云南省曲靖市师宗县五龙民族中学2014秋九年级数学上册 22.1 二次函数(第5课时)教案 (新版)新人教版

合集下载

初中九年级数学上册,第二十二章,第一节第四课时,《二次函数,y=ax2+bx+c,的图像和性质》,新课教学课件

初中九年级数学上册,第二十二章,第一节第四课时,《二次函数,y=ax2+bx+c,的图像和性质》,新课教学课件
b 4ac b 2 2a , 4a b 直线x 2a
顶点坐标
对称轴 位置 开口方向
由a,b和c的符号确定
由a,b和c的符号确定
向上
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
向下
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
3、当h〈0且k〈0时,将y=ax2的图像先下移︱k︱个单位,再 右移︱h︱个单位得到y=a(x+h)2 + k的图像 4、当h〈0且k〉0时,将y=ax2的图像先上移k个单位,再右移 ︱h︱个单位得到y=a(x+h)2 + k的图像
小资料
必须掌握
二、y=ax2的图像与y=a(x+h)2+k的图像第二种 平移方法
当x﹤6时y随x
当x﹥6时y随x
10 · 5 (4,5) · (6,3)
的增大而减小
的增大而增大
O
5x =6
10
x
由此可知,抛物线的顶点是点(6, 3),对称轴是直线x=6.
【做一做】
“根据上述方法,分析二次函数 y=ax2+bx+c 的图象和性质” 一、提:提出二次项系数
b c y a(x x ) a a
似曾相识燕归来
必须掌握
2 b 4ac b 2 试做二次函数 y=ax2+bx+c 即 y a(x ) 2a 4a
的图象和性质”
y
y y=ax2+bx+c (a﹥0) o x o
b x2a
x y=ax2+bx+c (a﹤0)
b x2a

云南省曲靖市师宗县五龙民族中学2014秋人教版数学九年级上册第22章 二次函数 小结与复习(2) 教案

云南省曲靖市师宗县五龙民族中学2014秋人教版数学九年级上册第22章 二次函数 小结与复习(2) 教案

教学时间课题《二次函数》小结与复习(2)课型新授课教学目标知识和能力会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。

过程和方法情感态度价值观教学重点用待定系数法求函数的解析式、运用配方法确定二次函数的特征。

教学难点会运用二次函数知识解决有关综合问题。

教学准备教师多媒体课件学生“五个一”课堂教学程序设计设计意图一、例题精析,强化练习,剖析知识点用待定系数法确定二次函数解析式.例:根据下列条件,求出二次函数的解析式。

(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。

(2)抛物线顶点P(-1,-8),且过点A(0,-6)。

(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。

(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。

学生活动:学生小组讨论,并让学生阐述解题方法。

教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c (a≠0)(2)顶点式:y=a(x-h)2+k (a≠0) (3)两根式:y=a(x-x1)(x-x2) (a≠0)当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。

当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。

当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。

(1)若m为定值,求此二次函数的解析式;(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。

二、知识点串联,综合应用例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交点B、C。

九年级数学上册第22章二次函数22.1二次函数的图象和性质22.1.4用待定系数法求二次函数的解析式

九年级数学上册第22章二次函数22.1二次函数的图象和性质22.1.4用待定系数法求二次函数的解析式
第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.4 二次函数y=ax2+bx+c 的图象和性质
1
第二十二章 二次函数
第2课时 用待定系数法求二 次函数的解析式
A 知识要点分类练
B 规律方法综合练
C 拓广探究创新练
2
第2课时 用待定系数法求二次函数的解析式
A 知识要点分类练
知识点1 已知三点求二次函数的解析式
5
第2课时 用待定系数法求二次函数的解析式
3.2016·河南 已知 A(0,3),B(2,3)是抛物线 y=-x2+bx+c
上两点,则该抛物线的顶点坐标是_(_1_,_4_)___.
6
第2课时 用待定系数法求二次函数的解析式
4.2017·闵行区一模 已知在平面直角坐标系 xOy 中,抛物 线 y=ax2+bx+c 经过点 A(3,0),B(2,-3),C(0,-3).
解:∵当 x=3 时,函数有最大值 4,
∴函数图象的顶点坐标为(3,4).
设此函数的解析式是 y=a(x-3)2+4(a≠0).
再把(4,-3)代入函数解析式中,
得 a×(4-3)2+4=-3,
解得 a=-7,
故二次函数的解析式是 y=-7(x-3)2+4,
即 y=-7x2+42x-59.
11
第2课时 用待定系数法求二次函数的解析式
c=-3.
则抛物线的解析式为 y=x2-2x-3.
(2)把 x=-2 代入抛物线解析式,得 y=5,即 D(-2,5).
∵A(3,0),即 OA=3,
1
15
∴S△AOD=2×3×5= 2 .
8
第2课时 用待定系数法求二次函数的解析式

云南省曲靖市师宗县五龙民族中学2014秋人教版数学九年级上册第22章 二次函数 小结与复习(1) 教案

云南省曲靖市师宗县五龙民族中学2014秋人教版数学九年级上册第22章 二次函数 小结与复习(1) 教案

教学时间课题《二次函数》小结与复习(1)课型新授课教学目标知识和能力理解二次函数的概念,掌握二次函数y=ax2的图象与性质;会用描点法画抛物线,能确定抛物线的顶点、对称轴、开口方向,能较熟练地由抛物线y=ax2经过适当平移得到y=a(x-h)2+k的图象。

过程方法情感态度价值观教学重点用配方法求二次函数的顶点、对称轴,根据图象概括二次函数y=ax2图象的性质。

教学难点二次函数图象的平移。

教学准备教师多媒体课件学生“五个一”课堂教学程序设计设计意图一、结合例题精析,强化练习,剖析知识点1.二次函数的概念,二次函数y=ax2(a≠0)的图象性质。

例:已知函数是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是什么?这时当x为何值时,y随x的增大而减小?学生活动:学生四人一组进行讨论,并回顾例题所涉及的知识点,让学生代表发言分析解题方法,以及涉及的知识点。

教师精析点评,二次函数的一般式为y=ax2+bx+c(a≠0)。

强调a≠0.而常数b、c可以为0,当b,c同时为0时,抛物线为y=ax2(a≠0)。

此时,抛物线顶点为(0,0),对称轴是y轴,即直线x=0。

(1)使是关于x的二次函数,则m2+m-4=2,且m+2≠0,即:m2+m-4=2,m+2≠0,解得;m=2或m=-3,m≠-2(2)抛物线有最低点的条件是它开口向上,即m+2>0,(3)函数有最大值的条件是抛物线开口向下,即m+2<0。

抛物线的增减性要结合图象进行分析,要求学生画出草图,渗透数形结合思想,进行观察分析。

强化练习;已知函数是二次函数,其图象开口方向向下,则m=_____,顶点为_____,当x_____0时,y随x的增大而增大,当x_____0时,y随x的增大而减小。

2。

用配方法求抛物线的顶点,对称轴;抛物线的画法,平移规律,例:用配方法求出抛物线y=-3x2-6x+8的顶点坐标、对称轴,并画出函数图象,说明通过怎样的平移,可得到抛物线y=-3x2。

云南省曲靖市师宗县五龙民族中学九年级数学上册 22.1 二次函数(第1课时)教案 (新版)新人教版

云南省曲靖市师宗县五龙民族中学九年级数学上册 22.1 二次函数(第1课时)教案 (新版)新人教版
在这个问题中,可提出如下问题供学生思考并回答:
1.商品的利润与售价、进价以及销售量之间有什么关系?
[利润=(售价-进价)×销售量]
2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?
[10-8=2(元),(10-8)×100=200(元)]
3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?
作业
设计
必做
教科书P14:1、2
教学
反思
对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。
对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.
二、提出问题
某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?
3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,
对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。
y=-2x2+20x (0<x<10)……………………………(1)
将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:

云南省曲靖市师宗县五龙民族中学2014秋人教版数学九年级上册22.1 二次函数的图象和性质(2) 教案

云南省曲靖市师宗县五龙民族中学2014秋人教版数学九年级上册22.1 二次函数的图象和性质(2) 教案

教学时间课题22.1 二次函数(2)课型新授课学目标知识和能力使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。

过程和方法使学生经历、探索二次函数y=ax2图象性质的过程情感态度价值观培养学生观察、思考、归纳的良好思维习惯教学重点使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象是教学的重点。

教学难点用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。

课堂教学程序设计设计意图一、提出问题1,同学们可以回想一下,一次函数的性质是如何研究的?(先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质)2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么?(可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象)3.一次函数的图象是什么?二次函数的图象是什么?二、范例例1、画二次函数y=x2的图象。

解:(1)列表:在x的取值范围内列出函数对应值表:x …-3 -2 -1 0 1 2 3 …y …9 4 1 0 1 4 9 …(2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点(3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。

提问:观察这个函数的图象,它有什么特点?让学生观察,思考、讨论、交流,归结为:它有一条对称轴,且对称轴和图象有一点交点。

抛物线概念:像这样的曲线通常叫做抛物线。

顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点.三、做一做1.在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?2.在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么?3.将所画的四个函数的图象作比较,你又能发现什么?在学生画函数图象的同时,教师要指导中下水平的学生,讲评时,要引导学生讨论选几个点比较合适以及如何选点。

云南曲靖市九年级数学上册第二十二章《二次函数》经典练习卷(提高培优)

一、选择题1.对于二次函数()()2140y ax a x a =+->,下列说法正确的是( ) ①抛物线与x 轴总有两个不同的交点;②对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点; ③若该函数图象的对称轴为直线0x x =,则必有012x <<;④当2x ≥时,y 随x 的增大而增大,则102a <≤A .①②B .②③C .①④D .③④ 2.若飞机着陆后滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,则函数图象大致为( ) A . B .C .D .3.二次函数y =ax 2+bx +c 的部分图象如图,图象过点A (3,0),对称轴为直线x =1,下列结论:①a ﹣b +c =0;②2a +b =0; ③4ac ﹣b 2>0;④a +b ≥am 2+bm (m 为实数);⑤3a +c >0.则其中正确的结论有( )A .2个B .3个C .4个D .5个4.二次函数2y ax bx c =++()0a ≠的图象如图所示,观察得出了下面4条信息:①0abc >;②0a b c -+>;③230a b -=;④240b ac ->.你认为其中正确的结论有( )A .1B .2C .3D .45.抛物线28y x x q =++与x 轴有交点,则q 的取值范围是( )A .16q <B .16q >C .16q ≤D .16q ≥ 6.二次函数y =ax 2+bx+c (a >0)的图象与x 轴的两个交点A (x 1,0),B (x 2,0),且x 1<x 2,点P (m ,n )是图象上一点,那么下列判断正确的是( )A .当n <0时,m <0B .当n >0时,m >x 2C .当n <0时,x 1<m <x 2D .当n >0时,m <x 17.已知二次函数()()2y x p x q =---,若m ,n 是关于x 的方程()()20x p x q ---=的两个根,则实数m ,n ,p ,q 的大小关系可能是( ) A .m <p <q <nB .m <p <n <qC .p <m <n <qD .p <m <q <n8.已知抛物线y=-x 2+bx+c 与x 轴交于A,B 两点(A 在原点O 左侧,B 在原点O 右侧),与y 轴交于C 点,且OC=OB,令CO AO=m ,则下列m 与b 的关系式正确的是( )A .m=2bB .m=b+1C .m=6bD . m=2b +1 9.对于二次函数()2532y x =-+的图象,下列说法中不正确的是( )A .顶点是()3,2B .开口向上C .与x 轴有两个交点D .对称轴是3x =10.我校门口道路的隔离栏通常会涂上醒目的颜色,呈抛物线形状(如图1),图2是一个长为2米,宽为1米的矩形隔离栏,中间被4根栏杆五等分,每根栏杆的下面一部分涂上醒目的蓝色,颜色的分界处(点E ,点P )以及点A ,点B 落上同一条抛物线上,若第1根栏杆涂色部分(EF )与第2根栏杆未涂色部分(PQ )长度相等,则EF 的长度是( )A .13米B .12米C .25米D .35米 11.函数()20y ax a a =-≠与()0y ax a a =-≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .12.如图所示,一段抛物线:()233044y x x x =-+≤≤记为1C ,它与x 轴交于两点O ,1A ;将1C 绕1A 旋转180°得到2C ,交x 轴于2A ;将2C 绕2A 旋转180°得到3C ,交x 轴于3A ;⋅⋅⋅如此进行下去,直至得到506C ,则抛物线506C 的顶点坐标是( )A .()2020,3B .()2020,3-C .()2022,3D .()2022,3- 13.抛物线2288y x x =-+-的对称轴是( )A .2x =B .2x =-C .4x =D .4x =- 14.对于二次函数2(2)7y x =---,下列说法正确的是( )A .图象开口向上B .对称轴是直线2x =-C .当2x >时,y 随x 的增大而减小D .当2x <时,y 随x 的增大而减小 15.在平面直角坐标系中,将函数22y x =-的图象先向右平移1个单位长度,再向上平移5个单位长度,得到图象的函数解析式是( )A .22(1)5y x =-++B .22(1)5y x =--+C .22(1)5y x =-+-D .22(1)5y x =---第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题16.对于抛物线243y x x =-+,当712x -<<时,关于x 的一元二次方程2430x x t -+-=有解,则t 的取值范围是 ______.17.如图,正方形OABC 的边长为2,OA 与x 负半轴的夹角为15°,点B 在抛物线()20y ax a =<的图象上,则a 的值为_.18.关于x 的一元二次方程220x x k -++=的一个解是13x =,则抛物线22y x x k =-++与x 轴的交点坐标是____.19.抛物线2y x x =+向下平移2个单位长度,再向左平移3个单位长度,得到的抛物线表达式为____.20.学校公益伞深受师生欢迎,如图为公益伞骨架结构,点A 为伞开关位置,图1完全收拢状态,图2中间状态,图3完全打开状态,撑伞整个过程中,63AB cm =,10CE cm =,2EF DE =,5BF DF =+,DF 长度保持不变,滑动环扣C 、D 相对距离会变化.(1)图1中,A 、G 重合,此时8AC cm =,则DF =______cm .(2)图3中,90EDC ∠=︒,因支架、伞布等作用,弹性钢丝BG 近似变形为抛物线2164y x bx c =-++一部分,则AC =______cm .21.把函数y =(x ﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为_____.22.抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为________23.小明从如图所示的二次函数()20y ax bx c a =++≠图象中,观察得出了下面五条信息:①32a b =;②240b ac -=;③ 0ab >;④0a b c ++<;⑤20b c +>.你认为正.确.信息的有_______________.(请填序号)24.已知二次函数()232y x m x m =-+-+的顶点在y 轴上,则其顶点坐标为___________.25.如图,在直角坐标系中,点A ,C 在x 轴上,且8AC =,10AB =,90ACB ∠=,抛物线经过坐标原点O 和点A ,若将点B 向右平移5个单位后,恰好与抛物线的顶点D 重合,则抛物线的解析式为_______.26.已知点()1,A a m y -、()2,B a n y -、()3,C a b y +都在二次函数221y x ax =-+的图象上,若0m b n <<<,则1y 、2y 、3y 的大小关系是_________.三、解答题27.如图,在平面直角坐标系中,抛物线(部分)刻画了某果园年初以来累积利润y (万元)与销售时间x (月)之间的关系(即当年前x 个月的利润总和为y ,y 和x 之间的关系).根据图象提供的信息,请解答下列问题:(1)求y 与x 的函数关系式;(2)求第8个月该果园所获利润是多少万元?(3)求到哪个月末时,该果园累积利润可达到30万元?28.某工厂大门是抛物线形水泥建筑,大门地面宽AB为4m,顶部C距离地面的高度为4.4m,现有一辆货车,其装货宽度为2.4m,高度2.8米,请通过计算说明该货车能否通过此大门?29.已知关于x的方程(k-1)x2+(2k-1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=(k-1)x2+(2k-1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围.(3)已知抛物线y=(k-1)x2+(2k-1)x+2恒过定点,求出定点坐标30.某超市经销一种商品,每千克成本为40元,经试销发现,该种商品的每天销售量y (千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x(元/千克)45505560销售量y(千克)70605040y x(2)为了尽可能提高销量且保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?。

云南省曲靖市师宗县五龙民族中学2019秋人教版数学九年级上册第22章 二次函数 小结与复习(2) 教案

教学时间课题《二次函数》小结与复习(2)课型新授课教学目标知识和能力会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。

过程和方法情感态度价值观教学重点用待定系数法求函数的解析式、运用配方法确定二次函数的特征。

教学难点会运用二次函数知识解决有关综合问题。

教学准备教师多媒体课件学生“五个一”课堂教学程序设计设计意图一、例题精析,强化练习,剖析知识点用待定系数法确定二次函数解析式.例:根据下列条件,求出二次函数的解析式。

(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。

(2)抛物线顶点P(-1,-8),且过点A(0,-6)。

(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。

(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。

学生活动:学生小组讨论,并让学生阐述解题方法。

教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c (a≠0)(2)顶点式:y=a(x-h)2+k (a≠0) (3)两根式:y=a(x-x1)(x-x2) (a≠0)当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。

当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。

当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。

(1)若m为定值,求此二次函数的解析式;(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。

二、知识点串联,综合应用例:如图,抛物线y =ax 2+bx +c 过点A(-1,0),且经过直线y =x -3与坐标轴的两个交点B 、C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22.1 二次函数
教学时间课题23.1 二次函数(5)课型新授课
教学目标知识

能力
1.使学生理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系。

2.会确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标。

过程

方法
让学生经历函数y=a(x-h)2+k性质的探索过程,理解函数y=a(x-h)2+k的性质。

教学重点确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标,理解函数y=a(x -h)2+k的图象与函数y=ax2的图象之间的关系,理解函数y=a(x-h)2+k的性质
教学难点正确理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x -h)2+k的性质
课堂教学程序设计设计意图
一、提出问题
1.函数y=2x2+1的图象与函数y=2x2的图象有什么关系?
(函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的) 2.函数y=2(x-1)2的图象与函数y=2x2的.图象有什么关系?
(函数y=2(x-1)2的图象可以看成是将函数y=2x2的图象向右平移1个单位得到的,见P10图23.2.3)
3.函数y=2(x-1)2+1图象与函数y=2(x-1)2图象有什么关系?函数y=2(x-1)2+1有哪些性质?
二、试一试
你能填写下表吗?
y=2x2向右平

的图象1个单位y=2(x-
1)2
向上平移
1个单位y=2(x-1)2+1
的图象
开口方

向上
对称轴y轴
顶点(0,0)
问题2:从上表中,你能分别找到函数y=2(x-1)2+1与函数y=2(x-1)2、y=2x2图象的关系吗?
问题3:你能发现函数y=2(x-1)2+1有哪些性质?
对于问题2和问题3,教师可组织学生分组讨论,互相交流,让各组代表发言,达成共识;
函数y=2(x-1)2+1的图象可以看成是将函数y=2(x-1)2的图象向上平称1个单位得到的,也可以看成是将函数y=2x2的图象向右平移1个单位再向上平移1个单位得到的。

当x<1时,函数值y随x的增大而减小,当x>1时,函数值y随x的增大而增大;当x=1时,函数取得最小值,最小值y=1。

三、做一做
问题4:在图23.2.3中,你能再画出函数y=2(x-1)2-2的图象,并将它与函数y=2(x-1)2的图象作比较吗?
教学要点
1.在学生画函数图象时,教师巡视指导;
2.对“比较”两字做出解释,然后让学生进行比较。

问题5:你能说出函数y=-13(x -1)2+2的图象与函数y=-13
x 2的图象的关系,由此进一步说出这个函数图象的开口方向、对称轴和顶点坐标吗?
(函数y =-13(x -1)2+2的图象可以看成是将函数y=-13
x 2的图象向右平移一个单位再向上平移2个单位得到的,其开口向下,对称轴为直线x=1,顶点坐标是(1,2)
四、课堂练习: P10练习。

五、小结
1.通过本节课的学习,你学到了哪些知识?还存在什么困惑?
2.谈谈你的学习体会。

作业 设计
必做 教科书P14:5(3) 教学 反思。

相关文档
最新文档