材料腐蚀与防护

合集下载

材料腐蚀与防护

材料腐蚀与防护

材料腐蚀与防护材料腐蚀是破坏金属与其他材料性能的主要因素之一。

本文将探讨材料腐蚀的原因、分类、对工业生产的影响,并介绍几种常见的防腐方法。

一、材料腐蚀的原因材料腐蚀是由于材料表面与外界介质(气体、液体、固体)相互作用而导致的一种破坏现象。

其中氧化、腐蚀、电化学腐蚀是主要原因。

氧化是指金属在空气中或其他氧化性气体中与氧反应形成金属氧化物,导致表面氧化腐蚀。

而腐蚀是指金属或合金在特定条件下受化学或电化学作用而变质或溶解的过程。

电化学腐蚀是指在电解质溶液中,金属表面上生成一些电化学反应,使金属表面腐蚀。

二、材料腐蚀的分类根据腐蚀原因,材料腐蚀可分为物理腐蚀和化学腐蚀两类。

物理腐蚀指在材料表面受到机械力作用或磨损导致的表面损害。

化学腐蚀是指金属在特定环境中受到化学作用而发生的腐蚀现象。

化学腐蚀又可以细分为氧化腐蚀、酸性腐蚀、碱性腐蚀等。

三、材料腐蚀对工业生产的影响材料腐蚀会降低材料的强度、硬度、耐磨性、韧性等性能,导致设备的损坏和寿命缩短。

在工业生产中,材料腐蚀不仅会造成设备的停工维修,增加维修成本,还会对产品质量造成影响,进而影响企业的经济效益。

四、常见的防腐方法为了延长材料的使用寿命,减少材料腐蚀带来的负面影响,工程界广泛采用各种防腐技术。

常见的防腐方法包括防护涂层、阳极保护、防腐合金材料等。

防腐涂层是在金属表面形成一层保护膜,隔绝金属表面与外界介质的直接接触,起到防腐护材料的作用。

阳极保护则是靠金属阳极的电化学性质来保护金属表面,使金属不易腐蚀。

防腐合金材料则是在金属表面镀一层稳定、耐腐蚀的合金,增加材料的耐蚀性。

结语材料腐蚀是工业生产中不可忽视的问题,对材料的选择和处理,以及采取有效的防腐措施至关重要。

只有有效地控制材料腐蚀,才能确保设备的正常运行,延长设备的使用寿命,提高工业生产的效率和质量。

希望本文对您了解材料腐蚀及防护方法有所帮助。

金属材料的腐蚀与防护

金属材料的腐蚀与防护

金属材料的腐蚀与防护金属材料在使用过程中容易受到腐蚀的影响,从而降低其机械性能和寿命。

为了延长金属材料的使用寿命,保护措施是至关重要的。

本文将讨论金属材料腐蚀的原因和常见的防护方法。

一、金属材料腐蚀的原因金属材料腐蚀的原因主要包括化学腐蚀和电化学腐蚀两种。

1. 化学腐蚀化学腐蚀是指金属材料与大气中的氧、水、酸、碱等物质发生反应,导致金属表面发生变化。

常见的化学腐蚀有氧化腐蚀、酸性腐蚀和碱性腐蚀等。

氧化腐蚀是指金属与氧气反应生成金属氧化物的过程。

例如铁与氧气反应生成铁氧化物,即常见的铁锈现象。

在湿润环境下,氧化腐蚀速度更快。

酸性腐蚀是指金属与酸性溶液接触产生的化学反应。

常见的酸性腐蚀有硫酸腐蚀、盐酸腐蚀等。

酸性腐蚀可导致金属材料表面产生腐蚀坑。

碱性腐蚀是指金属与碱性溶液接触产生的化学反应。

常见的碱性腐蚀有氢氧化钠腐蚀、氢氧化钾腐蚀等。

碱性腐蚀会使金属表面发生腐蚀、变硬或变脆等。

2. 电化学腐蚀电化学腐蚀是指金属在电解质中发生的电化学反应导致腐蚀现象。

电化学腐蚀包括阳极腐蚀和阴极腐蚀。

阳极腐蚀是指金属作为阳极,在电化学反应中溶解生成阳离子。

金属表面因此变薄,甚至出现孔洞。

例如,铁的阳极腐蚀就是普遍的铁锈现象。

阴极腐蚀是指金属作为阴极,在电化学反应中受到硬币金属材料的腐蚀与防护电子供给,发生反应并生成金属阳离子的过程。

阴极腐蚀可导致金属表面发生凹陷或沉积物形成。

二、金属材料的防护方法金属材料的防护方法主要包括表面涂层、阳极保护和电化学防护等。

1. 表面涂层表面涂层是指在金属材料表面形成一层附着力强的保护层。

常见的表面涂层有油漆、镀层和涂覆层等。

这些涂层可以隔绝金属材料与环境介质的接触,从而减少腐蚀的发生。

2. 阳极保护阳极保护是通过在金属材料上施加电流,使其成为阴极从而抑制腐蚀的发生。

常用的阳极保护方法有热浸镀锌、电镀和阳极保护涂层等。

这些方法可在金属材料表面形成一层保护膜,提供额外的保护。

3. 电化学防护电化学防护是利用电化学原理减缓金属材料腐蚀的速率。

材料腐蚀与防护

材料腐蚀与防护

材料腐蚀与防护材料腐蚀是指在特定环境条件下,材料表面遭受化学或电化学作用而发生的破坏现象。

腐蚀不仅会降低材料的强度和耐久性,还会对设备和结构的安全性造成严重威胁。

因此,对材料腐蚀进行有效的防护至关重要。

本文将就材料腐蚀的原因、分类及防护方法进行探讨。

首先,材料腐蚀的原因主要包括化学腐蚀、电化学腐蚀和微生物腐蚀。

化学腐蚀是指材料与化学物质直接发生反应,导致材料表面腐蚀。

电化学腐蚀是指在电解质存在的情况下,材料表面发生的电化学反应所致的腐蚀。

微生物腐蚀是由微生物产生的代谢产物对材料表面造成的腐蚀。

这些腐蚀形式各有特点,需要针对性地采取防护措施。

其次,根据腐蚀的性质和特点,可以将材料腐蚀分为干腐蚀和湿腐蚀。

干腐蚀是指在干燥的环境中发生的腐蚀现象,主要包括氧化腐蚀、硫化腐蚀和氯化腐蚀等。

湿腐蚀是指在潮湿或液态环境中发生的腐蚀现象,主要包括腐蚀、孔蚀和应力腐蚀等。

针对不同类型的腐蚀,需要采取相应的防护措施。

针对材料腐蚀问题,可以采取多种防护方法。

首先是选用耐腐蚀材料,例如不锈钢、耐蚀合金等,这些材料具有良好的耐腐蚀性能,能够有效地延缓腐蚀的发生。

其次是表面涂层防护,通过在材料表面涂覆一层防腐蚀涂层,可以有效地隔绝材料与腐蚀介质的接触,起到防腐蚀的作用。

另外,还可以采取阴极保护、阳极保护等电化学防护方法,以及改变环境条件、控制腐蚀介质浓度等措施来防止材料腐蚀的发生。

综上所述,材料腐蚀是一种常见的材料破坏现象,对设备和结构的安全性造成严重威胁。

为了有效地防止材料腐蚀,需要深入了解腐蚀的原因和分类,针对不同类型的腐蚀采取相应的防护措施。

只有通过科学的防护方法,才能有效地延缓材料腐蚀的发生,保障设备和结构的安全运行。

中国材料腐蚀与防护现状

中国材料腐蚀与防护现状

中国材料腐蚀与防护现状腐蚀是指金属材料在与环境接触的过程中,由于化学或电化学作用而导致的材料性能恶化的现象。

在中国这个拥有广阔土地和丰富资源的国家,腐蚀问题不可忽视。

本文将主要讨论中国材料腐蚀与防护的现状。

一、材料腐蚀的类型根据腐蚀的原理和机制,腐蚀可以分为化学腐蚀、电化学腐蚀和微生物腐蚀等几种类型。

其中,化学腐蚀是指金属在化学介质(如酸、碱、盐等)的作用下发生的腐蚀;电化学腐蚀是指金属在介质中扮演阳极和阴极角色,通过电子传递和物质扩散而发生的腐蚀;微生物腐蚀则是指由微生物产生的酶、酸等物质对金属的腐蚀作用。

二、中国材料腐蚀的现状在中国,腐蚀对材料的破坏是经济、社会和安全的重大问题。

据统计,中国每年因腐蚀带来的直接经济损失约为国内生产总值的3%左右,相当于几百亿人民币。

腐蚀不仅在工业生产中造成材料的早期失效和设备的事故,还对基础设施如桥梁、管道、水电站等的安全运行产生重要影响。

近几年来,中国政府高度重视腐蚀问题,并采取了一系列措施加以解决。

政府部门加大了对腐蚀防护技术的研发投入,并积极推动在工艺、材料及装备等方面的创新。

另外,加强监管执法力度,推出一系列相关政策和法规,加强腐蚀防护工作的宣传教育,提高相关人员的意识和技能。

三、中国材料腐蚀防护的技术为了有效应对腐蚀问题,中国在材料腐蚀防护方面进行了一系列的研究和探索。

以下是几种主要的腐蚀防护技术。

1.表面涂层技术表面涂层技术是目前应用最广泛的腐蚀防护技术之一。

通过在金属材料的表面形成一层阻挡物,有效隔绝了材料与环境的接触,以达到防腐蚀的目的。

常见的表面涂层材料包括涂料、油漆、聚合物等。

2.电化学防蚀技术电化学防腐蚀技术通过施加电压或电流的方式,在金属表面形成一层保护膜,减少金属与环境的接触,降低腐蚀速率。

常见的电化学防腐蚀技术包括阳极保护和阴极保护等。

3.高温防腐蚀技术高温环境下材料的腐蚀问题同样引起了重视。

高温防腐蚀技术通过选择具有良好抗高温腐蚀性能的材料,以及采取隔热措施等方式,保护材料在高温环境下的安全使用。

材料腐蚀与防护

材料腐蚀与防护

材料腐蚀与防护材料腐蚀是指材料与周围环境中的物质相互作用,导致材料发生物理性或化学性变化,失去原有功能和性能的过程。

腐蚀常见于金属材料,特别是铁、钢等容易受到氧气、水和酸碱等物质的侵蚀。

本文将介绍材料腐蚀的原因和常见的防护方法。

材料腐蚀的原因主要有以下几点:第一,氧气的作用。

氧气在空气中广泛存在,与金属材料接触会发生氧化反应,形成金属氧化物,导致材料表面腐蚀。

第二,水的作用。

水中溶解了许多化学物质,如氯离子、硫酸根离子等,它们会与金属发生反应,形成腐蚀物质。

此外,水的存在也会促进材料内部的电化学反应,加速腐蚀过程。

第三,化学物质的作用。

强酸、强碱及其他有害物质的存在都会对材料造成严重的腐蚀。

第四,电化学作用。

当金属表面存在局部缺陷或异质金属接触时,会形成电池,产生金属的电化学腐蚀。

为了防止材料腐蚀,可以采取以下方法:第一,选择抗腐蚀性能良好的材料。

如不锈钢、铝合金等具有良好的抗腐蚀性能,可以用于制造对抗腐蚀要求较高的产品。

第二,通过表面处理来增加材料的抗腐蚀能力。

如镀锌、喷涂等处理方法可以在材料表面形成一层保护膜,起到防腐蚀的作用。

第三,采用防护层。

比如在金属材料表面涂覆一层抗腐蚀的涂料,阻隔外界侵蚀材料的物质。

第四,进行电化学保护。

如防腐蚀涂层中引入金属粉末,形成阳极保护,避免材料发生电化学腐蚀。

第五,加强材料的维护与保养。

定期清洗、除锈、涂层修补等方法可以延长材料的使用寿命。

需要注意的是,不同材料腐蚀的原因和防护方法有所差异,应根据具体情况采取相应的防护措施。

此外,在使用过程中也需要注意环境条件和操作规范,避免因不当操作而引起的腐蚀问题。

总之,材料腐蚀是一个普遍存在的问题,对材料的使用寿命和性能产生不良影响。

通过选择合适的材料和采取科学有效的防护方法,可以延长材料的使用寿命,提高产品的质量和性能。

金属材料腐蚀与防护技术

金属材料腐蚀与防护技术

金属材料腐蚀与防护技术随着工业领域的迅速发展,金属材料在各个领域都得到了广泛的应用。

同时,金属材料面临的问题也日益凸显,其中最重要的问题就是腐蚀。

由于金属材料在各种环境条件下都容易受到腐蚀的影响,因此腐蚀防护技术的研究和应用就显得尤为重要。

本文将针对金属材料腐蚀的原因、分类以及防护技术进行详细介绍。

一、金属材料腐蚀原因金属材料腐蚀的原因主要是与金属材料所处的环境和自身的性质有关。

主要有以下几个方面:1、化学腐蚀化学腐蚀是由于金属材料与化学物质发生反应而引起的。

如淬火后的钢容易被水氧化,生成三氧化二铁,长期浸泡在水中则容易生锈。

金属材料在工业生产中,也容易受到各种酸、碱、盐等化学物质的侵蚀。

2、电化学腐蚀电化学腐蚀是由于金属材料在电化学作用下发生的氧化还原反应而引起的。

金属材料在介质中与其他金属或非金属材料接触,会形成不同的电位差,从而产生电化学腐蚀。

例如,海洋中的金属材料由于电化学反应,具有较高的腐蚀性。

3、应力腐蚀应力腐蚀是由于金属材料处于受到张、压或弯曲等应力状态下,而发生的的腐蚀反应。

应力腐蚀会导致金属材料的疲劳强度降低,腐蚀现象加剧。

二、金属材料腐蚀分类金属材料的腐蚀分类主要有以下几种:1、均匀腐蚀均匀腐蚀是指金属材料在腐蚀过程中,腐蚀面积均匀增加的一种腐蚀方式。

均匀腐蚀主要发生在金属表面,是金属材料最普遍的腐蚀方式。

2、点蚀腐蚀点蚀腐蚀是金属表面发生的一个局部的、离散的、深度不大的腐蚀现象。

点蚀腐蚀一般是由于金属表面在处理和使用时,留下的局部腐蚀敏感点,引发的腐蚀现象。

3、晶间腐蚀晶间腐蚀是指金属材料表面发生的沿晶或穿晶腐蚀现象。

晶间腐蚀主要是由于金属材料在焊接、热处理或其他加工过程中,使金属的晶粒尺寸产生变化,引起的局部腐蚀。

4、异种金属腐蚀异种金属腐蚀是由于两种金属在接触时产生静电势差,引起电化学反应导致的。

异种金属腐蚀一般发生在金属之间的缝隙或切口。

三、金属材料腐蚀防护技术为了减少金属材料腐蚀,保护金属材料的使用寿命,防止不必要的损失,研究金属材料的防腐技术变得尤为重要,其中主要有以下几种:1、涂层防护涂层防护是通过分别使用各种防腐涂层,将金属材料表面进行涂覆,形成一层保护层。

材料腐蚀与防护

材料腐蚀与防护

材料腐蚀与防护一、引言材料腐蚀是指材料在特定环境中受到氧化、化学物质侵蚀等因素的破坏和损害。

腐蚀不仅对材料的完整性和性能产生负面影响,还可能带来安全隐患和经济损失。

因此,研究材料腐蚀的机理和方法,以及防护技术的应用具有重要意义。

二、材料腐蚀的机理材料腐蚀的机理主要包括电化学腐蚀、化学腐蚀和微生物腐蚀等。

以下将对这些机理进行简要介绍。

1. 电化学腐蚀电化学腐蚀是指材料在电化学环境中受到电流和电位的影响,导致材料表面发生化学反应,进而发生腐蚀的过程。

电化学腐蚀可以分为阳极腐蚀和阴极腐蚀两种类型。

阳极腐蚀是指材料在电化学环境下,作为阳极溶解或发生氧化反应而腐蚀;阴极腐蚀是指材料在电化学环境下,作为阴极发生还原反应而腐蚀。

2. 化学腐蚀化学腐蚀是指材料在化学物质的作用下发生的腐蚀过程。

化学腐蚀可以是直接化学反应,也可以是材料表面受到化学物质吸附,形成新的腐蚀介质而引起的腐蚀。

化学腐蚀的速率与环境中化学物质的浓度、温度、PH值等因素密切相关。

3. 微生物腐蚀微生物腐蚀是指微生物在特定环境中对材料进行腐蚀的过程。

微生物腐蚀主要包括微生物产生的酸性物质引起的腐蚀以及微生物与材料表面形成生物膜而导致的腐蚀。

微生物腐蚀往往与湿度、温度、气氛等环境因素密切相关。

三、材料腐蚀的防护方法为了延长材料的使用寿命并减少腐蚀造成的损失,需要采取相应的防护措施。

下面将介绍一些常见的材料腐蚀防护方法。

1. 表面涂覆表面涂覆是一种常用的材料腐蚀防护方法,通过在材料表面形成一层保护性涂层,阻隔材料与外界环境的接触,达到防蚀的目的。

常见的涂层材料有有机涂料、金属涂层和无机涂层等。

涂覆方法包括喷涂、涂刷、浸渍等。

2. 阳极保护阳极保护是利用特定材料作为阳极,在电化学环境中提供电流以保护被腐蚀材料的一种方法。

通过阳极保护,可以将被腐蚀材料设定为阴级,从而抑制电化学腐蚀的发生。

阳极保护常用于金属结构、管道等设施的防腐。

3. 选择合适材料在设计和选择材料时,应根据不同的工作环境和使用要求,选择合适的材料来抵抗腐蚀。

《材料腐蚀与防护》材料的腐蚀与防护

《材料腐蚀与防护》材料的腐蚀与防护

(4)钻井液 多种钻井液类型,腐蚀不相同。
2、钻井过程的腐蚀特点
(1)(一般)电化学腐蚀 (2) (一般)应力腐蚀 (3)磨损腐蚀 (4)硫化物应力腐蚀开裂 (5)腐蚀疲劳
典型案例
钻杆应力 腐蚀开裂
3、钻井系统的腐蚀控制
(1)降低钻井液的腐蚀性 (a)添加除氧剂 (b)添加缓蚀剂 (c)添加除硫剂 (d)减低砂量 (e)提高pH值
集输系统的防护
(1)正确选材 (2)合理设计 (3)内外防护层 (4)阴极保护 (5)缓蚀剂 (6)杀菌剂和阻垢剂
8.4 海洋采油装置的腐蚀
防腐措施
原则:分段防腐 (1)飞溅区 增加结构壁厚或附加“防腐蚀钢板”是飞溅区有效的防护措施。 玻璃鳞片或玻璃纤维的有机防腐层。 热喷涂。 (2)大气区 海洋和滩涂石油平台的大气区,都采用涂层保护。 对一些形状复杂的结构,如格栅等,也采用浸镀锌加涂层。 (3)潮差区 对平台的潮差区,一般也采用涂层保护。 (4)全浸区 全浸区的构件可以只采用阴极保护。 (5)海泥区 平台在泥中的钢桩和油井察管,仅采用阴极保护。
某油田1993年有400多口油井因井下管柱或共居的腐 蚀而频繁停产作业,100多口注水井套管因腐蚀穿孔, 更换注水井套管耗费3950万元。
1500多公里的集输管线1993年腐蚀穿孔3338次,更 换53.7公里。
石油工业的腐蚀常导致灾难性事故,如罗家寨2号井 和开县井喷事故,造成人身伤害。
石油工业的腐蚀还会导致严重的环境污染,例如 1994年俄罗斯的集输管线破裂,原油泄漏,导致严 重的环境污染。
(2)硫化氢 硫氢腐蚀表现的形式有以下几种; (1)电化学腐蚀。 (2)氢诱发裂纹(HIC)和氢鼓泡(HB) (3)硫化物应力开裂(SSCC)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

航空材料的腐蚀与防护姓名:王俊专业:材料物理学号:1320122111航空材料的腐蚀与防护摘要:材料腐蚀的概念和研究材料腐蚀的重要性,航空材料的分类和演变,航空材料腐蚀防护技术的历史和现状特点,航空材料腐蚀现象及其机理,腐蚀对航空材料的影响,解决航空材料腐蚀问题及其防护与治理。

关键词:航空材,腐蚀,防护。

前言金属和它所在的环境介质之间发生化学、电化学或物理作用,引起金属的变质和破坏,称为金属腐蚀。

随着非金属材料的发展,其失效现象也越来越引起人们的重视。

因此腐蚀科学家们主张把腐蚀的定义扩展到所有材料,定义为:腐蚀是材料由于环境的作用而引起的破坏和变质。

腐蚀现象在人们在社会生产及使用到的各种材料中都普遍存在,由于服役环境复杂多变, 不同构成材料相互配合影响, 导致航空材料在飞行器的留空阶段、停放阶段遭受多种不同种类的腐蚀,增加了飞行器的运营成本,对飞行器的功能完整性和使用安全性造成严重的危害。

因此开展航空产品的腐蚀与防护的研究具有明显的经济和社会效益。

1.航空材料的历史与发展1.1航空材料的概论航空材料是航空工业主要基础,航空材料与航空技术的关系极为密切,航空航天材料在航空产品发展中具有极其重要的地位和作用.航空材料既是研制生产航空产品的物质保障,又是推动航空产品更新换代的技术基础。

1.2.航空材料的分类航空材料有不同的分类方式。

按成份可分为四大类:1)金属材料:铝合金、镁合金、钛合金、钢、高温合金、粉末冶金合金等。

2)无机非金属材料:玻璃、陶瓷等。

3)高分子材料:透明材料、胶粘剂、橡胶及密封剂、涂料、工程塑料等。

4)先进复合材料:聚合物基复合材料、金属基复合材料、无机非金属基复合材料、碳 /碳复合材料等。

按使用功能可分为两大类:结构材料和功能材料。

1.3航空材料的演变早期飞机的结构以木材、蒙布、金属丝绑扎而成,后来又发展为木材与金属的混合结构。

到了二十世纪三十年代,随着铝合金材料的发展,全金属承力蒙皮逐渐成为普遍的结构形式。

二十世纪三、四十年代,镁合金开始进入航空结构材料的行列。

四、五十年代,不锈钢成为航空结构材料。

到五十年代中期开始出现钛合金,嗣后并被用于飞机的高温部位。

二十世纪六十年代,开发出树脂基先进复合材料,后来在树脂基复合材料的基础上又出现了金属基复合材料。

现代飞机大量采用新型材料。

2.航空材料的不同腐蚀航空器包括很多不同种类的航空材料,这些材料的种类不同,所处工作环境不同,导致航空材料的腐蚀具有多样性。

2.1环境作用下的电化学腐蚀电化学腐蚀是一种非常普遍的现象,很多材料物品都会受到其影响。

而电位差与电解质溶液就是形成电化学腐蚀的两个基本条件。

在飞行器结构中,不同的结构由于承担的功能不同,所使用材料的性质也不同。

例如,飞行器的蒙皮多采用具有出色延展性而强度相对较低的铝合金,起落架和龙骨梁则多选用高强度的合金钢。

材料不同,它们的电极,如果接触就有可能产生腐蚀的隐患;就算是同种类的材料,由于其内部杂质的存在或其自身就是由不同电极电位多相组成。

因此, 构成飞行器的航空材料客观上都存有电化学腐蚀的可能。

仅有电极电位差,而没有在电极间传递电荷的电解质溶液, 并不会形成导致腐蚀现象的腐蚀电池,但现实中飞行器的电化学腐蚀现象说明电解质溶液在飞行器中普遍存在。

2.2 承力结构应力腐蚀材料除受环境作用外还受各种应力作用,因此会导致较单一因素下更严重的腐蚀破坏形式。

应力腐蚀是应力和腐蚀环境共同作用下的材料破坏形式。

应力腐蚀仅发生在特定的腐蚀环境和材料体系中,其特点是造成此种破坏的静应力远低于材料的屈服强度,断裂形式为没有塑性变形的脆断,且主要由拉应力造成。

以起落架的应力腐蚀为例,飞行器的起落架结构为飞行器的主要受力结构之一,当飞行器处于停放状态时,起落架的轮轴受拉应力作用,可能在相应的腐蚀介质作用下发生应力腐蚀。

起落架材质一般为镀铬的高强钢,铬镀层强度高、耐磨但镀层较脆,容易在飞行器起降的交变载荷作用下沿缺陷剥落而失效。

2.3 发动机的高温腐蚀发动机的主要腐蚀表现形式是高温氧化腐蚀。

推力大、效率高、油耗低、寿命长是航空发动机发展趋势。

只有对涡轮进口燃气温度进行提升,才能供给出需要的增压比与流量比,实现提升推力的同时降低油耗。

所以发动机涡轮叶片的抗高温腐蚀性能极其关键。

对此主要可采取以下几种方法:保障性能前提之下,提高叶片材料本身的熔点及高温抗氧化能力;使用与基体材料亲和力更好、高温性能更好的抗氧化保护涂层。

2.4 意外腐蚀飞行器服役中还存在意外腐蚀。

这种腐蚀与飞行器的设计、选材及运行环境无关,完全是由人为不当操作造成。

比如机上承载强腐蚀性物质,发生泄漏而造成飞行器发生腐蚀。

通过编制详细的操作流程与有关部门加强监督管理,并制定相应的强制性规定规范,并由专人进行负责落实便可完全避免人为因素而造成的腐蚀现象。

3.腐蚀机理和测试技术研究高强度航空材料在力学-环境因素的交互作用下可能会发生应力腐蚀而导致灾难性的事故。

因此开展应力腐蚀的测试和研究是腐蚀和防护的一项重要内容。

目前已经发展了一些应力腐蚀敏感性的测试标准。

这些试验标准在研究新研材料和引进飞机材料的应力腐蚀性能方面发挥了重要作用。

另外也有人设计了一些非标准的应力腐蚀试验来模拟试件的服役条件,试验的结果与实际情况符合的较好。

由于实际的应力腐蚀往往发生在大气环境中,所以设计了一种便携式拉伸应力腐蚀试验器,用于开展户外大气应力腐蚀的研究。

飞机结构往往由多种材料构成,在一定条件下不同材料的相互接触会导致接触腐蚀和电偶腐蚀。

研究者对钢与铝合金和钛合金接触时的电偶腐蚀和防护方法进行研究,得到了很多对实际工程有指导价值的结论。

随着复合材料在航空产品上得到应用,复合材料和金属材料接触时所引起的相容性问题开始得到人们的重视,并提出了一些防护措施。

现役飞机铝合金构件的主要腐蚀形式是点腐蚀,点蚀形成的蚀坑通常是腐蚀疲劳的裂纹的裂纹源,航空材料的腐蚀疲劳损伤往往是在腐蚀点上的裂纹生成和扩展导致的。

点蚀形成现在比较公认的是蚀点内部发生的自催化过程。

铝合金材料点蚀形成是一种自发催化闭塞电池作用的结果,蚀点不断向金属深处腐蚀,并使在钝化过程受到抑制,由于闭塞电池的腐蚀电流使周围得到了阴极保护,因而抑制了蚀点周围的全面腐蚀,但是加速了点蚀的迅速发展。

随着腐蚀时间的延长,点蚀的深度和表面半径都在不断的增大,相邻的蚀点会相互交错形成更大更深的蚀点。

4.表面强化和防护4.1 航空发动机高温防护涂层航空发动机所用的高温防护涂层一般可分成扩散涂层和包覆涂层。

目前我国已经发展出多种发动机部件所使用的镍镉扩散涂层、渗Al,Al+Si料浆涂层、Pt-Al涂层、包覆型M、Cr、Al、X涂层、热障涂层、抗氧化防脆化涂层、封严涂层等,部分涂层进入批量生产阶段。

MC r A IY 涂层是一种包覆性涂层,它克服了传统铝化物涂层与基体之间互相制约的弱点,进一步提高了发动机材料的抗氧化的能力。

随着航空燃气轮机向高流量比、高推重比、高进口温度的方向发展,燃烧室中的燃气温度和压力不断提高,我国开展了热障涂层(thermal barrier coatings,简称TBC s)的研究。

热障涂层是由陶瓷隔热面层和金属粘结底层组成的涂层系统。

ZrO2 是目前陶瓷隔热面层中研究最多的成分。

热循环试验证明柱状晶组织较普通的纤维状组织具有更高的抗热疲劳性能另外我国还开展了纳米陶瓷热障涂层的研究。

4.2表面强化表面强化工艺技术涉及到各种金属材料(钢、铝合金、钛合金、高温合金、金属基复合材料等),对于不同的晶体结构(面心立方、体心立方、密排六方)有多种不同的强化方法和工艺参教;同时根据航空高强度构件外形的几何形状不同,选择不同工艺参教和前后顺序的搭配方式。

但是,所有强化工艺处理后材料都会因为塑性变形引起表层组织结构、残余应力和硬度的梯度以及表面形貌等发生变化,起到降低外加拉应力和应力集中系数的作用,从而对耐磨性和疲劳性能产生影响。

电子束表面处理是利用高能量密度的电子束对材料表面进行加工,是不同于机械加工的一种新型加工方法悄。

12I,其中电子束物理气相沉积以及电子束表面处理等在工业上的应用最为广泛。

电子束加工方法起源于德国,经过几十年的发展,目前全世界已有几千台设备在核工业、航空航天工业、精密加工业及重型机械等工业部门应用,现已完全被工业部门所接受。

电子束表面改性技术是20世纪70年代才发展起来的新技术。

电子束表面改性处理包括金属材料的表面淬火、表面合金化、表面清洗及熔覆、薄极退火,以及半导体材料的退火和掺杂等。

目前,电子束表面非晶态处理及冲击淬火等先进处理工艺的研究也已经在世界各国广泛展开。

激光冲击强化(Laser Shock Pening,LSP)技术是一种利用激光冲击波对材料表面进行改性,提高材料的抗疲劳、磨损和应力腐蚀等性能的技术。

目前激光冲击技术在工程中应用最广泛的领域是合金材料的表面强化,与滚压、喷丸、冷挤压等材料表面强化处理的方法相比,激光冲击强化处理具有非接触,无热影响区和强化效果显著等突出的优点。

其原理是当短脉冲(十几纳秒)的高峰值功率密度(大于109W/cm2)的激光辐射金属靶材时,金属表面吸收层吸收激光能量发生爆炸性汽化蒸发,产生高温(大于10000K)、高压(大于1GPa)的等离子体,该等离子体受到约束层约束时产生高强度压力冲击波,作用于金属表面并向内部传播。

材料表层就产生应变硬化,残留很大的压应力。

激光束经过凸透镜聚焦后,功率密度可以达到1~50 GW/cm2,接着大部分激光能量将被涂层吸收,能量转化成冲击波的形式,透明物质水即所谓限制层,它将基体和基体表面的涂层包覆起来。

5.航空材料的腐蚀与防护的意义我国的腐蚀和防护研究为我国航空工业的发展做出了应有的贡献,在腐蚀机理和测试、航空发动机高温防护涂层以及表面处理和防护技术等方面都取得了不小成绩。

参考文献[ 1]《航空材料与腐蚀防护》--------------讲义中国民航大学理学院材料化学教研室------------苏景新[ 2]《我国航空材料的腐蚀与防护现状与展望》----------蔡健平,陆峰,吴小梅.[3]《航空材料腐蚀疲劳研究进展.腐蚀与防护》-------耿德平,宋庆功。

[4] 《TA 15钛合金与铝合金接触腐蚀与防护研究》-------------张晓云,孙志华,汤智慧等[5]《航空材料的腐蚀问题与防治对策》------------------------------崔坤林.[6]《民机结构外露关键部位涂层加速腐蚀环境谱研究》--------杨洪源,刘文。

[7]《材料腐蚀与防护》-------------冶金工业出版社------------孙秋霞主编。

相关文档
最新文档