多机器人路径规划研究方法
《移动机器人路径规划算法研究》范文

《移动机器人路径规划算法研究》篇一一、引言在科技飞速发展的今天,移动机器人在众多领域内已经展现出巨大的应用潜力,例如无人驾驶车辆、自动扫地机器人、智能仓储机器人等。
路径规划作为移动机器人领域中的关键技术之一,对于提高机器人的工作效率和性能具有重要作用。
本文将深入探讨移动机器人路径规划算法的相关内容,包括相关概念、基本方法以及近年来的研究成果和未来发展趋势。
二、移动机器人路径规划的基本概念和方法1. 基本概念移动机器人路径规划是指在具有障碍物的环境中,为机器人寻找一条从起点到终点的最优路径。
这一过程需要考虑到多种因素,如路径长度、安全性、机器人的运动能力等。
路径规划算法的优劣直接影响到机器人的工作效率和性能。
2. 基本方法移动机器人路径规划的方法主要包括全局路径规划和局部路径规划两种。
全局路径规划是在已知环境中为机器人规划出一条从起点到终点的全局最优路径。
而局部路径规划则是在机器人实际运行过程中,根据实时感知的环境信息,对局部区域进行路径规划,以应对突发情况。
三、常见的移动机器人路径规划算法1. 传统算法传统的路径规划算法包括基于图论的算法、基于采样的算法等。
基于图论的算法将环境抽象为图,通过搜索图中的路径来寻找机器人的运动轨迹。
基于采样的算法则是在搜索过程中不断采样新的点来扩展搜索范围,如随机路标图(PRM)和快速探索随机树(RRT)等。
2. 智能算法随着人工智能技术的发展,越来越多的智能算法被应用于移动机器人路径规划领域。
如神经网络、遗传算法、蚁群算法等。
这些算法能够根据环境信息和任务需求,自主地寻找最优路径,具有较高的自适应性和鲁棒性。
四、近年来的研究成果近年来,移动机器人路径规划算法在研究方面取得了诸多进展。
一方面,传统的算法在面对复杂环境时,仍然存在着一定的局限性。
为了解决这些问题,研究者们对传统算法进行了改进和优化,提高了其适应性和性能。
另一方面,智能算法在移动机器人路径规划领域的应用也越来越广泛,取得了显著的成果。
智能机器人中的路径规划算法优化研究

智能机器人中的路径规划算法优化研究智能机器人是近年来随着人工智能技术的发展而日益广泛应用的一种智能设备。
路径规划作为智能机器人的核心功能之一,对于机器人在复杂环境中的移动和导航至关重要。
优化路径规划算法能够提高机器人的移动效率和任务执行能力,进而提升机器人的应用价值。
本文将探讨智能机器人中路径规划算法的优化研究。
一、路径规划算法概述路径规划算法是指为机器人或其他自主导航设备寻找一条最优路径的计算方法。
常见的路径规划算法包括Dijkstra算法、A*算法和深度优先搜索算法等。
这些算法通过对环境进行建模和评估,根据预设的目标、障碍物等条件,在搜索过程中选择最佳路径。
二、路径规划算法优化方法在智能机器人中,路径规划算法的优化研究可以从多个方面着手。
以下是几种常见的路径规划算法优化方法:1. 基于启发式搜索的算法优化启发式搜索是一种通过引入启发式信息来指导搜索过程的算法,能够在搜索中快速剪枝,提高路径规划的效率。
例如,A*算法就是一种典型的基于启发式搜索的路径规划算法。
通过合理选择启发函数和估计函数,可以降低搜索空间的复杂度,提高路径规划的速度和准确性。
2. 基于机器学习的算法优化机器学习在路径规划算法中的应用可以根据已有数据训练模型,实现路径规划算法的优化。
通过机器学习算法提取环境特征和优化策略,可以使机器人更好地适应环境变化和任务需求。
例如,使用深度强化学习算法可以通过自主学习和迭代优化来提高路径规划的准确性和效率。
3. 基于并行计算的算法优化并行计算技术的发展为路径规划算法的优化提供了新的思路。
并行计算可以将搜索过程分解成多个子任务进行处理,大幅提高搜索效率。
例如,使用并行深度优先搜索算法可以将搜索空间分为多个子空间,在多个处理单元上并行地进行搜索,快速找到最优路径。
4. 基于传感器数据的算法优化路径规划算法的优化还可以基于传感器数据来实现。
机器人通过不同类型的传感器获取环境信息,包括地图、障碍物等数据,然后将这些数据应用于路径规划算法中,实现路径规划的精细化与优化。
机器人智能路径规划技术研究

机器人智能路径规划技术研究近年来,随着科技的发展,机器人科学日益成为人们关注的热点。
机器人作为一种个性化的智能技术,其应用范围越来越广泛,尤其是在工业生产领域中的应用越来越重要。
在工业生产中,机器人智能路径规划技术是一个极其重要的技术,在此,本文将深入探讨机器人智能路径规划技术研究的相关内容。
一、机器人智能路径规划概述机器人智能路径规划是机器人技术领域中的一个重要组成部分,其目的是使机器人能够在不同环境中进行智能导航,实现自主运动。
大致而言,智能路径规划是指利用先进算法将机器人引导至预定位置的技术,其核心思想是将机器人操作员从低级的任务中解脱出来,让机器人能够自主完成工作。
目前,机器人智能路径规划方法主要包括基于全局地图、局部感知器、机器视觉和激光等多个方面的创新技术。
其中,基于全局地图技术是目前使用最广泛的方法之一,该方法的主要作用是寻找一条从起点到终点的最短路径,并采用避障策略来避开障碍物,并实现机器人在复杂环境下的自主导航。
此外,局部感知器、机器视觉和激光等技术的应用也能帮助机器人实现智能路径规划,这些新技术不仅提供了更完整、更准确的空间数据信息,而且保证了机器人在各种复杂环境中的自主导航和操作。
二、机器人智能路径规划技术研究热点近年来,随着机器人智能路径规划技术的不断发展,新的研究热点也不断浮现出来。
目前,最主要的热点主要包括以下几个方面:1. 基于深度学习的机器人智能路径规划深度学习是近年来人工智能领域发展最快的技术之一,它可以自动从大量的数据中获得信息,并可以自主学习和改进。
在机器人领域中,应用深度学习技术可用于机器人智能路径规划,目前相关的研究也越来越受到了重视。
2. 基于物体识别与跟踪的机器人智能路径规划随着机器视觉技术的不断发展,物体识别与跟踪技术也得到了广泛应用,和机器人智能路径规划也有着千丝万缕的联系。
通过物体识别与跟踪技术,机器人能够自主掌握环境信息,从而更好地规划路径。
机器人学中的运动规划算法与路径跟踪控制方法分析

机器人学中的运动规划算法与路径跟踪控制方法分析导语:随着机器人技术的发展,机器人在各行各业中的应用越来越广泛。
为了使机器人能够准确、高效地执行任务,机器人学中的运动规划算法与路径跟踪控制方法成为了研究的热点之一。
本文将对机器人学中的运动规划算法与路径跟踪控制方法进行分析和探讨。
一、运动规划算法机器人的运动规划算法主要用于确定机器人在给定环境中的合适路径,使得机器人能够以最优的方式到达目标点。
以下介绍几种常见的运动规划算法。
1. 最短路径规划算法:最短路径规划算法是机器人学中最基本的算法之一。
它通过搜索算法(如Dijkstra算法和A*算法)来寻找一个到达目标的最短路径。
该算法适用于不考虑机器人的动力学约束的情况。
2. 全局路径规划算法:全局路径规划算法是考虑机器人动力学约束的一种算法。
其中,代表性的算法有D*算法和PRM算法。
这些算法在整个环境中搜索出一条合适的路径,并且考虑了机器人的动力学约束,以保证机器人能够平稳地到达目标。
3. 局部路径规划算法:局部路径规划算法是在机器人运动过程中进行的路径调整,以避免障碍物等因素的干扰。
著名的局部路径规划算法有势场法(Potential Field)和弹簧质点模型(Spring-Loaded Inverted Pendulum,SLIP)等。
这些算法通过在机器人周围产生合适的危险区域或力场,使机器人能够避开障碍物并保持平衡。
二、路径跟踪控制方法路径跟踪控制方法是机器人学中用于控制机器人沿着指定路径运动的一种方法。
以下介绍几种常见的路径跟踪控制方法。
1. 基础控制方法:基础控制方法主要包括比例-积分-微分(PID)控制和模糊控制。
PID控制通过根据当前误差与预设误差之间的差异来调整机器人的控制输出,以使机器人能够准确跟踪路径。
而模糊控制则采用模糊逻辑来处理控制问题,通过定义一系列模糊规则来实现路径跟踪。
2. 非线性控制方法:非线性控制方法是一种更高级的路径跟踪方法,其可以处理机器人非线性动力学模型和非线性约束。
机器人运动规划和路径规划算法分析设计整理

机器人运动规划和路径规划算法分析设计整理在现代自动化领域中,机器人已经成为各个产业的重要组成部分。
无论是在制造业、物流业还是服务业中,机器人的运动规划和路径规划算法都起着至关重要的作用。
本文将对机器人运动规划和路径规划算法进行深入分析和设计整理。
一、机器人运动规划算法分析设计整理机器人的运动规划算法主要是指如何使机器人在给定的环境中找到一条最优路径,以到达指定的目标点。
下面将介绍几种常用的机器人运动规划算法。
1.1 图搜索算法图搜索算法是一种基于图论的方法,将机器人的运动环境表示为一个图,每个位置都是图的一个节点,连接的边表示两个位置之间的可达性。
常用的图搜索算法有广度优先搜索(BFS)、深度优先搜索(DFS)和A*算法。
BFS和DFS适用于无权图的搜索,适用于简单的运动环境。
而A*算法将节点的代价函数综合考虑了节点的代价和距离,能够在复杂的运动环境中找到最优路径。
1.2 动态规划算法动态规划算法通过将问题分解为相互重叠的子问题,从而找到最优解。
在机器人运动规划中,动态规划算法可以将整个运动路径划分为一系列子路径,逐步求解子路径的最优解,然后将这些最优解组成整个路径的最优解。
动态规划算法的优点是对于复杂的运动环境能够找到全局最优解,但是由于需要存储中间结果,消耗的内存较大。
1.3 其他算法除了图搜索算法和动态规划算法外,机器人运动规划还可以采用其他一些算法。
例如,弗洛伊德算法可以用于解决带有负权边的最短路径问题,适用于一些复杂的运动环境。
此外,遗传算法和模拟退火算法等进化算法也可以用于机器人的运动规划,通过模拟生物进化的过程来找到最优解。
这些算法在不同的运动环境和问题中具有各自的优势和适用性。
二、机器人路径规划算法分析设计整理路径规划算法是指在机器人的运动规划基础上,通过考虑机器人的动力学约束,生成机器人的具体轨迹。
下面将介绍几种常用的机器人路径规划算法。
2.1 轨迹插值算法轨迹插值算法是一种基于多项式插补的方法,通过控制机器人的位置、速度和加速度等参数,生成平滑的轨迹。
机器人路径规划算法研究与性能分析

机器人路径规划算法研究与性能分析摘要:机器人路径规划是机器人技术中的重要研究领域,涉及到机器人自主导航和避障等关键问题。
本文旨在研究并分析机器人路径规划算法的性能,为机器人导航和自主避障提供理论和方法支持。
通过综合评估不同路径规划算法的性能指标,对比分析它们在不同应用场景下的优缺点,可以为机器人路径规划算法的选择和优化提供指导和借鉴。
1. 引言机器人已经广泛应用于各个领域,如工业生产线、医疗护理、环境监测等。
机器人的自主导航和避障是实现机器人智能化的关键能力之一。
路径规划算法作为机器人导航的核心技术,直接影响机器人的导航精度和效率。
2. 机器人路径规划算法综述目前,常用的机器人路径规划算法可以分为全局路径规划和局部路径规划两类。
全局路径规划算法主要关注从起始点到目标点的最优路径规划,常见的算法有Dijkstra算法、A*算法、RRT算法等;局部路径规划则针对机器人在实时运动中的避障问题,常见的算法有VFH算法、DWA算法、Tangent Bug算法等。
3. 机器人路径规划算法性能评估机器人路径规划算法的性能评估主要包括以下指标:路径规划的时间复杂度、生成的路径长度、路径规划的实时性、算法在不同环境中的鲁棒性等。
针对这些指标,可以通过实验仿真和理论分析等方法进行性能评估和比较分析。
4. 机器人路径规划算法性能对比分析针对全局路径规划算法,A*算法和RRT算法是较为常用的两种算法。
A*算法基于启发式搜索,具有较高的搜索效率和优化能力,但对于大规模环境的路径规划存在一定的局限性;RRT算法则通过随机采样和迭代生成树的方式,在复杂环境中具有较好的路径规划能力。
在比较分析中,可以根据实验结果和仿真数据评估两种算法的路径规划效果和实用性。
针对局部路径规划算法,VFH算法和DWA算法是常用的两种算法。
VFH算法基于雷达数据建立环境地图,通过极坐标直方图分析障碍物分布,然后生成可行的运动方向;DWA算法则通过运动模型和动态规划,在避障的同时优化机器人的运动轨迹。
机器人路径规划算法设计与优化研究

机器人路径规划算法设计与优化研究近年来,机器人技术的快速发展,为各行各业带来了巨大的变革。
机器人路径规划是机器人导航和运动控制中的关键问题之一,它决定了机器人在工作环境中如何找到最优的路径来完成任务。
本文将探讨机器人路径规划算法的设计与优化方法。
一、机器人路径规划算法的基本原理机器人路径规划的目标是确定机器人从起始点到目标点的最优路径,使其能够避开障碍物、优化行走距离和时间。
机器人路径规划算法可以分为全局路径规划和局部路径规划两部分。
全局路径规划是在静态环境下进行,通过对整个地图的搜索和规划,确定机器人从起始点到目标点的最优路径。
经典的全局路径规划算法包括A*算法、Dijkstra算法和深度优先搜索算法。
局部路径规划是在动态环境下进行,即机器人在实际运动过程中需要根据外界环境的变化进行实时的路径规划调整。
常用的局部路径规划算法包括动态窗口方法、经典速度障碍算法和强化学习方法等。
二、机器人路径规划算法设计的关键问题1. 地图表示在机器人路径规划算法设计中,地图的表示方法是一个重要的问题。
一种常用的表示方法是网格地图,即将工作环境划分为一个个网格,并在每个网格上标记障碍物信息。
另一种方法是基于图的表示,将地图看作一个图,每个位置作为一个节点,邻近的位置之间存在边。
2. 碰撞检测在路径规划过程中,需要进行碰撞检测,以确定机器人的运动路径是否与环境中的障碍物相交。
碰撞检测通常通过计算几何形状的相交关系来实现,常用的方法包括线段相交法和包围盒法等。
3. 路径搜索和规划路径搜索和规划是机器人路径规划算法的核心部分。
搜索算法通过遍历可能的路径来找到从起始点到目标点的最优路径。
搜索算法的选择和设计对路径规划的效率和质量有着重要影响。
常用的搜索算法包括A*算法、Dijkstra算法和遗传算法等。
三、机器人路径规划算法的优化方法1. 启发式算法启发式算法是一种基于经验或预估的算法,通过优化评估函数来加速路径规划过程。
机器人导航系统中的动态路径规划算法研究

机器人导航系统中的动态路径规划算法研究导语:机器人导航系统是现代机器人技术中的关键技术之一。
在实际应用中,机器人往往需要根据环境的变化实时调整路径,并避免障碍物。
因此,动态路径规划算法的研究变得尤为重要。
本文将从机器人导航系统的基本原理出发,探索动态路径规划算法的研究现状和发展趋势。
一、机器人导航系统的基本原理机器人导航系统是指机器人在未知环境中能够自主地规划路径,并通过感知技术和运动控制实现目标位置的导航。
其基本原理包括环境感知、路径规划和运动控制。
环境感知主要通过传感器获取环境信息,例如摄像头、激光雷达等;路径规划则是根据环境信息和目标位置,确定机器人的移动路径;运动控制则负责控制机器人按照规划的路径进行移动。
二、静态路径规划算法的缺陷静态路径规划算法在预先确定完整地图的情况下,能够实现较好的路径规划效果。
然而,在实际应用中,环境会不断变化,包括障碍物移动或出现新的障碍物等。
静态路径规划算法无法应对这些变化,导致路径规划失效或效果不佳。
三、动态路径规划算法的研究现状为了解决静态路径规划算法的缺陷,研究人员提出了一系列动态路径规划算法。
其中,基于模型的算法是常用的方法之一。
该算法通过建立环境模型,预测障碍物的运动轨迹,并在路径规划过程中考虑这些预测结果。
另外,基于潜力场的算法也被广泛研究。
该算法通过在环境中引入虚拟力场,使机器人受到力的作用,从而规避障碍物。
此外,遗传算法、粒子群算法等智能优化算法也被引入动态路径规划中,用于寻找最优解。
四、动态路径规划算法的挑战尽管动态路径规划算法取得了一定的进展,但仍然存在一些挑战。
第一,环境的变化通常是不确定和非线性的,预测障碍物的轨迹是一个难题。
第二,随着机器人的快速移动和环境的复杂性增加,实时性和计算效率成为了瓶颈。
第三,算法的鲁棒性需要进一步提高,以应付不同环境下的异常情况。
五、动态路径规划算法的发展趋势为了解决动态路径规划算法面临的挑战,研究人员提出了一些新的思路和方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多机器人路径规划研究方法张亚鸣雷小宇杨胜跃樊晓平瞿志华贾占朝摘要:在查阅大量文献的基础上对多机器人路径规划的主要研究内容和研究现状进行了分析和总结,讨论了多机器人路径规划方法的评判标准,并阐述了研究遇到的瓶颈问题,展望了多机器人路径规划方法的发展趋势。
关键词:多机器人;路径规划;强化学习;评判准则Abstract:This paper analyzed and concluded the main method and current research of the path planning research for multi robot.Then discussed the criterion of path planning research for multi robot based large of literature.Meanwhile,it expounded the bottleneck of the path planning research for multi robot,forecasted the future development of multi robot path planning.Key words:multi robot;path planning;reinforcementlearning;evaluating criteria近年来,分布式人工智能(DAI)成为人工智能研究的一个重要分支。
DAI研究大致可以分为DPS(distributed problem solving)和MAS(multi agent system)两个方面。
一些从事机器人学的研究人员受多智能体系统研究的启发,将智能体概念应用于多机器人系统的研究中,将单个机器人视做一个能独立执行特定任务的智能体,并把这种多机器人系统称为多智能体机器人系统(MARS)。
因此,本文中多机器人系统等同于多智能体机器人系统。
目前,多机器人系统已经成为学术界研究的热点,而路径规划研究又是其核心部分。
机器人路径规划问题可以建模为一个带约束的优化问题,其包括地理环境信息建模、路径规划、定位和避障等任务,它是移动机器人导航与控制的基础。
单个移动机器人路径规划研究一直是机器人研究的重点,且已经有许多成果[1~3],例如在静态环境中常见的有连接图法、可视图法、切线图法、Voronoi图法、自由空间法、栅格法、拓扑法、链接图法、Dempster Shafer 证据理论建图等;动态环境中常见的有粒子群算法、免疫算法、遗传算法、神经网络、蚁群算法、模拟退火算法、人工势场法等。
然而,多机器人路径规划研究比单个机器人路径规划要复杂得多,必须考虑多机器人系统中机器人之间的避碰机制、机器人之间的相互协作机制、通信机制等问题。
1 多机器人路径规划方法单个机器人的路径规划是找出从起始点至终点的一条最短无碰路径。
多个机器人的路径规划侧重考虑整个系统的最优路径,如系统的总耗时间最少路径或是系统总路径最短等。
从目前国内外的研究来看,在规划多机器人路径时,更多考虑的是多机器人之间的协调和合作式的路径规划。
目前国内外多机器人路径规划研究方法分为传统方法、智能优化方法和其他方法三大类。
其中传统方法主要有基于图论的方法(如可视图法、自由空间法、栅格法、Voronoi图法以及人工势场方法等);智能优化方法主要有遗传算法、蚁群算法、免疫算法、神经网络、强化学习等;其他方法主要有动态规划、最优控制算法、模糊控制等。
它们中的大部分都是从单个机器人路径规划方法扩展而来的。
1)传统方法多机器人路径规划传统方法的特点主要体现在基于图论的基础上。
方法一般都是先将环境构建成一个图,然后再从图中寻找最优的路径。
其优点是比较简单,比较容易实现;缺点是得到的路径有可能不是最优路径,而是次优路径。
薄喜柱等人[4]提出的一种新路径规划方法的基本思想就是基于栅格类的环境表示和障碍地图的。
而人工势场方法的基本思想是将移动机器人在环境中的运动视为一种虚拟人工受力场中的运动。
障碍物对移动机器人产生斥力,目标点产生引力,引力和斥力周围由一定的算法产生相应的势,机器人在势场中受到抽象力作用,抽象力使得机器人绕过障碍物。
其优点是适合未知环境下的规划,不会出现维数爆炸问题;但是人工势场法也容易陷入局部最小,并且存在丢失解的部分有用信息的可能。
顾国昌等人[5]提出了引用总体势减小的动态调度技术的多机器人路径规划,较好地解决了这个问题。
2)智能优化方法多机器人路径规划的智能优化方(算)法是随着近年来智能计算发展而产生的一些新方法。
其相对于传统方法更加智能化,且日益成为国内外研究的重点。
遗传算法是近年来计算智能研究的热点,作为一种基于群体进化的概率优化方法,适用于处理传统搜索算法难以解决的复杂和非线性问题,如多机器的路径规划问题。
在路径规划中,其基本思想是先用链接图法把环境地图构建成一个路径节点链接网,将路径个体表达为路径中一系列中途节点,并转换为二进制串;然后进行遗传操作(如选择、交叉、复制、变异),经过N次进化,输出当前的最优个体即机器人的最优路径。
遗传算法的缺点是运算速度不快,进化众多的规划要占据很大的存储空间和运算时间;优点是有效避免了局部极小值问题,且计算量较小。
孙树栋等人[6,7]在这方面较早地展开了研究,提出的基于集中协调思想的一种混合遗传算法来规划多机器人路径方法较好地解决了避障问题。
但不足的是该方法必须建立环境地图,在环境未知情况下的规划没有得到很好的解决;且规划只能保证找到一个比较满意的解,在求解全局最优解时仍有局限。
文献[8]中提出的一种基于定长十进编码方法有效降低了遗传算法的编码难度,克服了已有的变长编码机制及定长二进制编码机制需特殊遗传操作算子和特殊解码的缺陷, 使得算法更加简单有效。
智能计算的另一种常见的方法——蚁群算法属于随机搜索的仿生算法。
其基本思想是模拟蚂蚁群体的觅食运动过程来实现寻优,通过蚂蚁群体中各个体之间的相互作用,分布、并行地解决组合优化问题。
该算法同样比较适合解决多机器人的路径规划问题。
朱庆保[9]提出了在全局未知环境下多机器人运动蚂蚁导航算法。
该方法将全局目标点映射到机器人视野域边界附近作为局部导航子目标,再由两组蚂蚁相互协作完成机器人视野域内局部最优路径的搜索,然后在此基础上进行与其他机器人的碰撞预测与避碰规划。
因此,机器人的前进路径不断被动态修改,从而在每条局部优化路径引导下,使机器人沿一条全局优化的路径到达目标点。
但其不足是在动态不确定的环境中路径规划时间开销剧增,而且机器人缺乏必要的学习,以至于整个机器人系统路径难以是最优路径。
强化学习[10,11] (又称再激励学习)是一种重要的机器学习方法。
它是一种智能体从环境状态到行为映射的学习,使得行为从环境中获得积累奖赏值最大。
其原理如图1所示。
强化学习算法一般包含了两个步骤:a)从当前学习循环的值函数确定新的行为策略;b)在新的行为策略指导下,通过所获得的瞬时奖惩值对该策略进行评估。
学习循环过程如下所示,直到值函数和策略收敛:v0→π1→v1→π2→…→v*→π*→v*目前比较常见的强化学习方法有:Monte Carlo方法、动态规划方法、TD (时间差分)方法。
其中TD算法包含Sarsa算法、Q学习算法以及Dyna-Q算法等。
其Q值函数迭代公式分别为TD(0)策略:V(si)←V(si)+α[γi+1+γV(si+1)-V(si)]Sarsa算法:Q(st,at)←Q(st,at)+α[γt+1+γQ(st+1,at.+1)-Q(st,at)] Qs′学习算法:Qπ(s,a)=∑Pαss′[Rass′+γVπ(s′)]近年来,基于强化学习的路径规划日益成为国内外学者研究的热点。
M. J. Mataric[12]首次把强化学习引入到多机器人环境中。
而基于强化学习的多机器人路径规划的优点主要体现在:无须建立精确的环境模型,简化了智能体的编程;无须构建环境地图;强化学习可以把路径规划、避碰、避障、协作等问题统一解决。
张芳等人[13]提出了基于再激励协调避障路径规划方法,把再励函数设计为基于行为分解的无模型非均匀结构,新的再励函数结构使得学习速度得以提高且有较好的鲁棒性。
同时,证明了在路径规划中,机器人的趋向目标和避障行为密切相关,对反映各基本行为的再励函数取加权和来表示总的再励函数要优于取直接和的表示方式,也反映了再励函数设计得合理与否及其确切程度将影响再励学习的收敛速度。
王醒策等人[14]在动态编队的强化学习算法方面展开了研究。
宋一然[15]则提出了分段再励函数的强化学习方法进行路径规划。
其缺点是学习次数较多、效率不高,当机器人数目增加时,它有可能面临维数灾难的困难。
所以,基于强化学习的路径规划在多机器人环境下的学习将变得比较困难,需要对传统的强化学习加以优化,如基于人工神经网络的强化学习[16]等。
3)其他方法除了以上国内外几种比较常见且研究较多的方法外,还有唐振民等人[17]提出的基于动态规划思想的多机器人路径规划,把运筹学中的动态规划思想与Dijkstra算法引入到多机器人的路径规划中,用动态规划的基本思想来解决图论中的费用流问题和路径规划中的层级动态联盟问题。
其选择距离邻近法作为联盟参考依据。
一个机器人的邻居是指在地理位置上分布在这个机器人周围的其他机器人;与该机器人最近邻的机器人为第一层邻居,第一层邻居的邻居为该机器人的第二层邻居, 依此类推。
那么层级越高(即越近)的邻居,它满足协作要求的可能性越大。
动态规划算法实质上是一种以空间换时间的技术,它在实现的过程中,必须存储产生过程中的各种状态,其空间复杂度要大于其他算法,故动态规划方法比较适合多机器人的全局路径规划。
孙茂相等人[18]提出了最优控制与智能决策相结合的多移动机器人路径规划方法。
其首先构造一个以各机器人最优运动状态数据库为核心的实时专家系统, 在离线状态下完成; 然后各机器人在此专家系统的支持下, 以最优规划策略为基础, 采用速度迁移算法, 自主决定其控制。
该方法拥有较好的稳定性与复杂度。
焦立男等人[19]提出的基于局部传感和通信的多机器人运动规划框架较好地解决了多机器人路径规划在局部在线规划的系统框架问题。
沈捷等人[20]提出了保持队形的多移动机器人路径规划。
以基于行为的导航算法为基础,把机器人队列的运动过程划分为正常运动、避障和恢复队形三个阶段。
在避障阶段,引入虚拟机器人使队形保持部分完整;当队形被严重打乱时,规划机器人的局部目标位姿使队列快速恢复队形。
其算法重点为避障机器人进入避障状态,暂时脱离队列,并以虚拟机器人代替避障机器人。
2 多机器人避碰和避障避障和避碰是多机器人路径规划研究中需要考虑的重点问题之一。