抽屉原理精华及习题(附答案)
初中抽屉原理试题及答案

初中抽屉原理试题及答案1. 有10个苹果和5个抽屉,如果每个抽屉最多只能放2个苹果,那么至少需要多少个抽屉才能确保所有的苹果都能被放入抽屉中?答案:至少需要3个抽屉。
因为10个苹果除以每个抽屉最多放2个苹果,结果是5个抽屉,但还剩下0个苹果,所以需要再加一个抽屉来确保所有的苹果都能被放入。
2. 一个班级有45名学生,如果每个学生至少有一支铅笔,那么至少有多少名学生会有相同颜色的铅笔?答案:至少有5名学生会有相同颜色的铅笔。
根据抽屉原理,如果有n 个抽屉和n+1个物品,那么至少有一个抽屉里会有两个或更多的物品。
在这个问题中,假设有4种颜色的铅笔,那么45名学生除以4种颜色,结果是11余1,这意味着至少有一个颜色的铅笔会被至少12名学生拥有。
3. 有15本书和3个书架,如果每个书架上放的书的数量不能超过4本,那么至少需要多少个书架才能放完所有的书?答案:至少需要4个书架。
首先,3个书架每个放4本书,可以放12本书。
剩下的3本书需要至少1个书架来放置,所以总共需要4个书架。
4. 如果一个盒子里有7个红球,8个蓝球和9个绿球,那么至少需要取出多少个球才能保证取出的球中至少有2个是同一种颜色的?答案:至少需要取出4个球。
最坏的情况是前三次取出的球分别是红、蓝、绿三种颜色各一个,那么第四次取出的球无论是什么颜色,都能保证至少有2个球是同一种颜色的。
5. 一个学校有100名学生,如果每个学生至少参加一项体育活动,那么至少有多少名学生会参加相同的体育活动?答案:至少有2名学生会参加相同的体育活动。
假设有100种不同的体育活动,那么根据抽屉原理,至少有一个活动会被至少2名学生选择参加。
抽屉原理精华及习题(附答案)

第九讲 抽屉原理一、 知识点:1. 把27个苹果放进4个抽屉中,能否使每个抽屉中苹果数均小于等于6?那么至少有一个抽屉中的苹果数大于等于几?2. 把25个苹果放进5个抽屉中,能否使每个抽屉中苹果数均小于等于4?那么至少有一个抽屉中的苹果数大于等于几?上述两个结论你是如何计算出来的?★规律:用苹果数除以抽屉数,若余数不为零,则“答案”为商加1,若余数为零,则“答案”为商。
★抽屉原则一:把n 个以上的苹果放到n 个抽屉中,无论怎样放,一定能找到一个抽屉,它里面至少有两个苹果。
★抽屉原则二:把多于m ×n 个苹果放到n 个抽屉中,无论怎样放,一定能找到一个抽屉,它里面至少有(m +1)个苹果。
二、 基础知识训练(再蓝皮书)1、 把98个苹果放到10个抽屉中, 无论怎么放, 我们一定能找到一个含苹果最多的抽屉,它里面至少含有 个苹果。
2、1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢, 它里面至少含有 只鸽子。
3、从8个抽屉中拿出17个苹果,无论怎么拿。
我们一定能找到一个拿苹果最多的 抽屉,从它里面至少拿出了 个苹果。
4、从 个抽屉中(填最大数)拿出25个苹果,才能保证一定能找到一个抽屉, 从它当中至少拿了7个苹果。
三、 思路与方法:在抽屉原理问题,难在有些题目抽屉没有直接给出,要求我们自己根据题意去造抽屉,但我们也不要为此感到困难,往往在题目有一句关键的话,告诉我们抽屉的性质,我们可以根据此性质来构造抽屉即可。
训 练 题1. 六(1)班有49名学生。
数学王老师了解到在期中考试中该班英文成绩除3人外均在86分以上后就说:“我可以断定,本班同学至少有4人成绩相同。
”请问王老师说的对吗?为什么?2. 从100,,3,2,1 这100个数中任意挑选出51个数来,证明在这51个数中,一定:(1)有2个数互质; (2)有两个数的差为50;3. 圆周上有2000个点,在其上任意地标上1999,,2,1,0 (每一点只标一个数,不同的点标上不同的数)。
小学奥数抽屉原理习题及答案【三篇】

【导语】海阔凭你跃,天⾼任你飞。
愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣⼏篇。
学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。
以下是⽆忧考为⼤家整理的《⼩学奥数抽屉原理习题及答案【三篇】》供您查阅。
【篇⼀】【例 1】向阳⼩学有730个学⽣,问:⾄少有⼏个学⽣的⽣⽇是同⼀天? 【解析】⼀年最多有366天,可看做366个抽屉,730个学⽣看做730个苹果.因为,所以,⾄少有1+1=2(个)学⽣的⽣⽇是同⼀天. 【巩固】试说明400⼈中⾄少有两个⼈的⽣⽇相同. 【解析】将⼀年中的366天或天视为366个或个抽屉,400个⼈看作400个苹果,从最极端的情况考虑,即每个抽屉都放⼀个苹果,还有个或个苹果必然要放到有⼀个苹果的抽屉⾥,所以⾄少有⼀个抽屉有⾄少两个苹果,即⾄少有两⼈的⽣⽇相同.【篇⼆】【例 2】三个⼩朋友在⼀起玩,其中必有两个⼩朋友都是男孩或者都是⼥孩. 【解析】⽅法⼀: 情况⼀:这三个⼩朋友,可能全部是男,那么必有两个⼩朋友都是男孩的说法是正确的; 情况⼆:这三个⼩朋友,可能全部是⼥,那么必有两个⼩朋友都是⼥孩的说法是正确的; 情况三:这三个⼩朋友,可能其中男⼥那么必有两个⼩朋友都是⼥孩说法是正确的; 情况四:这三个⼩朋友,可能其中男⼥,那么必有两个⼩朋友都是男孩的说法是正确的.所以,三个⼩朋友在⼀起玩,其中必有两个⼩朋友都是男孩或者都是⼥孩的说法是正确的; ⽅法⼆:三个⼩朋友只有两种性别,所以⾄少有两个⼈的性别是相同的,所以必有两个⼩朋友都是男孩或者都是⼥孩.【篇三】【例 3】“六⼀”⼉童节,很多⼩朋友到公园游玩,在公园⾥他们各⾃遇到了许多熟⼈.试说明:在游园的⼩朋友中,⾄少有两个⼩朋友遇到的熟⼈数⽬相等. 【解析】假设共有个⼩朋友到公园游玩,我们把他们看作个“苹果”,再把每个⼩朋友遇到的熟⼈数⽬看作“抽屉”,那么,个⼩朋友每⼈遇到的熟⼈数⽬共有以下种可能:0,1,2,……,.其中0的意思是指这位⼩朋友没有遇到熟⼈;⽽每位⼩朋友最多遇见个熟⼈,所以共有个“抽屉”.下⾯分两种情况来讨论: (1)如果在这个⼩朋友中,有⼀些⼩朋友没有遇到任何熟⼈,这时其他⼩朋友最多只能遇上个熟⼈,这样熟⼈数⽬只有种可能:0,1,2,……,.这样,“苹果”数(个⼩朋友)超过“抽屉”数(种熟⼈数⽬),根据抽屉原理,⾄少有两个⼩朋友,他们遇到的熟⼈数⽬相等. (2)如果在这个⼩朋友中,每位⼩朋友都⾄少遇到⼀个熟⼈,这样熟⼈数⽬只有种可能:1,2,3,……,.这时,“苹果”数(个⼩朋友)仍然超过“抽屉”数(种熟⼈数⽬),根据抽屉原理,⾄少有两个⼩朋友,他们遇到的熟⼈数⽬相等. 总之,不管这个⼩朋友各遇到多少熟⼈(包括没遇到熟⼈),必有两个⼩朋友遇到的熟⼈数⽬相等.。
奥数-18抽屉原理+答案

请你说明理由。
2. 一个旅行团在北京游玩 5 天,他们想去 6 个景点游玩,导游说你们至少有一天游 玩两个景点,请你说明理由。
二、 解题方法
抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣 的问题,许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使 问题得到解决。
1. 公式 苹果÷抽屉=商……余数 余数:① 余数=0,结论:至少有“商”个苹果在同一个抽屉里。 ② 余数>0,结论:至少有(商+1)个苹果在同一个抽屉里。
抽屉原理
一、 抽屉原理
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,至少有一个抽 屉里面至少放两个苹果。如果把 n+1 个物体放到 n 个抽屉中,那么至少有一个抽屉 中放着 2 个或更多的物体,我们称这种现象为抽屉原理。
抽屉原理可以推广为:如果有 m 个抽屉,有 k×m+r(0<r≤m)个元素那么至 少有一个抽屉中要放(k+1)个或更多的元素。通俗地说,如果元素的个数是抽屉个 数的 k 倍多一些,那么至少有一个抽屉要放(k+1)个或更多的元素。
6. 四个连续的自然数分别被 3 除后,必有两个余数相同,请说明理由。
2
【例3】 一养鸽户有 10 只鸽笼,每天鸽子回家他都要数一数,并作记录。他发现 每天都会出现 3 只鸽子住同一个鸽笼,请问:他至少养了几只鸽子?
解析:本题需要求“苹果”的数量,需要反用抽屉原理,并结合最“坏”情况。 最坏的情况是每个笼子都有 2 只鸽子,出现 3 只鸽子住同一个鸽笼,是因为比这些 鸽子还至少多 1 只鸽子,所以至少需要养 21 只鸽子。
初中数学竞赛:抽屉原理(含例题练习及答案)

初中数学竞赛:抽屉原理把5个苹果放到4个抽屉中,必然有一个抽屉中至少有2个苹果,这是抽屉原理的通俗解释。
一般地,我们将它表述为:第一抽屉原理:把(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。
使用抽屉原理解题,关键是构造抽屉。
一般说来,数的奇偶性、剩余类、数的分组、染色、线段与平面图形的划分等,都可作为构造抽屉的依据。
例1从1,2,3,…,100这100个数中任意挑出51个数来,证明在这51个数中,一定:(1)有2个数互质;(2)有2个数的差为50;(3)有8个数,它们的最大公约数大于1。
证明:(1)将100个数分成50组:{1,2},{3,4},…,{99,100}。
在选出的51个数中,必有2个数属于同一组,这一组中的2个数是两个相邻的整数,它们一定是互质的。
(2)将100个数分成50组:{1,51},{2,52},…,{50,100}。
在选出的51个数中,必有2个数属于同一组,这一组的2个数的差为50。
(3)将100个数分成5组(一个数可以在不同的组内):第一组:2的倍数,即{2,4,…,100};第二组:3的倍数,即{3,6,…,99};第三组:5的倍数,即{5,10,…,100};第四组:7的倍数,即{7,14,…,98};第五组:1和大于7的质数即{1,11,13,…,97}。
第五组中有22个数,故选出的51个数至少有29个数在第一组到第四组中,根据抽屉原理,总有8个数在第一组到第四组的某一组中,这8个数的最大公约数大于1。
例2求证:可以找到一个各位数字都是4的自然数,它是1996的倍数。
证明:因1996÷4=499,故只需证明可以找到一个各位数字都是1的自然数,它是499的倍数就可以了。
得到500个余数r1,r2,...,r500。
由于余数只能取0,1,2, (499)499个值,所以根据抽屉原理,必有2个余数是相同的,这2个数的差就是499的倍数,这个差的前若干位是1,后若干位是0:11…100…0,又499和10是互质的,故它的前若干位由1组成的自然数是499的倍数,将它乘以4,就得到一个各位数字都是4的自然数,它是1996的倍数。
初中抽屉原理试题及答案

初中抽屉原理试题及答案一、选择题1. 如果有n+1个苹果放进n个抽屉中,那么至少有一个抽屉里至少有()个苹果。
A. 1B. 2C. 3D. 4答案:B2. 一个班级有45名学生,如果每个学生至少参加一项兴趣小组,那么至少有()名学生参加了相同的兴趣小组。
A. 5B. 6C. 7D. 8答案:B二、填空题1. 有10个苹果,要放入3个抽屉中,那么至少有一个抽屉里至少有______个苹果。
答案:42. 一个学校有36个学生,如果每个学生至少参加一个社团,那么至少有______个学生参加了同一个社团。
答案:4三、解答题1. 有15个不同的球,要放入4个不同的盒子中,证明至少有一个盒子里至少有5个球。
答案:根据抽屉原理,如果有15个球放入4个盒子中,那么每个盒子至少有3个球,因为15除以4等于3余3。
这意味着至少有一个盒子里会有3个球加上余下的3个球中的至少1个,即至少有4个球。
由于我们有15个球,至少有一个盒子里会有4个球加上余下的1个球,即至少有5个球。
2. 一个班级有50名学生,每个学生至少参加了一个兴趣小组,兴趣小组有5种不同的类型。
证明至少有11名学生参加了同一个兴趣小组。
答案:根据抽屉原理,如果有50名学生参加5种不同的兴趣小组,那么每个兴趣小组至少有10名学生,因为50除以5等于10。
这意味着每个兴趣小组至少有10名学生。
由于我们有50名学生,至少有一个兴趣小组会有10名学生加上余下的0名学生中的至少1名,即至少有11名学生参加了同一个兴趣小组。
抽屉原理公式及例题

抽屉原理公式及例题
抽屉原则一:
如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:
如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
理解知识点:表示不超过X的最大整数。
问题:构造物体和抽屉。
也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
例1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?
解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。
例2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?
解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。
这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。
初中数学竞赛:抽屉原理(含例题练习及答案)

初中数学竞赛:抽屉原理把5个苹果放到4个抽屉中,必然有一个抽屉中至少有2个苹果,这是抽屉原理的通俗解释。
一般地,我们将它表述为:第一抽屉原理:把(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。
使用抽屉原理解题,关键是构造抽屉。
一般说来,数的奇偶性、剩余类、数的分组、染色、线段与平面图形的划分等,都可作为构造抽屉的依据。
例1从1,2,3,…,100这100个数中任意挑出51个数来,证明在这51个数中,一定:(1)有2个数互质;(2)有2个数的差为50;(3)有8个数,它们的最大公约数大于1。
证明:(1)将100个数分成50组:{1,2},{3,4},…,{99,100}。
在选出的51个数中,必有2个数属于同一组,这一组中的2个数是两个相邻的整数,它们一定是互质的。
(2)将100个数分成50组:{1,51},{2,52},…,{50,100}。
在选出的51个数中,必有2个数属于同一组,这一组的2个数的差为50。
(3)将100个数分成5组(一个数可以在不同的组内):第一组:2的倍数,即{2,4,…,100};第二组:3的倍数,即{3,6,…,99};第三组:5的倍数,即{5,10,…,100};第四组:7的倍数,即{7,14,…,98};第五组:1和大于7的质数即{1,11,13,…,97}。
第五组中有22个数,故选出的51个数至少有29个数在第一组到第四组中,根据抽屉原理,总有8个数在第一组到第四组的某一组中,这8个数的最大公约数大于1。
例2求证:可以找到一个各位数字都是4的自然数,它是1996的倍数。
证明:因1996÷4=499,故只需证明可以找到一个各位数字都是1的自然数,它是499的倍数就可以了。
得到500个余数r1,r2,...,r500。
由于余数只能取0,1,2, (499)499个值,所以根据抽屉原理,必有2个余数是相同的,这2个数的差就是499的倍数,这个差的前若干位是1,后若干位是0:11…100…0,又499和10是互质的,故它的前若干位由1组成的自然数是499的倍数,将它乘以4,就得到一个各位数字都是4的自然数,它是1996的倍数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九讲 抽屉原理一、 知识点:1. 把27个苹果放进4个抽屉中,能否使每个抽屉中苹果数均小于等于6?那么至少有一个抽屉中的苹果数大于等于几?2. 把25个苹果放进5个抽屉中,能否使每个抽屉中苹果数均小于等于4?那么至少有一个抽屉中的苹果数大于等于几?上述两个结论你是如何计算出来的?★规律:用苹果数除以抽屉数,若余数不为零,则“答案”为商加1,若余数为零,则“答案”为商。
★抽屉原则一:把n 个以上的苹果放到n 个抽屉中,无论怎样放,一定能找到一个抽屉,它里面至少有两个苹果。
★抽屉原则二:把多于m ×n 个苹果放到n 个抽屉中,无论怎样放,一定能找到一个抽屉,它里面至少有(m +1)个苹果。
二、 基础知识训练(再蓝皮书)1、 把98个苹果放到10个抽屉中, 无论怎么放, 我们一定能找到一个含苹果最多的抽屉,它里面至少含有 个苹果。
2、1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢, 它里面至少含有 只鸽子。
3、从8个抽屉中拿出17个苹果,无论怎么拿。
我们一定能找到一个拿苹果最多的 抽屉,从它里面至少拿出了 个苹果。
4、从 个抽屉中(填最大数)拿出25个苹果,才能保证一定能找到一个抽屉, 从它当中至少拿了7个苹果。
三、 思路与方法:在抽屉原理问题,难在有些题目抽屉没有直接给出,要求我们自己根据题意去造抽屉,但我们也不要为此感到困难,往往在题目有一句关键的话,告诉我们抽屉的性质,我们可以根据此性质来构造抽屉即可。
训 练 题1. 六(1)班有49名学生。
数学王老师了解到在期中考试中该班英文成绩除3人外均在86分以上后就说:“我可以断定,本班同学至少有4人成绩相同。
”请问王老师说的对吗?为什么?2. 从100,,3,2,1 这100个数中任意挑选出51个数来,证明在这51个数中,一定:(1)有2个数互质; (2)有两个数的差为50;3. 圆周上有2000个点,在其上任意地标上1999,,2,1,0 (每一点只标一个数,不同的点标上不同的数)。
求证:必然存在一点,与它紧相邻的;两个点和这点上所标的三个数之和不小于2999。
4.有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号.证明:在200个信号中至少有4个信号完全相同.5.在3×7的方格表中,有11个白格,证明:(1)若仅含一个白格的列只有3列,则在其余的4列中每列都恰有两个白格;(2)只有一个白格的列至少有3列。
6.一个车间有一条生产流水线,由5台机器组成,只有每台机器都开动时,这篛流水线才能工作。
总共有8个工人在这条流水线上工作。
在每一个工作日内,这些工人中只有5名到场。
为了保证生产,要对这8名工人进行培训,每人学一种机器的操作方法称为一轮。
问:最少要进行多少轮培训,才能使任意5个工人上班而流水线总能工作?7.在圆周上放着100个筹码,其中有41个红的和59个蓝的。
那么总可以找到两个红筹码,在它们之间刚好放有19个筹码,为什么?8.试卷上共有4道选择题,每题有3个可供选择的答案。
一群学生参加考试,结果是对于其中任何3人,都有一道题目的答案互不相同。
问:参加考试的学生最多有多少人?9.某个委员会开了40次会议,每次会议有10人出席。
已知任何两个委员不会同时开两次或更多的会议。
问:这个委员会的人数能够多于60人吗?为什么?10.某此选举,有5名候选人,每人只能选其中的一人或几人,至少有人参加选举,才能保证有4人选票选的人相同11.一次考试有20道题,有20分基础分,答对一题加3分,不达不加分也不减分,答错一题减1分,若有100人参加考试,至少有多少人得分相同?12.一次数学竞赛,有75人参加,满分20分,参赛者得分都是整数,75人的总分是980分,问至少有几个人得分相同?第九讲抽屉原理提示与答案提示:1.关键词:成绩相同;抽屉性质:有相同成绩的人在同一个抽屉中,所以我们要根据成绩来造抽屉;2.关键词:数互质;抽屉性质:抽屉中已有数,并且同一抽屉中的数互质;关键词:差为50;抽屉性质:抽屉中已有数,并且同一抽屉中的数差为50;3.从反面考虑问题,假设所有这样的和均小于2999,这样每个和最大为2998,我们用两种方法来计算一下所有数的和即可;4.关键词:信号完全相同;抽屉性质:同一抽屉中放的信号均相同;5.反证法;6.想想一个车床至少要有几个人会,假设有一个车床只有3个人会可以吗?那这3个人如果有一天都没来,会怎样?7.关键词:选票选的人完全相同;抽屉性质:选的人完全相同的人在一个抽屉中;8.想想一共有多少种分值,注意有些分值得不到;9.先不考虑总分,你能算出至少有几人得分相同吗?然后再考虑总分,注意此时从最好或最外的方面来考虑。
答案:1.对,2.(1)相邻两数为一组,构成一个抽屉,共50个抽屉;(2)差为51的两数为一组,构成一个抽屉,共50个抽屉;3.假设所有这样的和均小于2999,这样每个和最大为2998,这样一共2000个和的最大可能值为:2998×2000=5996000;在上述算法中,0至2000这2000个数,每个数都算了3次,这样上述的2000个和应该等于(0+1+2…+2000)×3=5997000。
与最大可能值为5996000矛盾,所以假设不成立。
4.四种颜色的小旗,任意取出三面后排列共可组成4×4×4=64个信号;这将64个信号作为抽屉即可。
5.略6.假设有一个车床只有3个人会使用,这样某一在这3个人都没来,这时这条流水线就不能正常运转,所以每个车床至少应有4个会使用,这样需进行4×5=20轮培训;下面说明,进行20轮培训一定可以。
若对3个人进行全能培训,使他们对这5个车床均会使用,对剩下的5个人,分别进行1、2、3、4、5这5号车床中的一个车床的培训,使他们5个人在场可使流水线正常运转,这样任意五人在场就都可使流水线正常运转,则此时对工人进行的培训正好是20轮。
7.从5人中选1人有5种选法;从5人中选出2人有10种选法;从5人中选中3人也有10种选法,从5人中选出4人有5种选法;从5人中选出5人有1种选法,综上,共有31种不同的选法,将这31种不同的选法做为31个抽屉,由抽屉原理知:答案为:31×3+1=94;8.分别计算一下第一名、第二名、第三名、……各得多少分,会发现,最高分为80分,最低分为0分,但中间有一些分值得不到,它们是79,78,75。
所以共有81-3=78种分值,将这78种分值做为78个抽屉,抽屉原理得答案为:29.如果不考虑总分980,易得至少有4人得分相同,现加入条件980分,(1)若最多有4人得分相同,此时这75人得分最高可能为:4个20分,4个19分,…4个3分,3个2分,总和为834分,所以最多有4人得分相同不可能;(2)若最多有5人得分相同,此时这75人得分最高可能为:5个20分,5个19分,…5个6分,总和为975分,所以最多有5人得分相同不可能;(3)若最多有6分得分相同,此时易知这75人得分可以满足980分这个条件,综上,此题答案为6人。
••••••••••••••••••【唯美句子】走累的时候,我就到升国旗哪里的一角台阶坐下,双手抚膝,再闭眼,让心灵受到阳光的洗涤。
懒洋洋的幸福。
顶 3 收藏 2•【唯美句子】一个人踮着脚尖,在窄窄的跑道白线上走,走到很远的地方又走回来。
阳光很好,温暖,柔和。
漫天的安静。
顶7 收藏7•【唯美句子】清风飘然,秋水缓淌。
一丝云起,一片叶落,剔透生命的空灵。
轻轻用手触摸,就点碎了河面的脸。
落叶舞步婀娜不肯去,是眷恋,是装点?瞬间回眸,点亮了生命精彩。
顶11 收藏9•【唯美句子】几只从南方归来的燕子,轻盈的飞来飞去,“几处早莺争暖树,谁家新燕啄春泥,”其乐融融的山林气息,与世无争的世外桃源,让人心旷神怡。
顶0 收藏 2•【唯美句子】流年清浅,岁月轮转,或许是冬天太过漫长,当一夜春风吹开万里柳时,心情也似乎开朗了许多,在一个风轻云淡的早晨,踏着初春的阳光,漫步在碧柳垂青的小河边,看小河的流水因为解开了冰冻而欢快的流淌,清澈见底的的河水,可以数得清河底的鹅软石,偶尔掠过水面的水鸟,让小河荡起一层层的涟漪。
河岸换上绿色的新装,刚刚睡醒的各种各样的花花草草,悄悄的露出了嫩芽,这儿一丛,那儿一簇,好像是交头接耳的议论着些什么,又好象是在偷偷地说着悄悄话。
顶 3 收藏 4•【唯美句子】喜欢海子写的面朝大海春暖花开,不仅仅是因为我喜欢看海,还喜欢诗人笔下的意境,每当夜深人静时,放一曲纯音乐,品一盏茶,在脑海中搜寻诗中的恬淡闲适。
在春暖花开时,身着一身素衣,站在清风拂柳,蝶舞翩跹的百花丛中,轻吹一叶竖笛,放眼碧波万里,海鸥,沙滩,还有扬帆在落日下的古船,在心旷神怡中,做一帘红尘的幽梦。
顶0 收藏 2•【唯美句子】繁华如三千东流水,你只在乎闲云野鹤般的采菊东篱、身心自由,置身置灵魂于旷野,高声吟唱着属于自己的歌,悠悠然永远地成为一个真真正正的淡泊名利、鄙弃功名利禄的隐者。
顶 1 收藏 3•【唯美句子】世俗名利和青山绿水之间,你选择了淡泊明志,持竿垂钓碧泉绿潭;权力富贵和草舍茅庐之间,你选择了宁静致远,晓梦翩跹姹紫嫣红。
顶 2 收藏 3•【唯美句子】那是一株清香的无名花,我看到了它在春风夏雨中风姿绰约的模样,可突如其来的秋雨,无情的打落了它美丽的花瓣,看着它在空谷中独自凋零,我莫名其妙的心痛,像针椎一样的痛。
秋雨,你为何如此残忍,为何不懂得怜香惜玉,我伸出颤抖的双手,将散落在泥土里的花瓣捧在手心。
顶 4 收藏 5•【唯美句子】滴答滴答,疏疏落落的秋雨,赶着时间的脚步,哗啦啦的下起来。
听着雨水轻轻地敲击着微薄的玻璃窗,不知不觉,我像是被催眠了一样,渐渐的进入了梦乡。
顶 3 收藏 5•【唯美句子】在这极致的悲伤里,我看到了世间最美的爱,可谁又能明白,此刻的我是悲伤还是欢喜,也许只有那拨动我心弦的秋季,才知道潜藏在我心中的眼泪。
顶 4 收藏 3•【唯美句子】看着此情此景,我细细地聆听。
像是听到了落叶的呢喃,秋风的柔软,在这极短的瞬间,他们一起诉说着最美的爱恋,演绎着永恒的痴缠。
当落叶安详的躺在大地,露出幸福的模样,你看,它多像一个进入梦乡的孩子。
突然发现,秋风并非是想象中的刽子手,原来它只是在叶子生命的最后一刻,让它体会到爱的缠绵,飞翔的滋味。
顶 1 收藏 1•【唯美句子】很感谢那些耐心回答我的人,公交上那个姐姐,还有那位大叔,我不知道他们是不是本地人,但我们遇到的一个交警协管,一位头发花白的大姐,她是上海本地人,很和善,并不像有些人说的上海人很排外。
事实上,什么都不是绝对的。
顶 2 收藏0•【唯美句子】我嗅到浓郁的香奈尔,却也被那种陌生呛了一鼻。