江苏省南京外国语学校2020-2021学年度第一学期期中高一数学试题(word版,含解析)

合集下载

江苏省南京外国语学校仙林分校高一数学上学期期中测试试题苏教版

江苏省南京外国语学校仙林分校高一数学上学期期中测试试题苏教版

高一年级期中测试数试题命题人 审题人 第一部分(满分100分)一、填空题 (本大题共8小题,每小题5分,共40分.请把答案填写在答卷纸相应位置.......上) 1. 若[)2,5A =,集合(]3,7B =,A B 则= .2. 函数1()f x x=,{1,2,3}x ∈的值域为 . 3. 函数()(1)3f x k x =-+在R 上是减函数,则k 的范围是 . 4. 函数3()2,f x x x n x R =-+∈为奇函数,则n 的值为 .5. 已知)(x f y =在),(+∞-∞上是减函数,且),13()1(-<-a f a f 则a 的范围是_ 6. 若函数(),(3)5,(5)9f x px q f f =+==,则(1)f 的值为 .7. 函数23(0)()5(0)x x f x x x +<⎧=⎨-≥⎩的最大值为 .8. 关于x 的方程26xm -=有实根,则m 的取值范围是二、解答题 (本大题共4小题,共计60分.请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)9. 用函数单调性的定义证明函数22y x x =+在[0,)x ∈+∞是单调递增函数.10.求值或估算:(1)333212log 2log 92-+; (2)若7782.06lg ≈,求 2.778210.11.AOB ∆是边长为2的正三角形,这个三角形在直线t x =左侧部分的面积为y,求函数)(t f y =的解析式.12.已知函数2()log 3,[1,4]f x x x =+∈ (1)求函数()f x 的值域;(2)若22()()[()]g x f x f x =-,求()g x 的最小值以及相应的x 的值.第二部分(满分60分)三、填空题 (本大题共6小题,每小题5分,共30分.请把答案填写在答卷纸相应位置.......上) 13.集合{}2|420A x kx x =++=是只含一个元素的集合,则实数_________k =. 14.已知lg lg 2lg(2)x y x y +=-,则yx2log= . 15.若函数2x b y x -=+在(,4)(2)a b b +>-上的值域为1(3,)2-,则ba = .16.定义在R 上的偶函数)(x f 满足(2)()f x f x +=,且在[-1,0]上单调递增,设)3(f a =,)2(f b =,(2.1)c f =,则c b a ,,按从小到大的顺序排列为___________17.在平面直角坐标系中,横、纵坐标均为整数的点叫做格点,若函数图象恰经过n 个格点,则称函数()x f 为n 阶格点函数.下列函数:①2x y =;②x y ln =;③12-=xy ;④xx y 1+=.其中为一阶格点函数的序号为18.设)(x f 是定义在R 上的奇函数,且当0≥x 时,2)(x x f =,若对任意的]2,[+∈t t x ,不等式)(2)(x f t x f ≥+恒成立,则实数t 的取值范围是 .四、解答题 (本大题共2小题,共计30分.请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.已知函数1222)(+-+⋅=xx a a x f (1)当a 为何值时,)(x f 为奇函数;(2)求证:)(x f 为R 上的增函数.20.对于定义域为D 的函数)(x f y =,若同时满足下列条件:①)(x f 在D 内单调递增或单调递减;②存在区间[b a ,]D ⊆,使)(x f 在[b a ,]上的值域为[b a ,];那么把)(x f y =(D x ∈)叫闭函数. (1)求闭函数3x y -=符合条件②的区间[b a ,];(2)判断函数)0(143)(>+=x xx x f 是否为闭函数?并说明理由; (3)若2++=x k y 是闭函数,求实数k 的取值范围.中学部2012—2013学年第一学期高一年级期中测试数学学科答卷纸第一部分(满分100分)一、填空题:本大题共8小题,每小题5分,共40分.1. _____2. __3. ___4. ___5. 6. 7. 8.二、解答题:本大题共4小题,共60分.9.(本小题满分14分)姓名____________________ ———————————线————————————————――――10.(本小题满分16分)11(本小题满分14分)12(本小题满分16分)第二部分(满分60分)三、填空题:本大题共6小题,每小题5分,共30分.13. _______ 14. _____ 15. ___16. 17. 18.四、解答题:本大题共2小题,共30分.19.(本小题满分14分)20.(本小题满分16分)——密——————————封—————————————线————————————————――――――――南外仙林分校中学部2012—2013学年度第一学期高一年级期中测试 数 学 学 科 试 题命题人: 审题人: 第一部分(满分100分)一、填空题 (本大题共8小题,每小题5分,共40分.请把答案填写在答卷纸相应位置.......上) 1. 若[)2,5A =,集合(]3,7B =,A B 则= (3,5) .2. 函数1()f x x =,{1,2,3}x ∈的值域为11{1,,}23. 3. 函数()(1)3f x k x =-+在R 上是减函数,则k 的范围是1k <. 4. 函数3()2,f x x x n x R =-+∈为奇函数,则n 的值为 0 .5. 已知)(x f y =在),(+∞-∞上是减函数,且),13()1(-<-a f a f 则a 的范围是_ a<1 6. 若函数(),(3)5,(5)9f x px q f f =+==,则(1)f 的值为 -1 .7. 函数23(0)()5(0)x x f x x x +<⎧=⎨-≥⎩的最大值为 5 . 8. 关于x 的方程26xm -=有实根,则m 的取值范围是(6,)-+∞二、解答题 (本大题共4小题,共计60分.请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)9.用函数单调性的定义证明函数22y x x =+在[0,)x ∈+∞是单调递增函数. 证明略10.求值或估算:(1)333212log 2log 92-+; (2)若7782.06lg ≈,求 2.778210. 答案:(1)2; (2)令 2.778210m =,则lg 2.7782lg6lg600m =≈+=,故 2.778210约为600.11.AOB ∆是边长为2的正三角形,这个三角形在直线t x =左侧部分的面积为y,求函数)(t f y =的解析式.答案:22,012t y t ≤≤=⎨⎪+<≤⎪⎩12.已知函数2()log 3,[1,4]f x x x =+∈(1)求函数()f x 的值域;(2)若22()()[()]g x f x f x =-,求()g x 的最小值以及相应的x 的值. 答案:(1)[3,5];(2)最小值-19,2x =.第二部分(满分60分)三、填空题 (本大题共6小题,每小题5分,共30分.请把答案填写在答卷纸相应位置.......上) 13.集合{}2|420A x kx x =++=是只含一个元素的集合,则实数k = 0或2 . 14.已知lg lg 2lg(2)x y x y +=-,则yx2log= -4 . 15.若函数2x b y x -=+在(,4)(2)a b b +>-上的值域为1(3,)2-,则ba = 1 . 16.定义在R 上的偶函数)(x f 满足(2)()f x f x +=,且在[-1,0]上单调递增,设)3(f a =,)2(f b =,(2.1)c f =,则c b a ,,按从小到大的顺序排列为___a,b,c___17.在平面直角坐标系中,横、纵坐标均为整数的点叫做格点,若函数图象恰经过n 个格点,则称函数()x f 为n 阶格点函数.下列函数:①2x y =;②x y ln =;③12-=xy ;④xx y 1+=.其中为一阶格点函数的序号为 ② 18. 设)(x f 是定义在R 上的奇函数,且当0≥x 时,2)(x x f =,若对任意的]2,[+∈t t x ,不等式)(2)(x f t x f ≥+恒成立,则实数t 的取值范围是 .略解:由题意得22,0(),0x x f x x x ⎧≥⎪=⎨-<⎪⎩, 且)2()(2x f x f =,由)(x f是单增,())f x t f +≥在]2,[+∈t t x 恒成立,得x t x 2≥+在]2,[+∈t t x 恒成立,得2≥t .四、解答题 (本大题共2小题,共计30分.请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.已知函数1222)(+-+⋅=xx a a x f(1)当a 为何值时,)(x f 为奇函数;(2)求证:)(x f 为R 上的增函数. 略解:(1)法一:由(0)0f =得1a =,再由定义域为R ,()()f x f x -=-证明. 法二:直接令()()f x f x -=-求出1a =,以上各步可逆,故1a =. (2)化函数为2()21x f x a =-+,再由单调性定义证明.20.对于定义域为D 的函数)(x f y =,若同时满足下列条件:①)(x f 在D 内单调递增或单调递减;②存在区间[b a ,]D ⊆,使)(x f 在[b a ,]上的值域为[b a ,];那么把)(x f y =(D x ∈)叫闭函数. (1)求闭函数3x y -=符合条件②的区间[b a ,];(2)判断函数)0(143)(>+=x xx x f 是否为闭函数?并说明理由; (3)若2++=x k y 是闭函数,求实数k 的取值范围.解:(1)3x y -=在[b a ,]上递减,则⎪⎩⎪⎨⎧>-=-=ab b a a b 33解得⎩⎨⎧=-=11b a ,所求的区间为[-1,1](2)取,10,121==x x 则)(107647)(21x f x f =<=,即)(x f 不是),0(+∞上的减函数.取,1001,10121==x x )(100400310403)(21x f x f =+<+=,即)(x f 不是),0(+∞上的增函数,所以,函数在定义域内不单调递增或单调递减,从而该函数不是闭函数. (3)若2++=x k y 是闭函数,则存在区间[b a ,],在区间[b a ,]上,函数)(x f 的值域为[b a ,],即⎪⎩⎪⎨⎧++=++=22b k b a k a ,b a ,∴为方程2++=x k x 的两个实数根,即方程22(21)20(2,)x k x k x x k -++-=≥-≥有两个不等的实根.当2-≤k 时,⎪⎪⎩⎪⎪⎨⎧->+≥->∆22120)2(0k f ,解得249-≤<-k .当2->k 时,⎪⎪⎩⎪⎪⎨⎧>+≥>∆k k k f 2120)(0,无解.故k 的范围是:249-≤<-k .。

江苏省南京外国语学校2023-2024学年高一上学期期中考试数学试题(含解析)

江苏省南京外国语学校2023-2024学年高一上学期期中考试数学试题(含解析)

南京外国语2023~2024学年度第一学期期中考试高一年级数学试卷一.单选选择题(共8小题)1.若函数是幂函数且为奇函数,则m 的值为()A .2B .3C .4D .2或42.已知,,则( )A .B .C .D .3.定义两种运算为( )A .奇函数B .偶函数C .奇函数且为偶函数D .非奇且非偶函数4.设,,且恒成立,则n 的最大值是( )A .2B .3C .4D .65.若函数,若,则实数a 的取值范围是( )A .B .C .D .6.已知偶函数在上是减函数,且,则x 的取值范围是()A .B .C .D .7.已知函数是偶函数,则实数k 的值为( )A .B .C .D .8.已知函数,则( )A .B .0C .2D .二.多选题(共4小题)9.下列说法正确的是()A .定义在R 上的函数满足,则函数是R 上的增函数B .定义在R 上的函数满足,则函数是R 上不是减函数2231()(69)m m f x m m x -+=-+{}2,|A y y x x ==∈R {}2|,B y y x x==∈R A B = {}0,2{}(0,0),(2,2)[)0,+∞[]0,2a b ⊕=a b ⊗=2()(2)2xf x x ⊕=⊗-a b c >>*n ∈N 11na b b c a c+≥---22()()(0)x x x f x x x x ⎧-=⎨--<⎩()()f a f a <-(1,0)(0,1)- (,1)(0,1)-∞- (1,0)(1,)-+∞ (,1)(1,)-∞-+∞ ()f x [)0,+∞(lg )(1)f x f >1(,1)101(0,)(1,)10+∞ 1(,10)10(0,1)(10,)+∞ 3()log (31)2x f x kx =++12-13-14-15-()2)1f x x =--1(lg3)(lg )3f f +=1-2-()f x (2)(1)f f >()f x ()f x (2)(1)f f >()f xC .定义在R 上的函数在区间上是增函数,在区间上也是增函数,则函数在R 上是增函数D .定义在R 上的函数在区间上是增函数,在区间上也是增函数,则函数在R 上是增函数10.有下列四种说法,正确的说法有( )A .幂函数的图象一定不过第四象限;B .奇函数图象一定过坐标原点;C .命题“,”的否定是“,”D .定义在R 上的函数对任意两个不等实数a 、b ,总有成立,则在R 上是增函数11.某同学在研究函数时,分别给出下面几个结论,则正确的结论有( )A .等式对恒成立;B .若,则一定有;C .若,方程有两个不等实数根;D .函数在R 上有三个零点.12.已知函数,当时,有.给出以下命题,则正确命题的有()A .B .C .D .三.填空题(共4小题)13.已知函数,则____________.14.若实数,且,则的最小值是____________.15.已知函数满足:对任意非零实数x ,均有,则在上的最小值为____________.16.函数的定义域为R (常数,),则实数k 的取值范围是____________.()f x (],0-∞[)0,+∞()f x ()f x (],0-∞(0,)+∞()f x x ∀∈R 210x x ++>x ∃∈R 210x x ++≤()y f x =()()0f a f b a b->-()y f x =()()1xf x x x=∈+R ()()0f x f x -+=x ∈R 12()()f x f x ≠12x x ≠0m >()f x m =()()g x f x x =-()21x f x =-a b c <<()()()f a f c f b >>0a c +<0b c +<222ac+>222b c+>4()24xxf x =+(2023)(2024)f f -+=0x y >>111216x y +=+-x y -()f x (2)()(1)2f f x f x x=⋅+-()f x (0,)+∞1()lg(9)x xf x a a k -=+-0a >1a ≠四.解答题(共6小题)17.(1)计算:;(2)已知,求的值.18.(1)设a ,b ,c ,d 为实数,求证:;(2)已知,求证:.19.已知奇函数满足,且当时,.(1)证明:;(2)求的值.20.已知正数a ,b 满足.(1)求的最小值;(2)求的最小值.21.定义在R 上的函数是偶函数,是奇函数,且.(1)求函数与的解析式;(2)求函数在区间上的最小值.22.已知函数的定义域为,且.当时,.(1)求;(2)证明:函数在为增函数;(3)如果,解不等式.南京外国语2023~2024学年度第一学期期中考试高一年级数学试卷答案1.【答案】D【解答】解:∵函数为幂函数,21ln233lg 25lg 2lg50(lg 2)0.125e--++++2363412x y ==32x y+2222ab bc cd ad a b c d +++≤+++,a b ∈R 216536163aa b b +≤-++()f x (2)()f x f x +=-(0,1)x ∈()2xf x =(4)()f x f x +=12(log 18)f 2a b ab +=a b +2821a ba b +--()f x ()g x 2()()23f x g x x x +=--()f x ()g x ()()f x g x +[]0,a ()y f x =(0,)+∞()()()f xy f x f y =+(0,1)x ∈()0f x <(1)f ()y f x =(0,)+∞112f ⎛⎫=-⎪⎝⎭1()(32f x f x -≥-2231()(69)m m f x m m x-+=-+∴,∴或,当时,是奇函数,满足题意,当时,是奇函数,满足题意;∴或4,故选:D .2.【答案】C【解答】解:由,,得到,即,由B 中,得到,则,故选:C .3.【答案】A【解答】解:结合题中新定义的运算有:函数有意义,则:,求解不等式可得函数的定义域为,则函数的解析式为:据此有:,据此可得函数是奇函数.故选:A .4.【答案】C【解答】解:∵恒成立∴恒成立∴的最小值∵2691m m -+=2m =4m =4m =5()f x x =2m =1()f x x -=2m =2y x =x ∈R y ∈R (,)A =-∞+∞20y x =≥[)0,B =+∞[)0,A B =+∞ ()f x =222040x x ⎧--≠⎨-≥⎩[)(]2,00,2- ()f x ==()()f x f x -===-()f x 11na b b c a c+≥---a c a c n a b b c --≤+--a c a c n a b b c--≤+--a c a c a b b c a b b c a b b c a b b c---+--+-+=+----得.故选:C .5.【答案】B【解答】解:①当时,即,即,所以,解得;当时,即,所以,解得:,综上:,故选:B .6.【答案】C【解答】解:∵为偶函数,∴,则即为,又在上是减函数,∴,即,解得,故选:C .7.【答案】C【解答】解:∵是偶函数,∴,即,∴,即,即,∴.故选:C 8.【答案】D24b c a ba b b c --=++≥--4n ≤0a >()()f a f a <-22()()a a a a -<----2220a a -<2(1)0a a -<01a <<0a <()()f a f a <-22()()a a a a --<---2(1)0a a +>1a <-(,1)(0,1)a ∈-∞- ()f x (lg )(lg )f x f x =(lg )(1)f x f >(lg )(1)f x f >()f x [)0,+∞lg 1x <1lg 1x -<<11010x <<3()log (31)2x f x kx =++()()f x f x -=33log (31)2log (31)2x x kx kx -+-=++3331log log (31)403x x x kx +-+-=40x kx --=(14)0k x --=14k =-【解答】解:∴,∴.故选:D .9.【答案】BC【解答】解:对A :若函数在R 上为增函数,则对于任意且,则定成立,若成立,不具有一般性,比如不一定成立,所以函数在R 上不一定是增函数,故A 错误;对B :若函数在R 上为减函数,则对于任意且,则定成立,则若,函数在R 上不是减函数,故B 正确;对C :若定义在R 上的函数在区间上时增函数,在上也是增函数,则满足对于任意且,则定成立,则函数在R 上是增函数,故C 正确;对D :设函数是定义在R 上的函数,且在区间上是增函数,在区间上也是增函数,而但,不符合增函数的定义,所以在R 上不是增函数,故D 错误;故选:BC .10.【答案】ACD【解答】对于A ,根据幂函数的图象与性质知,幂函数的图象不过第四象限,A 正确;对于B ,奇函数的图象不一定过坐标原点,如的图象,∴B 错误;对于C ,命题“,”的否定是“,”,C 正确;对于D ,根据题意知,时,,时,,由单调性的定义知,在R 上是增函数,D 正确;故选:ACD .11.【答案】AB()2)112)1f x x x -=+-=-=---()()2f x f x -+=-1(lg3)(lg (lg3)(lg3)23f f f f +=+-=-()f x 12,x x ∈R 12x x <12()()f x f x <(2)(1)f f >(2)(0)f f >()f x ()f x 12,x x ∈R 12x x <12()()f x f x >(2)(1)f f >()f x ()f x (],0-∞[)0,+∞12,x x ∈R 12x x <12()()f x f x <()f x 1,0()1,0x x f x x x -+≤⎧=⎨->⎩()f x (],0-∞(0,)+∞11-<(1)(1)f f -=()f x 1()(0)f x x x=≠x ∀∈R 210x x ++>x ∃∈R 210x x ++≤a b >()()f a f b >a b <()()f a f b <()y f x =【解答】对于A ,因为,所以是奇函数,故对恒成立,即A 正确;对于B ,则当时,反比例函数的单调性可知,在上是增函数再由①知在上也是增函数,从而为单调递增函数,所以,则一定有成立,故B 正确;对于C ,因为为单调递增函数,所以为偶函数,因为在为单调递增函数,所以函数在上单调递减,且,所以当时有两个不相等的实数根,当时不可能有两个不等的实数根,故C 错误;对于D ,可以判断为奇函数,并且在上单调递减,即在上,在上单调递减,即在上,故函数在R 上有一个零点.D 错误;故答案为:AB .12.【答案】AD【解答】根据题意,作图如下:如图所示:,.故AD 正确故答案为:AD13.【答案】1【解答】解:∵()()()()11x x f x f x x x x --==-=-∈+-+R ()()1xf x x x=∈+R ()()0f x f x -+=x ∈R 0x >1()11f x x=+()f x (0,)+∞()f x (,0)-∞()f x 12()()f x f x ≠12x x ≠()f x ()f x ()f x (0,)+∞()f x (,0)-∞0()1f x ≤<01m <<1m ≥()g x ()g x (,0)-∞()g x (,0)-∞()0g x >(0,)+∞()g x (0,)+∞()0g x <()()g x f x x =-0a c +<222bc+>1144(1)()2424x xx xf x f x ---+=+++,∴.故答案为:1.14.【答案】21【解答】解:因为,所以,,所以,当且仅当即,时等号成立,所以,即,所以的最小值是21.故答案为:21.15.【答案】【解答】解:因为对任意非零实数x ,均有,所以,解得,所以,解得,所以,当且仅当时,即时,等号成立,即在上的最小值为.故答案为:.16.【答案】【解答】解:根据题意,不等式在R 上恒成立,且,即在R 上成立,且.而,当且仅当时,即时等号成立,故,且,即k的取值范围是.4424412442442424x x x x xx x x=+=+=⋅++++(2023)(2024)1f f -+=0x y >>20x +>10y->1121(21)()11242112x y x y x y y x +-++-+=+++≥+=+--+2112x yy x +-=-+10x =11y =-1(3)46x y -+≥21x y -≥x y -2-(2)()(1)2f f x f x x=⋅+-(1)(1)(2)2f f f =+-(2)2f =(2)(2)2(1)22f f f =+-3(1)2f =32()2222f x x x =+-≥-=-322x x=x =()f x (0,)+∞2-2-(,5)(5,6)-∞ 90x x a a k -+->91x x a a k -+-≠9x x k a a -<+91x x a a k -+≠+96xxa a-+≥=9x x a a -=log 3a x =6k <5k ≠(,5)(5,6)-∞故答案为:.17.【答案】(1)9;(2)1【解答】解:(1);(2)∵,∴,,∴.18.【答案】证明见解析【解答】证明:(1),当且仅当时,等号成立,故;(2),(,5)(5,6)-∞ 21ln233lg 25lg 2lg50(lg 2)0.125e--++++22lg5lg 2(1lg5)(lg 2)43=+++++2lg5lg 2(lg5lg 21)7=++++2lg52lg 27=++9=2363412x y ==6lg122lg3x =6lg123lg 4y =32x y+6lg126lg1223lg3lg 4lg12lg1232lg3lg 4x y xy ++==⋅lg3lg 4lg12lg3lg 4lg12lg12lg3lg 4+⋅⋅=⋅lg3lg 41lg12+==222222222()2()()()()()0a b c d ab bc cd ad a b b c c d a d +++-+++=-+-+-+-≥a b c d ===2222ab bc cd ad a b c d +++≤+++216126a a ++≥=则,,故.19.【答案】(1)证明见解析;(2)【解答】解:(1)∵奇函数满足,∴,∴周期是4,故有(2).20.【答案】(1);(2)18【解答】(1)因为,,且,则,所以当且仅当,即,即,时等号成立,故的最小值为.(2)因为,,且,所以,所以,当且仅当,即时等号成立,故的最小值为18.21.【答案】(1),;(2)见解析【解答】(1)根据题意,,则,①1261113611266a a a a++=≤++2251311()63321212b b b -+=-+≥216536163aa b b +≤-++89()f x (2)()f x f x +=-(2)()(2)f x f x f x +=-=-(4)()f x f x +=28log 91222223388(log 18)(12log 3)(32log )(12log )(log 22299f f f f f =--=--=-===3+0a >0b >2a b ab +=211a b+=212()(2133b a a b a b a b a b +=++=+++≥+=+∣2b aa b=a =2a =+1b =+a b +3+0a >0b >2a b ab +=(2)(1)2a b --=282(2)48(1)848101018212121a b a b a b a b a b -+-++=+=++≥+=------4821a b =--3a b ==2821a b a b +--2()3f x x =-()2g x x =-2()()23f x g x x x +=--2()()23f x g x x x -+-=+-又由是偶函数,是奇函数,则有,②联立①②可得:,.(2)根据题意,,当时,在区间上递减,其最小值为,当时,在区间上递减,上递增,其最小值为.故当时,在区间上的最小值为,当时,在区间上的最小值为.22.【答案】(1)0;(2)见解析;(3)【解答】(1)∵,令,则,∴;(2)证明:由,可得,则,设,,又,∴,,即,所以函数在为增函数;(3)∵,∴,∴,∴,由,得()f x ()g x 2()()23f x g x x x -=+-2()3f x x =-()2g x x =-22()()23(1)4f x g x x x x +=--=--01a <≤()()f x g x +[]0,a 2()()23f a g a a a +=--1a >()()f x g x +[]0,1[]1,a (1)(1)4f g +=-01a <≤()()f x g x +[]0,a 223a a --1a >()()f x g x +[]0,14-[)4,x ∈+∞()()()f xy f x f y =+1x y ==(1)(1)(1)2(1)f f f f =+=(1)0f =()()()f xy f x f y =+()()()()y y f y f x f f x x x =⋅=+()()()y f f y f x x=-120x x >>2211()()(x f x f x f x -=120x x >>2101x x <<21()0x f x <21()()f x f x <()y f x =(0,)+∞1(1)(2)0(2)12f f f f ⎛⎫=-=-=- ⎪⎝⎭(2)1f =(22)(2)(2)2f f f ⨯=+=(42)(4)(2)3f f f ⨯=+=1()()32f x f x -≥-()(2)(8)f x f x f +-≥从而得到,解得.0102(2)8x x x x >⎧⎪⎪>⎨-⎪-≥⎪⎩[)4,x ∈+∞。

【100所名校】江苏省南京外国语学校2019-2020学年高一上学期期中考试数学试卷Word版含解析

【100所名校】江苏省南京外国语学校2019-2020学年高一上学期期中考试数学试卷Word版含解析

江苏省南京外国语学校2019-2020学年上学期期中考试高一数学试卷、填空题(本大题共14小题,每小题3分,共42分.请把答案写在答.卷.纸.相.应.位.置.上.)的线段的中点在y 轴上,那=9 .若关于x 的方程= 0在区间 1,4 内有解,则实数 a 的取值范围是 . 2X- a i'(X )一 "f (x ) > 110 .若函数 ?一1是奇函数,则使 3成立的x 的取值范围为 .11 .某商品在近30天内每件的销售价格P (单位:元)与销售时间 t (单位:天)的函数关系为p=i t + 20 0< 25i-t +1。

.2建I 三3Q , t N ,且该商品的日销售量Q (单位:件)与销售时间t (单位:天)的函数关系为Q t 400 t 30, t N ,则这种商品的日销售量金额最大的一天是301.已知集合 A 1, 2, 3, 6x| 2 x 3 ,则 A B B8.函数f x3x 7 ln x 的零点位于区间 n, n 1 n N 内,则 n=(填序号).4.偶函数y f x 的图象关于直线 x 2对称,f 3 3 ,则 f 1天中的第 天.的=(3'x<012 .已知函数 gXAO 且关于x 的方程E(x)十X 十日=0有且只有一个实根,且实数a 的取值范围是t(2-a)x+ l,x<l1 r13 .已知f(x) =i /器三1满足对任意X1WX2都有 xi -x2 >0成立,那么a 的取值范围是14 .已知函数f(x)=x' + bx,若f f x的最小值与f x 的最小值相等,则实数 b 的取值范围是 .二、解答题(本大题共 6小题,共计58分.解答应写出必要的文字说明,证明过程或演算步骤,请把答 案写在答题纸的指定区域内)2 15.已知哥函数f(x) =x ]11fLi 时W N")的图象经过点|⑴试确定m 的值;⑵ 求满足条件f(2-a) >f(a-1)的实数a 的取值范围.A = {x|(-) >2},B = {y|y =lg(x 4 a)) = [0, + w) 集合 2⑴求C U AUB ; ⑵求实数a 的值.18 .已知函数 屋:七;”、;) (油)。

2020-2021南京育英外国语学校高一数学上期中模拟试卷(带答案)

2020-2021南京育英外国语学校高一数学上期中模拟试卷(带答案)

2020-2021南京育英外国语学校高一数学上期中模拟试卷(带答案)一、选择题1.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A CB ⊆⊆的集合C 的个数为( )A .1B .2C .3D .42.已知函数f (x )=23,0{log ,0x x x x ≤>那么f 1(())8f 的值为( )A .27B .127C .-27D .-1273.如图,点O 为坐标原点,点(1,1)A ,若函数xy a =及log b y x =的图象与线段OA 分别交于点M ,N ,且M ,N 恰好是线段OA 的两个三等分点,则a ,b 满足.A .1a b <<B .1b a <<C .1b a >>D .1a b >>4.1()xf x e x=-的零点所在的区间是( ) A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)25.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=L ( )A .50-B .0C .2D .506.设log 3a π=,0.32b =,21log 3c =,则( ) A .a c b >>B .c a b >>C .b a c >>D .a b c >>7.函数()sin lg f x x x =-的零点个数为( ) A .0 B .1 C .2 D .38.已知函数)245fx x x =+,则()f x 的解析式为( )A .()21f x x =+ B .()()212f x x x =+≥C .()2f x x =D .()()22f x xx =≥9.已知函数21(1)()2(1)a x x f x x x x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是 A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-10.已知()lg(10)lg(10)f x x x =++-,则()f x 是( ) A .偶函数,且在(0,10)是增函数 B .奇函数,且在(0,10)是增函数 C .偶函数,且在(0,10)是减函数D .奇函数,且在(0,10)是减函数11.设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =I ( ) A .3(3,)2--B .3(3,)2-C .3(1,)2D .3(,3)212.已知函数()f x =2log (1),(1,3)4,[3,)1x x x x ⎧+∈-⎪⎨∈+∞⎪-⎩,则函数[]()()1g x f f x =-的零点个数为( ) A .1B .3C .4D .6二、填空题13.函数()22()log 23f x x x =+-的单调递减区间是______. 14.若函数()y f x =的定义域是[0,2],则函数()g x =的定义域是__________.15.函数()f x 的定义域是__________.16.若函数()f x 满足()3298f x x +=+,则()f x 的解析式是_________. 17.若42x ππ<<,则函数3tan 2tan y x x =的最大值为 .18.已知函数()2()lg 2f x x ax =-+在区间(2,)+∞上单调递增,则实数a 的取值范围是______.19.某企业去年的年产量为a ,计划从今年起,每年的年产量比上年增加b ﹪,则第x ()x N *∈年的年产量为y =______.20.已知()2x a x af x ++-=,g(x)=ax+1 ,其中0a >,若()f x 与()g x 的图象有两个不同的交点,则a 的取值范围是______________.三、解答题21.2019年某开发区一家汽车生产企业计划引进一批新能源汽车制造设备,通过市场分析,全年需投入固定成本3000万元,每生产x (百辆),需另投入成本()f x 万元,且210200,050()100006019000,50x x x f x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每辆车售价6万元,且全年内生产的车辆当年能全部销售完.(1)求出2019年的利润()L x (万元)关于年产量x (百辆)的函数关系式;(利润=销售额-成本)(2)2019年产量为多少(百辆)时,企业所获利润最大?并求出最大利润. 22.已知函数())2log f x x =是R 上的奇函数,()2g x t x a =--.(1)求a 的值;(2)记()f x 在3,24⎡⎤-⎢⎥⎣⎦上的最大值为M ,若对任意的3,24x ⎡⎤∈-⎢⎥⎣⎦,()M g x ≤恒成立,求t 的取值范围.23.已知集合A={x|x <-1,或x >2},B={x|2p-1≤x≤p+3}. (1)若p=12,求A∩B; (2)若A∩B=B,求实数p 的取值范围.24.设()()()log 1log (30,1)a a f x x x a a =++->≠,且()12f =. (1)求a 的值及()f x 的定义域; (2)求()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值.25.已知()y f x =是定义域为R 的奇函数,当[)0,x ∈+∞时,()22f x x x =-.(1)写出函数()y f x =的解析式;(2)若方程()f x a =恰3有个不同的解,求a 的取值范围.26.已知集合{|3A x x =≤-或2}x ≥,{|15}B x x =<<,{|12}C x m x m =-≤≤ (1)求A B I ,()R C A B ⋃;(2)若B C C ⋂=,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】【详解】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义, 集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D. 【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.2.B解析:B 【解析】 【分析】利用分段函数先求f (1)8)的值,然后在求出f 1(())8f 的值. 【详解】 f=log 2=log 22-3=-3,f=f (-3)=3-3=.【点睛】本题主要考查分段函数求值以及指数函数、对数函数的基本运算,属基础题.3.A解析:A 【解析】 【分析】由,M N 恰好是线段OA 的两个三等分点,求得,M N 的坐标,分别代入指数函数和对数函数的解析式,求得,a b 的值,即可求解. 【详解】由题意知(1,1)A ,且,M N 恰好是线段OA 的两个三等分点,所以11,33M ⎛⎫ ⎪⎝⎭,22,33N ⎛⎫ ⎪⎝⎭, 把11,33M ⎛⎫ ⎪⎝⎭代入函数xy a =,即1313a =,解得127a =,把22,33N ⎛⎫ ⎪⎝⎭代入函数log b y x =,即22log 33b =,即得3222639b ⎛⎫== ⎪⎝⎭,所以1a b <<.【点睛】本题主要考查了指数函数与对数函数的图象与性质的应用,其中解答熟练应用指数函数和对数函数的解析式求得,a b 的值是解答的关键,着重考查了推理与运算能力,属于基础题.4.B解析:B 【解析】函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故选B .点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.5.C解析:C 【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 详解:因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1)(3)(1)(1)4f x f x f x f x f x T +=--∴+=-+=-∴=,因此(1)(2)(3)(50)12[(1)(2)(3)(4)](1)(2)f f f f f f f f f f ++++=+++++L , 因为(3)(1)(4)(2)f f f f =-=-,,所以(1)(2)(3)(4)0f f f f +++=,(2)(2)(2)(2)0f f f f =-=-∴=Q ,从而(1)(2)(3)(50)(1)2f f f f f ++++==L ,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.6.C解析:C 【解析】 【分析】先证明c<0,a>0,b>0,再证明b>1,a<1,即得解. 【详解】 由题得21log 3c =2log 10<=,a>0,b>0. 0.30log 3log 1,22 1.a b πππ====所以b a c >>.故答案为C 【点睛】(1)本题主要考查指数函数对数函数的单调性,考查实数大小的比较,意在考查学生对这些知识的掌握水平和分析推理能力.(2)实数比较大小,一般先和“0”比,再和“±1”比.7.D解析:D 【解析】 【分析】画出函数图像,根据函数图像得到答案. 【详解】如图所示:画出函数sin y x =和lg y x =的图像,共有3个交点. 当10x >时,lg 1sin x x >≥,故不存在交点. 故选:D .【点睛】本题考查了函数的零点问题,画出函数图像是解题的关键.8.B解析:B 【解析】 【分析】利用换元法求函数解析式,注意换元后自变量范围变化. 【详解】 2x t =,则2t ≥,所以()()()()2224t 251,2,f t t t t =-+-+=+≥即()21f x x =+ ()2x ≥.【点睛】本题考查函数解析式,考查基本求解能力.注意换元后自变量范围变化.9.C解析:C 【解析】x ⩽1时,f (x )=−(x −1)2+1⩽1, x >1时,()()21,10a a f x x f x x x=++'=-…在(1,+∞)恒成立, 故a ⩽x 2在(1,+∞)恒成立, 故a ⩽1,而1+a +1⩾1,即a ⩾−1, 综上,a ∈[−1,1], 本题选择C 选项.点睛:利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f (x 1)-f (x 2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.10.C解析:C 【解析】 【分析】先判断函数的定义域关于原点对称,再由奇偶性的定义判断奇偶性,根据复合函数的单调判断其单调性,从而可得结论. 【详解】由100100x x +>⎧⎨->⎩,得(10,10)x ∈-, 故函数()f x 的定义域为()10,10-,关于原点对称,又()()lg 10lg(10)()f x x x f x -=-++=,故函数()f x 为偶函数, 而()()2lg(10)lg(10)lg 100f x x x x=++-=-,因为函数2100y x =-在()0,10上单调递减,lg y x =在()0,∞+上单调递增, 故函数()f x 在()0,10上单调递减,故选C. 【点睛】本题主要考查函数的奇偶性与单调性,属于中档题. 判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法, ()()f x f x -=±(正为偶函数,负为减函数);(2)和差法,()()0f x f x -±=(和为零奇函数,差为零偶函数);(3)作商法,()()1f x f x -=±(1 为偶函数,1- 为奇函数) .11.D解析:D 【解析】试题分析:集合()(){}{}|130|13A x x x x x =--<=<<,集合,所以3|32A B x x ⎧⎫⋂=<<⎨⎬⎩⎭,故选D.考点:1、一元二次不等式;2、集合的运算.12.C解析:C 【解析】 【分析】令[]()()10g x f f x =-=,可得[]()1f f x =,解方程()1f x =,结合函数()f x 的图象,可求出答案. 【详解】令[]()()10g x f f x =-=,则[]()1f f x =,令()1f x =,若2log (1)1x +=,解得1x =或12x =-,符合(1,3)x ∈-;若411x =-,解得5x =,符合[3,)x ∈+∞.作出函数()f x 的图象,如下图,(]1,0x ∈-时,[)()0,f x ∈+∞;()0,3x ∈时,()()0,2f x ∈;[3,)x ∈+∞时,(]()0,2f x ∈. 结合图象,若()1f x =,有3个解;若1()2f x =-,无解;若()5f x =,有1个解. 所以函数[]()()1g x f f x =-的零点个数为4个. 故选:C.【点睛】本题考查分段函数的性质,考查了函数的零点,考查了学生的推理能力,属于中档题.二、填空题13.【解析】设()因为是增函数要求原函数的递减区间只需求()的递减区间由二次函数知故填解析:()-3∞-,【解析】设2log y t =,223t x x =+-,(0t >)因为2log y t =是增函数,要求原函数的递减区间,只需求223t x x =+-(0t >)的递减区间,由二次函数知(,3)x ∈-∞-,故填(,3)x ∈-∞-.14.【解析】首先要使有意义则其次∴解得综上点睛:对于抽象函数定义域的求解(1)若已知函数f(x)的定义域为ab 则复合函数f(g(x))的定义域由不等式a≤g(x)≤b 求出;(2)若已知函数f(g(x))解析:3,14⎛⎫⎪⎝⎭【解析】首先要使(2)f x 有意义,则2[0,2]x ∈, 其次0.5log 430x ->,∴0220431x x ≤≤⎧⎨<-<⎩,解得01314x x ≤≤⎧⎪⎨<<⎪⎩,综上3,14x ⎛⎫∈ ⎪⎝⎭. 点睛:对于抽象函数定义域的求解(1)若已知函数f(x)的定义域为[a ,b],则复合函数f(g(x))的定义域由不等式a≤g(x)≤b 求出;(2)若已知函数f(g(x))的定义域为[a ,b],则f(x)的定义域为g(x)在x∈[a,b]上的值域.15.【解析】由得所以所以原函数定义域为故答案为 解析:(],0-∞【解析】由120x -≥,得21x ≤,所以0x ≤,所以原函数定义域为(],0-∞,故答案为(],0-∞.16.【解析】【分析】设带入化简得到得到答案【详解】设代入得到故的解析式是故答案为:【点睛】本题考查了利用换元法求函数解析式属于常用方法需要学生熟练掌握解析:()32f x x =+ 【解析】 【分析】设32t x =+,带入化简得到()32f t t =+得到答案. 【详解】()3298f x x +=+,设32t x =+ 代入得到()32f t t =+故()f x 的解析式是() 32f x x =+ 故答案为:()32f x x =+【点睛】本题考查了利用换元法求函数解析式,属于常用方法,需要学生熟练掌握.17.-8【解析】试题分析:设当且仅当时成立考点:函数单调性与最值解析:-8 【解析】 试题分析:2tan 1tan 1,42xx x ππ∴∴Q设2tan t x =()()()2221412222142248111t t t y t t t t -+-+∴==-=----≤-⨯-=----当且仅当2t =时成立考点:函数单调性与最值18.【解析】【分析】根据复合函数单调性同增异减以及二次函数对称轴列不等式组解不等式组求得实数的取值范围【详解】要使在上递增根据复合函数单调性需二次函数对称轴在的左边并且在时二次函数的函数值为非负数即解得 解析:(],3-∞【解析】 【分析】根据复合函数单调性同增异减,以及二次函数对称轴列不等式组,解不等式组求得实数a 的取值范围. 【详解】要使()f x 在()2,+∞上递增,根据复合函数单调性,需二次函数22y x ax =-+对称轴在2x =的左边,并且在2x =时,二次函数的函数值为非负数,即2222220a a ⎧≤⎪⎨⎪-+≥⎩,解得3a ≤.即实数a 的取值范围是(],3-∞.【点睛】本小题主要考查复合函数的单调性,考查二次函数的性质,属于中档题.19.y =a (1+b )x (x ∈N*)【解析】【分析】根据条件计算第一年产量第二年产量…根据规律得到答案【详解】设年产量经过x 年增加到y 件第一年为y =a (1+b )第二年为y =a (1+b )(1+b )=a (1+解析:y =a (1+b %)x (x ∈N *)【解析】 【分析】根据条件计算第一年产量,第二年产量…根据规律得到答案. 【详解】设年产量经过x 年增加到y 件,第一年为 y =a (1+b %)第二年为 y =a (1+b %)(1+b %)=a (1+b %)2,第三年为 y =a (1+b %)(1+b %)(1+b %)=a (1+b %)3,…∴y =a (1+b %)x (x ∈N *).故答案为:y =a (1+b %)x (x ∈N *)【点睛】本题考查了指数型函数的应用,意在考查学生的应用能力.20.(01)【解析】结合与的图象可得点睛:数形结合是数学解题中常用的思想方法数形结合的思想可以使某些抽象的数学问题直观化生动化能够变抽象思维为形象思维有助于把握数学问题的本质在运用数形结合思想分析和解决 解析:(0,1),【解析】(),,2x x a x a x af x a x a ≥++-⎧==⎨<⎩, 结合()f x 与()g x 的图象可得()0,1.a ∈点睛:数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念及其几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围三、解答题21.(1)()2104003000,050100006000,50x x x L x x x x ⎧-+-<<⎪=⎨--+≥⎪⎩;(2)2019年年产量为100百辆时,企业所获利润最大,最大利润为5800万元.【解析】【分析】(1)先阅读题意,再分当050x <<时,当50x ≥时,求函数解析式即可;(2)当050x <<时,利用配方法求二次函数的最大值,当50x ≥时,利用均值不等式求函数的最大值,一定要注意取等的条件,再综合求分段函数的最大值即可.【详解】解:(1)由已知有当050x <<时,()22600(10200)3000104003000L x x x x x x =-+-=-+-当50x ≥时,()1000010000600(6019000)30006000L x x x x x x=-+--=--+, 即()2104003000,050100006000,50x x x L x x x x ⎧-+-<<⎪=⎨--+≥⎪⎩, (2)当050x <<时,()2210400300010(20)1000L x x x x =-+-=--+, 当20x =时,()L x 取最大值1000,当50x ≥时,()10000600060005800L x x x =--+≤-+=, 当且仅当10000x x=,即100x =时取等号, 又58001000>故2019年年产量为100百辆时,企业所获利润最大,最大利润为5800万元.【点睛】本题考查了函数的综合应用,重点考查了分段函数最值的求法,属中档题.22.(1) 1a = (2) [)4,+∞【解析】【分析】(1)根据函数()f x 是R 上的奇函数,得到()00f = ,即可求得a 的值;(2)由(1)可得函数()g x 的解析式,分别求得函数()f x 和()g x 的单调性与最值,进而得出关于t 的不等式,即可求解.【详解】(1)因为())2log f x x =是R 上的奇函数,所以()00f = ,即log 0=,解得1a =.(2)由(1)可得())2log f x x =,()212121x t g x t x x t -++⎧=--=⎨+-⎩ 1,21,2x x ≥< . 因为奇函数()()2222log 1log 1f x x x x x =+-=++,所以()f x 在3,24⎡⎤-⎢⎥⎣⎦上是减函数,则()f x 在3,24⎡⎤-⎢⎥⎣⎦上的最大值为22333log 11444M f ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪=-=-+--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 因为()2121x t g x x t -++⎧=⎨+-⎩ 1,21,2x x ≥<,所以()g x 在31,42⎡⎫-⎪⎢⎣⎭上是增函数,在1,22⎡⎤⎢⎥⎣⎦上是减函数,则()g x 的最小值为34g ⎛⎫- ⎪⎝⎭和()2g 中的较小的一个. 因为33521442g t t ⎛⎫⎛⎫-=⨯-+-=- ⎪ ⎪⎝⎭⎝⎭,()22213g t t =-⨯++=-, 所以()()min 23g x g t ==-,因为对任意的3,24x ⎡⎤∈-⎢⎥⎣⎦,()M g x ≤恒成立,所以13t ≤-, 解得4t ≥.故t 的取值范围为[)4,+∞.【点睛】本题主要考查了函数的基本性质的综合应用,以及恒成立问题的求解,其中解答中熟记函数的基本性质,合理应用奇偶性、单调性和最值列出相应的方程或不等式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.23.(1)722x x ⎧⎫<≤⎨⎬⎩⎭;(2)3 4.2p p ><-或 【解析】【分析】(1)根据集合的交集得到结果即可;(2)当A∩B=B 时,可得B ⊆A ,分B 为空集和不为空集两种情况即可.【详解】(1)当时,B={x |0≤x ≤}, ∴A∩B={x |2<x ≤};(2)当A∩B=B 时,可得B ⊆A ; 当时,令2p -1>p +3,解得p >4,满足题意; 当时,应满足 解得; 即综上,实数p 的取值范围.【点睛】 与集合元素有关问题的思路:(1)确定集合的元素是什么,即确定这个集合是数集还是点集;(2)看这些元素满足什么限制条件;(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性.24.(1)2a =,定义域为()1,3-;(2)2【解析】【分析】(1)由()12f =,可求得a 的值,结合对数的性质,可求出()f x 的定义域;(2)先求得()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的单调性,进而可求得函数的最大值. 【详解】(1)()1log 2log l 242og a a a f =+==,解得2a =.故()()22log 1)g 3(lo f x x x =++-, 则1030x x +>⎧⎨->⎩,解得13x -<<, 故()f x 的定义域为()1,3-.(2)函数()()()()()222log 1log 3log 31f x x x x x =++-=-+,定义域为()1,3-,()130,2,3⎡⎤⊆⎥-⎢⎣⎦, 由函数2log y x =在()0,∞+上单调递增,函数()()31y x x =-+在[)0,1上单调递增,在31,2⎡⎤⎢⎥⎣⎦上单调递减,可得函数()f x 在[)0,1上单调递增,在31,2⎡⎤⎢⎥⎣⎦上单调递减. 故()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值为()21log 42f ==. 【点睛】本题考查了函数的定义域,考查了函数的单调性与最值,考查了学生的计算求解能力,属于基础题.25.(1) ()222,02,0x x x f x x x x ⎧-≥=⎨--<⎩ (2) ()1,1- 【解析】【分析】(1)由奇函数的定义求解析式,即设0x <,则有x ->0,利用()f x -可求得()f x ,然后写出完整的函数式;(2)作出函数()f x 的图象,确定()f x 的极值和单调性,由图象与直线y a =有三个交点可得a 的范围.【详解】解:(1)当(),0x ∈-∞时,()0,x -∈+∞,()f x Q 是奇函数,()()f x f x ∴=--=-()()2222x x x x ⎡⎤---=--⎣⎦()222,02,0x x x f x x x x ⎧-≥∴=⎨--<⎩. (2)当[)0,x ∈+∞时,()()22211f x x x =-=--,最小值为1-; 当(),0x ∈-∞,()()22211f x x x x =--=-+,最大值为1. 据此可作出函数的图象,如图所示,根据图象得,若方程()f x a =恰有3个不同的解,则a 的取值范围是()1,1-.【点睛】本题考查函数奇偶性,考查函数零点与方程根的关系.在求函数零点个数(或方程解的个数)时,可把问题转化为一个的函数图象和一条直线的交点个数问题,这里函数通常是确定的函数,直线是动直线,由动直线的运动可得参数取值范围.26.(1) {|25}A B x x =≤<I (){|35}R C A B x x ⋃=-<< (2) 5(,1)(2,)2-∞-U【解析】试题分析:(1)根据集合的交集的概念得到{|25}A B x x ⋂=≤<,{|32}R C A x x =-<<,进而得到结果;(2)∵B C C ⋂= ∴C B ⊆,分情况列出表达式即可.解析:(1){|25}A B x x ⋂=≤< {|32}R C A x x =-<< (){|35}R C A B x x ⋃=-<< (2)∵B C C ⋂= ∴C B ⊆ Ⅰ)当C =∅时,∴12m m ->即1m <-Ⅱ)当C ≠∅时,∴121125m m m m -≤⎧⎪->⎨⎪<⎩∴522m << 综上所述:m 的取值范围是()5,12,2⎛⎫-∞-⋃ ⎪⎝⎭。

2022-2023学年江苏省南京外国语学校高一(上)期中数学试卷【答案版】

2022-2023学年江苏省南京外国语学校高一(上)期中数学试卷【答案版】

2022-2023学年江苏省南京外国语学校高一(上)期中数学试卷一、单项选择题:本题共8小题,每小题3分,共24分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知A ={﹣1,0,1,3,5},B ={x |2x ﹣3<0},A ∩∁R B =( ) A .{0,1}B .{﹣1,1,3}C .{﹣1,0,1}D .{3,5}2.已知集合A ={x |x 2﹣4x <0},B ={2,m },且A ∩B 有4个子集,则实数m 的取值范围是( ) A .(0,4) B .(0,2)∪(2,4) C .(0,2)D .(﹣∞,2)∪(4,+∞)3.荀子曰:“故不积硅步,无以至千里:不积小流,无以成江海”,此名言中的“不积硅步”一定是“至千里”的( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件4.下列四组函数中,f (x )与g (x )不是同一函数的是( ) A .f (x )=|x |与g(x)=√x 2 B .f (x )=x 2+1与g (t )=t 2+1 C .f(x)=|x|x 与g (x )={1,x >0−1,x <0D .f(x)=√(x −1)(x +1)与g(x)=√(x −1)⋅√(x +1) 5.若x >0,y >0,且x +y =18,则√xy 的最大值为( ) A .9B .18C .36D .816.高德纳箭头表示法是一种用来表示很大的整数的方法,它的意义来自乘法是重复的加法,幂是重复的乘法.定义:a ↑b =a ⋅a ⋯⋯a ︸b 个a=a b ,a ↑↑b =a ↑a ↑a ↑⋯↑a ︸b 个a(从右往左计算).已知可观测宇宙中普通物质的原子总数T 约为1082,则下列各数中与4↑↑3T最接近的是( )(参考数据:lg 2≈0.3)A .1061B .1064C .1071D .10747.已知a >1,b >1,且lga =1﹣2lgb ,则log a 2+log b 4的最小值为( ) A .10B .9C .9lg 2D .8lg 28.已知函数y 1=m (x ﹣2m )(x +m +3),y 2=x ﹣1,若它们同时满足:①∀x ∈R ,y 1与y 2中至少有一个小于0;②∃x ∈{x |x <﹣4},y 1•y 2<0,则m 的取值范围是( ) A .(﹣4,0)B .(﹣∞,0)C .(﹣∞,﹣2)D .(﹣4,﹣2)二、多项选择题:本题共4小题,每小题5分,共20分。

2020-2021学年江苏省南京市外国语学校高一上学期第一次月考数学试题解析版

2020-2021学年江苏省南京市外国语学校高一上学期第一次月考数学试题解析版

2020-2021学年江苏省南京市外国语学校高一上学期第一次月考数学试题一、单选题1.下列命题为真命题的是( ) A .x Z ∃∈,143x << B .x Z ∃∈,1510x += C .x R ∀∈,210x -= D .x R ∀∈,220x x ++>【答案】D【解析】求解不等式判断A ;方程的解判断B ;反例判断C ;二次函数的性质判断D ; 【详解】解:143x <<,可得1344x <<,所以不存在x ∈Z ,143x <<,所以A 不正确; 1510x +=,解得115x =-,所以不存在x ∈Z ,1510x +=,所以B 不正确; 0x =,210x -≠,所以x R ∀∈,210x -=不正确,所以C 不正确;x ∈R ,2217720244y x x x ⎛⎫=++=++≥> ⎪⎝⎭,所以D 正确;故选:D . 【点睛】本题主要考查命题的真假的判断,考查不等式的解法以及方程的解,属于基础题. 2.集合{}*421A x x N =--∈,则A 的非空真子集的个数是( )A .62B .126C .254D .510【答案】B【解析】由条件{}*421A x x N =--∈计算出集合A ,再求出A 的非空真子集的个数. 【详解】 解:{}*421A x x N =--∈∴2x =,或32x =,或1x =,或12x =, 或0x =,或12x =-,或1x =-,3112,,1,,0,,1222A --⎧⎫=⎨⎬⎩⎭,A ∴的非空真子集的个数是722126-=.故选B 【点睛】当集合中的元素个数为n ,该集合的子集个数为2n ;真子集个数为21n -;非空真子集个数为22n -.3.已知,,a b c ∈R ,则下列四个命题正确的个数是( )①若22ac bc >,则a b >;②若22a b ->-,则()()2222a b ->-; ③若0a b c >>>,则a a cb b c+>+;④若0a >,0b >,4a b +>,4ab >,则2a >,2b >.A .1B .2C .3D .4【答案】C【解析】利用不等式的性质,逐一分析选项,得到正确结论. 【详解】①当22ac bc >时,20c >,两边同时除以2c ,得到a b >,正确;②220a b ->-≥,那么2222a b ->-,即()()2222a b ->-,正确;③()()()()()a b c b a c c a b a a c b b c b b c b b c +-+-+-==++- ,0a b c >>> 0,0a b b c ∴->->a a cb b c+∴>+,正确; ④令110,2a b == 同样能满足4,4a b ab +>> ,2,2a b ∴>>不正确.共有3个正确. 故选C. 【点睛】本题考查不等式比较大小,一般不等式比较大小的方法:1.做差法,2.利用不等式的性质,3.利用函数单调性比较大小,4.特殊值比较大小.4.若实数a ,b 满足a≥0,b≥0,且ab=0,则称a 与b 互补,记φ(a ,b )=﹣a ﹣b 那么φ(a ,b )=0是a 与b 互补的( ) A .必要不充分条件 B .充分不必要的条件 C .充要条件D .既不充分也不必要条件【答案】C【解析】试题分析:由φ(a ,b )=0得22a b +-a -b =0且0,0a b ≥≥;所以φ(a ,b )=0是a 与b 互补的充分条件;再由a 与b 互补得到:0,0a b ≥≥,且ab =0;从而有,所以φ(a ,b )=0是a 与b 互补的必要条件;故得φ(a ,b )=0是a 与b 互补的充要条件;故选C.【考点】充要条件的判定.5.集合A ={x ∈N |x 2-3x -4≤0},B ={x |x 2-3x +2=0},若B ⊆C ⊆A ,则满足条件的集合C 的个数是( ) A .8 B .7C .4D .3【答案】C【解析】化简A ,B ,再利用B ⊆C ⊆A ,即可求出满足条件的集合C 的个数. 【详解】解:A ={x ∈N |x 2-3x -4≤0}={1,2,3,4},B ={x |x 2-3x +2=0}={1,2}, 又B ⊆C ⊆A ,所以满足条件的集合C 为{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个, 故选:C . 【点睛】本题考查集合的包含关系及应用,解答的关键是理解B ⊆C ⊆A ,比较基础.6.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( ) A .80元 B .120元 C .160元 D .240元【答案】C 【解析】【详解】设长方体底面边长分别为,x y ,则4y x=, 所以容器总造价为42()102020()80z x y xy x x=+⨯+=++,由基本不等式得,420()80160z x x=++≥,当且仅当底面为边长为2的正方形时,总造价最低,选C. 【考点】函数的应用,基本不等式的应用.7.已知0a >,0b >,8ab =,则22log log a b ⋅的最大值为( ) A .32B .94C .4D .8【答案】B【解析】利用对数的运算法则以及二次函数的最值化简求解即可. 【详解】解:0a >,0b >,8ab =, 则22log log a b 222(log 8log )log b b =- 22(3log )log b b =-2223log (log )b b =- 22939log 424b ⎛⎫=-- ⎪⎝⎭.当且仅当322b =时,函数取得最大值94. 故选:B . 【点睛】本题考查对数运算法则以及函数的最值的求法,考查计算能力,属于中档题.8.已知11224m m -+=,则33221122m m m m----的值是( )A .15B .12C .16D .25【答案】A【解析】推导出111222()214m m m m --+=+-=,再由立方差公式得3322111221m m m m m m----=++-,从而求出结果.【详解】解:∵11224m m -+=,111222()214m m m m --∴+=+-=,∴由立方差公式得332211122115m m m m m m----=++=-,故选:A . 【点睛】本题主要考查根式的化简、求值,考查有理数指数幂、根式的性质等基础知识,考查运算求解能力,属于基础题.二、多选题9.某公司一年购买某种货物900吨,现分次购买,若每次购买x 吨,运费为9万元/次,一年的总储存费用为4x 万元,要使一年的总运费与总储存费用之和最小,则下列说法正确的是( )A .10x =时费用之和有最小值B .45x =时费用之和有最小值C .最小值为850万元D .最小值为360万元【答案】BD【解析】利用函数的思想列出一年的总费用与总存储费用之和,再结合基本不等式得到一个不等关系即可求最值. 【详解】一年购买某种货物900吨,若每次购买x 吨,则需要购买900x次,运费是9万元/次, 一年的总储存费用为4x 万元, 所以一年的总运费与总储存费用之和为90094x x⨯+,因为900942180360x x ⨯+≥=⨯=, 当且仅当81004x x=,即45x =时,等号成立, 所以当45x =时,一年的总运费与总储存费用之和最小为360万元, 故选:BD 【点睛】本题主要考查了函数最值的应用,以及函数模型的选择,和基本不等式的应用,属于中档题.10.有限集合S 中元素的个数记做card (S ),设A ,B 都为有限集合,下列命题中是真命题的是( )A .AB =∅的充要条件是card (A B )=card (A )+card (B )B .A ⊆B 的必要条件是card (A )≤card (B )C .A ⊄B 的充分不必要条件是card (A )≤card (B )﹣1D .A =B 的充要条件是card (A )=card (B ) 【答案】AB【解析】根据集合之间的关系以及充分条件、必要条件的定义逐一判断即可. 【详解】对于A ,A B =∅,即集合A 与集合B 没有公共元素,故A 正确; 对于B ,A ⊆B ,集合A 中的元素都是集合B 中的元素,故B 正确; 对于C ,A ⊄B ,集合A 中至少有一个元素不是集合B 中的元素, 因此,A 中元素的个数有可能多于B 中元素的个数,故C 错误; 对于D ,A =B ,集合A 中的元素与集合B 中元素完全相同, 两个集合的元素的个数相同,并不意味着它们的元素相同. 故选:AB 【点睛】本题考查了集合的基本运算、集合的包含关系、充分条件、必要条件的定义,考查了基本知识的掌握情况,属于基础题.11.设a ,b ,c 都是正数,且469a b c ==,那么( ) A .2ab bc ac += B .ab bc ac +=C .221c a b=+ D .121c b a=- 【答案】AD【解析】利用与对数定义求出a ,b ,c ,再根据对数的运算性质可得log 4log 92log 6M M M +=,然后进行化简变形即可得到.【详解】由于a ,b ,c 都是正数,故可设469a b c M ===,∴4log a M =,6log b M =,9log c M =,则1log 4M a =,1log 6M b =,1log 9M c=. log 4log 92log 6M M M +=,∴112a c b +=,即121c b a=-,去分母整理得,2ab bc ac +=.故选AD. 【点睛】本题考查对数的定义及运算性质,属于基础题.12.对任意A ,B ⊆R ,记A ⊕B ={x |x ∈A ∪B ,x ∉A ∩B },并称A ⊕B 为集合A ,B 的对称差.例如,若A ={1,2,3},B ={2,3,4},则A ⊕B ={1,4},下列命题中,为真命题的是( )A .若A ,B ⊆R 且A ⊕B =B ,则A =∅ B .若A ,B ⊆R 且A ⊕B =∅,则A =BC .若A ,B ⊆R 且A ⊕B ⊆A ,则A ⊆BD .存在A ,B ⊆R ,使得A ⊕B =A R⊕B RE.存在A ,B ⊆R ,使得A B ⊕B A ≠⊕ 【答案】ABD【解析】根据新定义判断. 【详解】根据定义[()][()]R R A B A B A B ⊕=,A.若A B B ⊕=,则RAB B =,R A B ⋂=∅,RA B B =RB A ⇒⊆,R A B ⋂=∅A B ⇒⊆,∴A =∅,A 正确;B.若A B ⊕=∅,则RA B =∅,R A B ⋂=∅,A B A B ==,B 正确; C. 若A B A ⊕⊆,则RAB =∅,RAB A ⊆,则B A ⊆,C 错;D.A B =时,A B ⊕=∅,()()R R A B A B ⊕=∅=⊕,D 正确;E.由定义,[()][()]R R A B A B A B ⊕=B A =⊕,E 错.故选:ABD . 【点睛】本题考查新定义,解题关键是新定义的理解,把新定义转化为集合的交并补运算.三、填空题13.命题“2,220x R x x ∀∈-+>”的否定是 【答案】【解析】试题分析:命题“2,220x R x x ∀∈-+>”的否定是.【考点】全称命题的否定.14.设集合{}14A x x =<<,{}13B x x =-≤≤,则RA B ⋂=_______.【答案】()3,4 【解析】先求RB ,再与集合A 求交集即可.【详解】因为{}13B x x =-≤≤, 所以{R|1B x x =<-或}3x >,所以{}R|34A B x x ⋂=<<,故答案为:()3,4 【点睛】本题主要考查了集合的交集和补集运算,属于基础题.15.若,a b 是方程242(lg )lg 10x x -+=的两个实根,则 lg()(log log )a b ab b a +的值为______. 【答案】12【解析】原方程可化为22()410lgx lgx -+=,设t lgx =,则原方程可化为22410t t -+=,利用换元法令1t lga =,2t lgb =,再根据对数的运算法则,即可得答案; 【详解】原方程可化为22()410lgx lgx -+=,设t lgx =,则原方程可化为22410t t -+=.设方程22410t t -+=的两根为1t ,2t ,则122t t +=,1212t t =. 由已知a ,b 是原方程的两个根.可令1t lga =,2t lgb =,则2lga lgb +=,12lga lgb ⋅=, ()()·a b lg ab log b log a ∴+ lg lg (lg lg )lg lg ⎛⎫=++ ⎪⎝⎭b a a b a b 22(lg lg )(lg )(lg )lg lg ⎡⎤++⎣⎦=a b b a a b2(lg lg )2lg lg (lg lg )lg lg b a a ba b a b+-=+⋅2122221212-⨯=⨯=.故答案为:12.【点睛】本题考查对数方程的求解及对数运算法则求值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.16.若对任意x ∈R ,不等式22(1)(1)10a x a x ----<恒成立,则实数a 值范围是____________. 【答案】3,15⎛⎤- ⎥⎝⎦【解析】根据题意,分两种情况讨论:1若210a -=,则1a =±,分别验证1a =或1-时,是否能保证该不等式满足对任意的实数x 都成立;2若210a -≠,不等式22(1)(1)10a x a x ----<为二次不等式,结合二次函数的性质,可解得此时a 值范围. 【详解】由题意,分两种情况讨论:1若210a -=,则1a =±,当1a =时,不等式22(1)(1)10a x a x ----<为:10-<, 满足对任意的实数x 都成立,则1a =满足题意,当1a =-时,不等式22(1)(1)10a x a x ----<为:20x -<, 不满足对任意的实数x 都成立,则1a =-满足题意,2若210a -≠,不等式22(1)(1)10a x a x ----<为二次不等式,要保证22(1)(1)10a x a x ----<实数x 都成立,必须有()()222101410a a a ⎧-<⎪⎨∆=-+-<⎪⎩ 可解得315a -<<, 综上可得3,15⎛⎤- ⎥⎝⎦.故答案为:3,15⎛⎤- ⎥⎝⎦【点睛】本题主要考查不等式恒成立求参数的取值范围,考查了分类讨论思想的应用,属于基础题.四、解答题17.(1)化简:11144064342()()()a b a a b ab -⨯-÷+a >0,b >0);(2)先化简,再求值.已知a =b =6646353b a b -+的值.【答案】(1)a ;(2)3b -;-【解析】(1)将根式转化为分数指数幂,利用指数的运算法则即可化简;(2)先将所求代数式利用平方差公式和完全平方式化简,再代入a =b =可求解. 【详解】(1)11144064342()()()a b a a b ab -⨯-÷+1234ab a b ab a -=-÷+-11ab ab a a --=-+=;(2)()266314332693a b a b b a b b ----+=-,因为a b ==3323a b b -<,则原式=()()3323326233353333a b b a b b b b a b a b ----+⋅-+ ()()3326353335353333a bb b a b b b a b a b -++=-=-=-++,因为b ==-【点睛】本题主要考查了指数式的化简,考查了指数的运算法则涉及完全平方公式,平方差公式,属于基础题.18.已知关于x 的不等式250ax x a-<-的解集为M . (1)当4a =时,求集合M ;(2)若3M ∈且5M ∉,求实数a 的取值范围. 【答案】(1)()5,2,24⎛⎫-∞- ⎪⎝⎭;(2)(]51,9,253⎡⎫⎪⎢⎣⎭.【解析】(1)代入4a =后将分式不等式转化为高次不等式,求解后可得M .(2)根据3M ∈且5M ∉可得关于a 的不等式组,其解为实数a 的取值范围. 【详解】(1)因为4a =,故24504x x -<-即()()()45220x x x --+<, 所以2x <-或524x <<,故M 为()5,2,24⎛⎫-∞- ⎪⎝⎭. (2)因为3M ∈且5M ∉,故350955025a aa a -⎧<⎪⎪-⎨-⎪≥⎪-⎩或250a -=,故()()()()35901250a a a a ⎧-->⎪⎨--≤⎪⎩,解得513a ≤<或925a <≤,故a 的取值范围为(]51,9,253⎡⎫⎪⎢⎣⎭.【点睛】一般地,()()0f x g x >等价于()()0f x g x >,而()()0f x g x ≥则等价于()()()00f x g x g x ⎧≥⎪⎨≠⎪⎩,注意分式不等式转化为整式不等式时分母不为零.解本题时还应注意5M ∉对应的a 满足的条件中容易遗漏250a -=这个情况.19.已知命题p :x 2﹣4x ﹣5≤0,命题q :x 2﹣2x +1﹣m 2≤0(m >0). (1)若p 是q 的充分条件,求实数m 的取值范围;(2)若m =5,命题p 和q 中有且只有一个真命题,求实数x 的取值范围. 【答案】(1)[4,+∞);(2[4-,1)(5-⋃,6].【解析】(1)求出命题p ,q 成立时的x 的范围,利用充分条件,根据包含关系列出不等式求解即可.(2)讨论p 真q 假或p 假q 真,分别利用命题的真假关系列出不等式组,求解即可. 【详解】(1)对于:[1p A =-,5],对于:[1q B m =-,1]m +,p 是q 的充分条件, 可得A B ⊆,∴1115m m --⎧⎨+⎩,[4m ∴∈,)+∞.(2)若m =5,命题p 和q 中有且只有一个真命题,此时命题q 对应得集合为B =[]4,6-, 则p 真q 假或p 假q 真,所以①当p 真q 假时,x ∈[]1,5-,且x (),4-∞-∪(6,+∞),则此时无解; ②当p 假q 真时,x ∈(),1-∞-∪(5,+∞),且x ∈[]4,6-, [4x ∴∈-,1)(5-⋃,6].综上所述,x 的取值范围为[4-,1)(5-⋃,6]. 【点睛】本题考查命题的真假的判断与应用,充要条件的应用,集合的关系,考查转化思想以及计算能力.20.已知0x >,0y >,24xy x y a =++ (1)当6a =时,求xy 的最小值; (2)当0a =时,求212x y x y+++的最小值. 【答案】(1)9;(2)112【解析】试题分析:(1)由0x >,0y >可利用均值不等式a b +≥可知4x y +≥=,从而得到xy 的不等式,求得其最小值;(2)将24xy x y =+变形为1212y x+=,与所求式子求乘积即可利用均值不等式求得其最小值试题解析:(1)当6a =时,2466xy x y =++≥,即230-≥,3)0∴≥,3≥,9xy ∴≥,当且仅当46x y ==时,等号成立.xy ∴的最小值为9.(2)当0a =时,可得24xy x y =+, 两边都除以2xy ,得1212y x+=,2112727111()()1()222222x y x y x y x y x y y x y x ∴+++=++=+++=++≥+=, 当且仅当212x y y x ==,即3x =,32y =时取等号. 212x y x y ∴+++的最值为112【考点】均值不等式求最值21.(1)已知0m >,0n >,4816log log log (2)m n m n ==+.求24log log n 的值;(2)若18log 9a =,185b =,用a ,b 表示36log 45. 【答案】(1)12-;(2)36log 452a ba +=-. 【解析】(1)设4816log log log (2)m n m n k ==+=,将m n 、、 2m n +用k 表示出来, (2)化指数式为对数式求得b ,把要表示的式字换成以18为底的对数,即可求解. 【详解】(1)设4816log log log (2)m n m n k ==+=, 所以4k m =,8k n =,216k m n +=,所以22816k k k ⨯+=,即112142k k⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭, 即2112122kk⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭,令102kt ⎛⎫=> ⎪⎝⎭, 则2210t t +-=,解得:12t =或1t =-(舍),所以24222log log log log log n == 222log lo 111111222222g log km n ⎛⎫====- ⎪⎝⎭, (2)由题意185b =,所以18log 5b =,则181818361818log 45log 9log 5log 45log 361log 22a ba++===+-.本题主要考查了指对函数互化,以及对数的运算,换底公式,属于中档题 22.已知关于x 的不等式220ax x ++<(a ∈R ).(1)若220ax x ++<的解集为{|1x x >或}x b <,求实数a ,b 的值; (2)求关于x 的不等式223ax x ax ++<+的解集. 【答案】(1)3a =-,23b =-;(2)答案见解析. 【解析】(1)根据不等式解集与对应方程根的关系列等量关系,解得结果; (2)先因式分解,再根据根的大小关系分类讨论,即可确定不等式解集. 【详解】(1)由题意可知方程220ax x ++=的一个根为1,且a <0, ∴a +3=0,解得3a =-,此时不等式可化为2320x x -++<, 其解集为{|1x x >或2}3x <-,对比可得23b =-. (2)由题意可将不等式223ax x ax ++<+化简为()2110ax a x +--<, 因式分解,得()()110ax x +-<,则①当a =0时,不等式可化简为()10x -<,解得x <1; ②当a>0时,不等式可化简为()110x x a ⎛⎫+-< ⎪⎝⎭,解得11x a -<<; ③当-1<a<0时,不等式可化简为()110x x a ⎛⎫+-> ⎪⎝⎭,解得1x <或1x a>-; ④当a =-1时,不等式可化简为()210x --<,解得x ≠1; ⑤当a<-1时,不等式可化简为()110x x a ⎛⎫+-> ⎪⎝⎭,此时1x >或1x a<-. 综上所述,当a =0时,不等式的解集为{x |x <1}; 当a>0时,不等式的解集为1{|1}x x a-<<; 当-1<a<0时,不等式的解集为{|1x x <或1}x a>-; 当a =-1时,不等式的解集为{x |x ≠1};当a<-1时,不等式的解集为{|1x x >或1}x a<-.本题考查解含参数不等式、根据不等式解集求参数,考查基本分析求解能力,属中档题.。

江苏省外国语学校第一学期期中考试高一数学试题

江苏省外国语学校第一学期期中考试高一数学试题

江苏省外国语学校-第一学期期中考试高一数学试题本试卷满分150分,考试时间1.一.选择题:本大题共有12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.由实数x , x -, x , ()(A) 2(B) 3(C) 4(D) 52.已知集合{}(,)2M x y x y |=+=,{}(,)4N x y x y |=-=,那么集合M N 为 ( )(A) 3,1x y ==-(B) (3,1)-(C) {}3,1-(D) {}(3,1)-3.已知函数(21)1()2a x y -=是定义域上的增函数,则实数a 的取值范围为( )(A) ()0,+∞(B) (),1-∞(C) 1(,)2-∞(D) 1(,)2+∞4.在以下四个命题:①A B A =;②A B B =;③U A B =∅ð;④()U A B U =ð(其中U 为全集)中,与命题A B ⊆等价的为 ()(A) ①②(B) ①②③(C) ②③④(D) ①②③④5.幂函数223()(1)mm f x m m x +-=--在()0,+∞时是减函数,则实数m 的值为()(A) 2或1-(B) 1-(C) 2(D) 2-或16.已知3()5f x ax =+,且(3f =,则f = ( )(A) 3-(B) 10(C) 7(D) 137.使式子(21)log (5)x x --有意义的x 的取值范围为 ( )(A) (),5-∞(B) 1(,1)(1,)2+∞(C) 1(,5)2(D) 1(,1)(1,5)28.定义在[]1,2a +上的偶函数2()2f x ax bx =+-在区间[]1,2上是 ()(A) 增函数(B) 减函数 (C) 先增后减函数 (D)先减后增函数9.下列函数中,在区间(0,)+∞上是单调减函数的是 ()(A) 12()y x =-(B) 2log y x =(C) 2(1)y x =-(D) 1()2x y =10.下列函数:①1y x =-;②2log (1)y x =-;③y =;④12x y -=.其中定义域与值域都不是R 的有 ()(A) 1个(B) 2个(C) 3个(D) 4个11.已知()f x 是偶函数,当0x >时,2()log f x x x =,则当0x <时,()f x =() (A) 2log x x(B) 2log ()x x -(C) 2log x x -(D) 21log ()x x-12.某工厂现有现金元,由于技术创新使得每年资金比上一年增加10%,经过n 年后该厂资金比现在至少翻一番,则n 至少为 ( ) (参考数据:lg20.301,lg1.10.041==)(A) 6(B) 7(C) 8(D) 9二.填空题:本大题共6小题,每小题4分,共24分.把答案填写在答题卡相应位置上. 13.某地区对200户农民的生活水平进行调查,统计结果是:有彩电的128户,有电冰箱的162户,二者都有的105户,则彩电、电冰箱至少有一样的有 户.14.实数22log 3a =,132()3b -=,22log 32c =从小到大排列为 .15.若()()1133132a a +<-,则实数a 的取值范围为 .16.已知函数()f x 的定义域为(]0,1,且1()()3x g x =,则函数[]()f g x 的定义域为 .17.函数()f x 在区间(2,3)-上是增函数,那么(5)1f x -+的单调递增区间是 .18.下列五个命题:①log 2log 51a a +=(0a >且1)a ≠;②()2f x x =-与()f x =表示相同函数;③若()f x 是奇函数,则(0)0f =;④y =R ;⑤函数1()4x f x a -=+的图象恒过定点()1,4. 其中···不正确命题的序号是 .三.解答题:本大题共5小题,共66分.解答应写出文字说明、证明过程或演算步骤. 19.(本小题满分14)(1)化简:()()312123321()40.1a b ---⋅,(0,0)a b >>.(2) 已知()2lg 2lg lg x y x y -=+,求的值.20.(本小题满分12分)已知定义在R 上的函数()22x x af x =+,a 为常数. (1) 如果()f x 满足()()f x f x -=,求a 的值;(2) 当()f x 满足 (1) 时,用单调性定义判断()f x 在[)0,+∞上的单调性.并猜想()f x 在(),0-∞上的单调性(不必证明).21.(本小题满分12分)设集合212|log (56)1A x x x ⎧⎫=-+=-⎨⎬⎩⎭,2271|(),01x x B x a a a a --⎧⎫=<>≠⎨⎬⎩⎭且,求AB .22.(本小题满分12分)国家征收个人工资、薪金所得税是分段计算的,总收入不超过800元的,免征个人工资、薪金所得税;超过800元部分需征税,设全月应纳税的收入额为x ,x =全月收入-800元,税率见下表:(1) 若应纳税额为()f x ,试用分段函数表示1~3级纳税额()f x 的计算公式;(2) 某人2003年3月份工资总收入3000元,试计算这人3月份应缴纳个人所得税多少元?23.(本小题满分16分)已知函数1()()3x f x =.(1) 若12(21)f mx x -++的定义域为R ,求实数m 的取值范围; (2) 当[]1,1x ∈-时,求函数2()2()3y f x af x =-+的最小值()g a ;(3) 是否存在实数3m n >>,使得()g x 的定义域为[],n m ,值域为22,n m ⎡⎤⎣⎦,若存在,求出m 、n 的值;若不存在,则说明理由.江苏省外国语学校-第一学期期中考试高一数学试题参考答案一.选择题:每小题5分,共60分.二.填空题:每小题4分,共24分.13.185 14.a c b << 15.2(,)3-∞16.[)0,+∞17.()3,818.①③⑤三.解答题:本大题共5小题,共66分. 解答应写出文字说明,证明过程或演算步骤. 19.(1)425;(2)4. 1)由()()f x f x -=得112222x x x x --+=+,∴1(1)(2)02xxa --=对x ∈R 恒成立,∴ 10a -=,1a = (2)1()22x x f x =+,设120x x ≤<,则 1212121212121121()()(2)(2)(22)222x x x x x x x x x x f x f x ++--=+-+=- ∵120x x ≤<,∴1212210,220x x x x +->-<,∴12()()0f x f x -<,即12()()f x f x < ∴()f x 在[)0,+∞上是增函数.猜想:()f x 在(),0-∞上是减函数.21. 由212log (56)1x x -+=-得,2562x x -+=,即2540x x -+=,1x =或4x =,∴{}1,4A =.∵2271()x x a a--<,∴272x x a a --<,当01a <<时,272x x ->-,3x >,即{}|3B x x =>,这时{}4A B =;当1a >时,272x x -<-,3x <,即{}|3B x x =<,这时{}1A B =.22.(1)0.05,(0500)()0.1(500)25,(5002000)0.15(2000)175,(20005000)x x f x x x x x <≤⎧⎪=⨯-+<≤⎨⎪⨯-+<≤⎩, 即0.05,(0500)()0.125,(5002000)0.15125,(20005000)x x f x x x x x <≤⎧⎪=-<≤⎨⎪-<≤⎩(2) ∵ 30002200x =-∴(2200)0.15(22002000)175f =⨯-+ 205()=元∴这人三月份应纳个人所得税205元.23.(1) ∵113()log f x x -=,∴12213(21)log (21)f mx x mx x -++=++,由题知,2210mx x ++>恒成立,∴00m m >⎧⎨<⎩Δ=4-4,1m >.(2) ∵ []1,1x ∈-,∴11(),333x ⎡⎤∈⎢⎥⎣⎦,2()2()3y f x a f x =-+222111[()]2()3[()]3333x x xa a a =-+=-+-,当13a <时,min 282()93ay g a ==-; 当133a ≤≤时,2min ()3y g a a ==-;当3a >时,min ()126y g a a ==-. ∴ 22821()9331()3(3)3126(3)aa g a a a a a ⎧-<⎪⎪⎪=-≤≤⎨⎪⎪->⎪⎩. (3) ∵3m n >>,∴()126g x x =-,在()3,+∞上是减函数.∵()g x 的定义域为[],n m ,值域为22,n m ⎡⎤⎣⎦,∴ 22126126m nn m ⎧-=⎪⎨-=⎪⎩, ①② ②-①得:6()()()m n m n m n -=+-,∵3m n >>,∴6m n +=.但这与“3m n >>”矛盾.∴满足题意的m 、n 不存在.。

江苏省南京外国语学校2020-2021学年高一第一学期期中考试数学试题(含解析)

江苏省南京外国语学校2020-2021学年高一第一学期期中考试数学试题(含解析)
( )( ) C 选项,由 x + y 2 xy ,则 3 − xy 2 xy ,则 xy + 3 xy −1 0 ,则 xy 1,正确;
D
选项,
a
0, b
0

1 a
+
1 b
=
1 a
+
1 b
(a
+
b)
=
2
+
b a
+
a b
2
+
2
1 = 4 ,正确;
故选 ACD.
12. 【答案】BC;
【解析】A 选项,在 R 上不单调,错误;
使 f(x)在[a,b]上的值域为[a,b].那么把 y=f(x)(x∈D)称为闭函数.下列函数是闭函数的是().
A. y x2 1
B. y x3
C. y x 2 2 D. y 3x
三、填空题:本大题共 4 小题,每小题 5 分,共 20 分,请把答案直接填写在答题卡相应位置上.
13.已知函数 f(x)为奇函数,且当 x>0 时, f (x) x2 1 , 则 f(-1)=______. x
【解析】A 为奇函数,C 非奇非偶,D 在 (0, +) 递减,故选 B.
5. 【答案】A;
Байду номын сангаас
2
4
4
1
1
【解析】 b = 45 = 25 ,则 b a = 23 = 163 253 = c ,故选 A.
6. 【答案】C;
【解析】由题意可得
2x

3
−2,
3
,则
x
1 2
,
3
,故选
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京外国语学校2020-2021学年度第一学期期中
高一数学
一、单项选择题:本大题共8小题,每小题3分,共24分,请把答案直接填写在答题卡相应位置上.
1.已知集合A={x|1<x<4},B={1,2,3,4,5},则A ∩B=().
A.{1,2,3}
B.{2,3}
C.{1,2,3,4}
D.{2,3,4} 2.“x>0”是“20x x +>”的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
3.下列命题中正确的是().
A.若a>b,则ac>bc
B.若,,a b c d >>则a -c>b -d
C.若ab>0,a>b,则11a b
< D.若a>b,c>d,则a b c d > 4.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是().
3.A y x =
B.y=|x|+1 2.|1|C y x =- .2x D y -= 5.已知4
213532,4,25,a b c ===则()
A.b<a<c
B.a<b<c
C.b<c<a
D.c<a<b
6.已知函数f(x)的定义域是[-2,3],则f(2x -3)的定义域是()
A.[-7,3]
B.[-3,7] 1.[,3]2C 1.[,3]2
D - 7.若5361log log 6log 2,3
x ⋅⋅=,则x 等于() A.9 1.9B C.25 1.25
D 8.设偶函数f(x)在(0,+∞)上为减函数,且f(2)=0,则不等式
()()0f x f x x +->的解集为(). A.(-2,0)∪(2,+∞) B.(-∞,-2)∪(0,2) C.(-∞,-2)U(2,+∞)
D.(-2,0)∪(0,2) 二、多项选择题:(本大题共4小题,每小题4分,共16分.在每小题给出的选项中,有多项符合题目要求,全部选对
得4分,选对但不全的得2分,有选错的得0分)
9.若a>0,a ≠1,则下列说法不正确的是().
A.若log log ,a a M N =则M=N
B.若M=N,则log log a a M N =
C.若22log log ,a a M N =则M=N
D.若M=N 则22log log a a M N =
10.下列四个命题是真命题的是()
A.函数y=|x|与函数2y =表示同一个函数
B.奇函数的图像一定通过直角坐标系的原点
C.函数23(1)y x =-的图像可由23y x =的图像向右平移1个单位得到
D.若函数1)f x =+则2()1(1)f x x x =-≥
11.下列说法正确的是().
A.若x>0,则函数2y x x
=+有最小值 B.若,0,2,x y x y >+=则22x y +的最大值为4 C.若x,y>0,x+y+xy=3,则xy 的最大值为1 D.若a>0,b>0,a+b=1,则
11a b +的最小值为4 12.对于定义域为D 的函数y=f(x),若f(x)同时满足下列条件:①在D 内单调递增或单调递减;②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b].那么把y=f(x)(x ∈D)称为闭函数.下列函数是闭函数的是().
2.1A y x =+
3.B y x =- .2C y = .3x D y =
三、填空题:本大题共4小题,每小题5分,共20分,请把答案直接填写在答题卡相应位置上.
13.已知函数f(x)为奇函数,且当x>0时,21(),f x x x
=+则f(-1)=______. 14.已知函数1()32x f x a
-=+的图象恒过定点P ,则点P 的坐标是______.
15.已知函数()f x =则该函数的单调增区间为______.
16.已知函数()2,.x f x x =∈R ①若方程|f(x)-2|=m 有两个解,则的取值范围为_______.
②若不等式2
[()]()0f x f x m +->在R 上恒成立,则m 的取值范围为______.(第一空1分,第二空2分) 三、解答题:本大题共5小题,共48分,请把答案填写在答题卡相应位置上.
17.(本小题满分8分)
计算:20.520327492(1)()()(0.2)(0.081).8925
-
--+⨯- 33(2)(lg 2)(lg5)3lg 2lg5++⋅.
18.(本小题满分10分)设命题p:实数满足(x -a)(x -3a)<0,其中a>0.命题q:实数x 满足30.2
x x -≤- (1)当a=1时,命题p,q 都为真,求实数x 的取值范围;(2)若p 是¬q 的充分不必要条件,求实数a 的取值范围.
19.(本小题满分10分)某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C(x),当年产量不足80千件时,21()103C x x x =+(万元).当年产量不小于80千件时,10000()511450C x x x
=+-(万元),每千件商品售价为50万元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
20.(本小题满分10分)已知定义在(-1,1)上的奇函数f(x),且当x ∈(0,1)时,2().21
x
x f x =+ (1)求函数f(x)在(-1,1)上的解析式;(2)判断并用定义证明f(x)在(0,1)上的单调性;(3)解不等式f(x -1)+f(x)<0.
21.(本小题满分10分)已知函数2()(22,())f x ax a x a =-++∈R .
(1)f(x)<3-2x 恒成立,求实数a 的取值范围;(2)当a>0时,求不等式f(x)≥0的解集;
(3)若存在m>0使关于x 的方程1(||)1f x m m
=++有四个不同的实根,求实数a 的取值范围.。

相关文档
最新文档