源,是由三个单相交流电源所组成的电源系统——简称三相交流电源。

我国所采用的供电方式称为三相四线制交流电源,三相发电机的绕组作星形连接。

各绕组的首端称端线,端线与端线之间的电压称为线电压。

各绕组的末端连接在一起称中线,与端线之间的电压称为相电压。

相间短路是指端线与端线之间未经过负载(即用电器)而相连接所造成的电源短路。

2.1.2接地短路在接地系统中,一相接地较大,可能构成系统短路。

这时的接地电流叫做接地短路电流。

在高压接地系统中,接地短路电流可能很大。

接地短路电流在500A及500A以下者称为小接地短路电流系统;接地短路电流500A以上者均为大接地短路电流系统。

3、35KV线路继电保护的配置相间短路保护采用两相两继电流保护,它是一种阶段式电流保护。

以第Ⅰ段、第Ⅱ段电流速断保护作为主保护,以第Ⅲ段过电流保护作为后备保护。

2、单相接地故障的保护方式之一:4.电网相间短路的电流保护在电网中35kv及以下的较低电压的网络中主要采用三段式电流保护,最主要的优点就是简单、可靠,并且在一般情况下也能够满足快速切除故障的要求。

三段式过流保护包括:1、瞬时电流速断保护(简称电流速断保护或电流ⅰ段)2、限时电流速断保护(电流ⅱ段)3、过电流保护(电流ⅲ段)。

电流速断、限时电流速断和过电流保护都是反应电流增大而动作的保护,它们相互配合构成一整套保护,称做三段式电流保护,它们的不同是保护范围不同。

三段的区别主要在于起动电流的选择原则不同。

其中速断和限时速断保护是按照躲开某一点的最大短路电流来整定的,而过电流保护是按照躲开最大负荷电流来整定的。

1、瞬时电流速断保护:保护范围小于被保护线路的全长一般设定为被保护线路的全长的85%2、限时电流速断保护:保护范围是被保护线路的全长或下一回线路的15%3、过电流保护:保护范围为被保护线路的全长至下一回线路的全长4.1瞬时电流速断保护输电线路发生短路时,电流突然增大,电压降低。

利用电流突然增大使保护动作而构成的保护装置,称为电流保护。

通常输电线路电流保护采用阶段式电流保护,采用三套电流保护共同构成三段式电流保护。

相关文档
最新文档