18版高中数学第三章指数函数和对数函数3.4.2换底公式学案北师大版必修1
2018版高中数学第三章指数函数和对数函数3.4.2换底公式学案北师大版必修1(含解析)

3.4.2 换底公式1. 能推导出对数的换底公式.(重点)2. 会用对数换底公式进行化简与求值.(难点、易混点)[基础·初探]教材整理 换底公式阅读教材P 83~P 86有关内容,完成下列问题.换底公式:log b N =log a Nlog a b(a ,b >0,a ,b ≠1,N >0).特别地,log a b ·log b a =1,log b a =.1. 判断(正确的打“√”,错误的打“×”) (1)log a b =lg b lg a =ln bln a .( )(2)log 52=log -3 2log -3 5.( )(3)log a b ·log b c =log a c .( ) 【答案】 (1)√ (2)× (3)√ 2. (log 29)·(log 34)=( ) A.14 B.12C .2D .4 【解析】 法一:原式=lg 9lg 2·lg 4lg 3=2lg 3·2lg 2lg 2·lg 3=4.法二:原式=2log 23·log 24log 23=2×2=4.【答案】 D[小组合作型]1681(2)已知log 23=a ,log 37=b ,用a ,b 表示log 4256.【精彩点拨】 在两个式子中,底数、真数都不相同,因而要用换底公式进行换底以便于计算求值.【尝试解答】 (1)log 1627log 8132=lg 27lg 16×lg 32lg 81=lg 33lg 24×lg 25lg 34=3lg 34lg 2×5lg 24lg 3=1516. (2)∵log 23=a ,则1a=log 32,又∵log 37=b ,∴log 4256=log 356log 342=log 37+3·log 32log 37+log 32+1=ab +3ab +a +1.1. 换底公式中的底可由条件决定,也可换为常用对数的底,一般来讲,对数的底越小越便于化简,如a n为底的换为a 为底.2. 换底公式的派生公式:log a b =log a c ·log c b ; log an b m=m nlog a b .[再练一题]1. 化简:(log 43+log 83)(log 32+log 92) 【解】 原式=⎝ ⎛⎭⎪⎫lg 3lg 4+lg 3lg 8⎝ ⎛⎭⎪⎫lg 2lg 3+lg 2lg 9=⎝⎛⎭⎪⎫lg32lg 2+lg 33lg 2⎝ ⎛⎭⎪⎫lg 2lg 3+lg 22lg 3=56log 23·32log 32=54.1836【精彩点拨】 运用换底公式,统一化为以18为底的对数. 【尝试解答】法一:因为log 189=a ,所以9=18a, 又5=18b,所以log 3645=log 2×18(5×9) =log 2×1818a +b=(a +b )·log 2×1818.又因为log 2×1818=1log 18 18×2=11+log 182=11+log 18189=11+1-log 189=12-a,所以原式=a +b2-a.法二:∵18b=5, ∴lo g 185=b ,∴log 3645=log 1845log 1836=log 18 5×9log 18 4×9=log 185+log 1892log 182+log 189=a +b2log 18189+log 189=a +b2-2log 189+log 189=a +b 2-a.法三:∵log 189=a,18b=5,∴lg 9=a lg 18,lg 5=b lg 18, ∴log 3645=lg 9×5 lg 1829=lg 9+lg 52lg 18-lg 9=a lg 18+b lg 182lg 18-a lg 18=a +b2-a.用已知对数的值表示所求对数的值,要注意以下几点: 1 增强目标意识,合理地把所求向已知条件靠拢,巧妙代换; 2 巧用换底公式,灵活“换底”是解决这种类型问题的关键; 3 注意一些派生公式的使用.[再练一题]2. 若本例条件不变,求log 92545(用a ,b 表示).【解】 由18b=5,得log 185=b ,∴log 92545=log 1845log 18925=log 185+log 189log 189-log 1825=b +aa -2b.[探究共研型]探究 1 设光线原来的强度为a ,通过x 块玻璃板以后的强度值为y .试写出y 关于x 的函数关系式.【提示】 依题意得y =a ⎝ ⎛⎭⎪⎫1-110x =a ⎝ ⎛⎭⎪⎫910x ,其中x ≥1,x ∈N .探究 2 探究1中的已知条件不变,求通过多少块玻璃以后,光线强度减弱到原来强度的12以下?(根据需要取用数据lg 3=0.477 1,lg 2=0.301 0)【提示】 依题意得a ⎝ ⎛⎭⎪⎫910x≤a ×12⇒⎝ ⎛⎭⎪⎫910x ≤12⇒x (2lg 3-1)≤-lg 2⇒x ≥0.301 01-2×0.477 1≈6.572,∴x min =7.即通过7块以上(包括7块)的玻璃板后,光线强度减弱到原来强度的12以下.某城市现有人口数为100万,如果年自然增长率为1.2%,试解答下面的问题. (1)写出该城市x 年后的人口总数y (万人)与年数x (年)的函数关系式;(2)计算大约多少年以后,该城市人口将达到120万?(精确到1年)(lg 1.012≈0.005 2,lg 1.2≈0.079 2)【精彩点拨】 先利用指数函数知识列出y 与x 的函数关系式,再利用对数求值. 【尝试解答】 (1)由题意y =100(1+1.2%)x=100·1.012x(x ∈N +). (2)由100·1.012x=120,得1.012x=1.2, ∴x=log 1.0121.2=lg 1.2lg 1.012≈0.079 20.005 2≈15,故大约15年以后,该城市人口将达到120万.解对数应用题的步骤[再练一题]3. 某种汽车安全行驶的稳定性系数μ随使用年数t 的变化规律是μ=μ0e-λt,其中μ0,λ是正常数.经检测,当t =2时,μ=0.90 μ0,则当稳定性系数降为0.50μ0时,该种汽车已使用的年数为__________.(结果精确到1,参考数据:lg 2=0.301 0,lg 3=0.477 1)【解析】 由0.90μ0=μ0(e -λ)2,得e-λ=0.90,又0.50μ0=μ0(e-λ)t,则12=(0.90)t,两边取常用对数,得lg 12= t2lg 0.90,故t =2lg 21-2lg 3=2×0.301 01-2×0.477 1≈13.【答案】 131. 若lg 3=a ,lg 5=b ,则log 53等于( ) A.b aB.a bC .a bD .b a【解析】 log 5 3=lg 3lg 5=ab .【答案】 B2. log 2125·log 3 18·log 5 19=________.。
高中数学北师大版必修1 3.4 教学设计 《换底公式》(数学北师大必修一)

《换底公式》◆教材分析根据教材及学情特点,本课以探究式教学法为主,辅之以讨论法和自学辅导法.以问题为主线,力求创设有效的教学情境,引导学生在观察中思考,在思考中探索,在探索中发现,在发现中收获,在收获中创新,在创新中升华.通过具有一定层次梯度的问题序列,多角度、全方位训练学生思维的聚敛性和发散性.同时注重信息技术与数学课程的整合,借助多媒体设备进行辅助教学.◆教学目标【知识与能力目标】对数换底公式的应用,理解对数换底公式的意义.【过程与方法目标】在学习的过程中体会研究具体函数的过程和方法.【情感态度价值观目标】让学生了掌握其推导方法,初步学会它在对数式恒等变形中的应用。
;培养学生观察问题、分析问题的能力.◆教学重难点◆【教学重点】对数换底公式的应用。
【教学难点】对数换底公式的推导。
教学课件、图表、清单。
从对数的定义可以知道,任意不等于1的正数都可作为对数的底,数学史上,人们经过大量的努力,制作了常用对数表和自然对数表,只要通过查表就能求出任意正数的常用对数或自然对数,这样,如果能将其他底的对数转换为以10为底或以e 为底的对数就能方便地求出任意不等于1的正数为底的对数,那么,怎么转化呢?这就需要一个公式,即对数的换底公式,从而引出课题.【设计意图】设置案例,引出新课题,引起学生的兴趣和思考。
新课讲授1.换底公式(1)log b N =log a Nlog a b (a 、b>0,a 、b≠1,N>0)(2) log a b.log b a =1 (a>0且a≠1,b>0且b≠1)(3) log a b.log b c.log c d = (a ,b ,c ,d>0,且a ,b ,c≠1)2. 证明公式:log b N =log a Nlog a b (a 、b>0,a 、b≠1,N>0)证明:设x=log b N ,则b x =N ,两边取以a 为底的对数,得x ,即。
北师大版数学必修1《3.4.2换底公式》教学设计

§4.2 换底公式----教学设计教材分析本节是在新高中课程标准下新增的内容之一.通常情况下,计算对数需要使用计算工具,而一般的科学计算器只能对常用对数或自然对数进行计算,因此需要用换底公式,化成常用对数或自然对数.前面对数的运算性质只能解决同底对数的加减幂运算,对于乘除束手无策,因此也需要换底公式化不同底为同底,化未知为已知,从而再进行运算.教学目标1.知识与技能(1)理解从特殊到一般的类比推导对数的换底公式的方法,并掌握换底公式;(2)能够灵活地运用换底公式与对数的运算性质进行对数运算与并解决实际问题.2.过程与方法通过设置问题串的方式,让学生通过在问题的引导下自主学习、合作学习经历推导对数的换底公式的过程,培养学生分析问题和解决问题的能力.3.情感态度与价值观让学生探究对数的换底公式,培养学生的探究意识,培养学生严谨的思维品质,感受对数的广泛应用,增强学习的积极性.教学重点和难点教学重点:对数的运算性质及换底公式及其应用.教学难点:灵活地使用对数的运算性质和换底公式进行计算、化简.教学方法与手段教学方法:启发引导式教学.教学手段:多媒体辅助教学.教学过程一、导入课题1.复习对数的定义及运算性质.log15的值呢?借助科学计算器呢?这样如果2.思考:我们能否直接求出lg15、ln2、2能将其他底的对数转化成以10为底或以e 为底的对数就能方便地求出任意不等于1的正数为底的对数.那么,如何转换呢?引出课题换底公式.二、探究课题1、提出问题阅读教材,回答以下问题(通过投影仪提出问题,提供5分钟时间让学生自学探究,适时引导).问题1.如何使用科学计算器计算2log 15?问题2.如果0a >且1a ≠,你能用以a 为底的对数式来表示2log 15吗? 问题3.更一般地,log log (,0,,1,0)log a b a NN a b a b N b=>≠>成立吗?如何证明?问题4.你能用自己的话概括出换底公式吗?活动:学生针对提出的问题,交流讨论,回顾所学,力求转化,教师适时指导,必要时提示学生解题的思路,给学生创造一个互动的学习环境,培养学生的自学能力与创造性思维能力.对于问题1,考虑利用对数的定义,转化成指数方程,再两边取常用对数或自然对数来求解;对于问题2,考虑参考问题1的思路和结果的形式借助对数的定义可以表示;对于问题3,借助问题1、2的思路,利用对数的定义来证明;问题4抓住问题的实质,用准确的语言描述出来,一般是按照从左到右的形式.2、探究结果探究1.设2log 15x =,根据对数的定义,写成指数式,得215x= ①对①式两边取常用对数(两边取对数的依据是什么?),得lg 2lg 15x =,所以lg 15lg 2x =. 这样我们可以用科学计算器中“log ”键算出2lg15log 15 3.9068906lg 2=≈. 如果对①式两边取自然对数,得ln 2ln15x =所以2ln15log 15 3.9068906ln 2=≈. 探究2.如果对①式两边取以a 为底的对数,得log 2log 15a a x =所以log 15log 2a a x =.探究3.证明:设log b x N =,根据对数定义,写成指数式,得xN b =.根据相等的两个正数的同底对数相等,两边取以a 为底的对数,得log log x a a N b =. 而log log x a a b x b =,所以log log a a N x b =. 由于1b ≠,则log 0a b ≠,解出x ,得log log a a Nx b=.因为log b x N =,所以log log log a b a NN b=(板书对数换底公式).探究4.一个数的对数,等于同一底数的真数的对数与底数的对数的商,这样就把一个对数变成了与原来对数的底数不同的两个同底对数的商.三、新知应用例1.用科学计算器计算(精确到0.001): (1)2log 48; (2)8log π. 解:(1)2lg 48log 48 5.585lg 2=≈;(2)8ln log 0.550ln8ππ=≈. 课堂练习1.利用科学计算器计算:2log 10;2log 100;2log 50;3log 20;3log 1000;5log 0.99.活动:让学生通过合作学习,使用计算器完成.看谁算得快,增强合作与竞争意识. 解:2log 10 3.3219≈;2log 100 6.6439≈;2log 50 5.6439≈;3log 20 2.7268≈;3log 1000 6.2877≈;35log 0.99 6.244610-≈-⨯.例2.计算:(1)9log 27; (2)827log 9log 32⋅.活动:学生观察题目,思考讨论,互相交流,教师适时提示,使用换底公式统一底数;根据题目的特点,底数不同,所以考虑把底数统一起来,可以化成常用对数或自然对数,当然以2为底或以3为底的对数也可.在讲授时通过实物展示台放映学生解答过程.分析解答情况.解:⑴392lg 27lg33log 27lg9lg32===.⑵2582732lg3lg 22lg35lg 210log 9log 32lg 2lg33lg 22lg39⋅=⋅=⋅=.点评:灵活应用对数的换底公式是解决问题的关键.再思考活动:从例题的解答过程中,引导学生思考一般性结论,log log m na a nb b m=(强调底数的次方数为分母,真数的次方数为分子),log log 1a b b a ⋅=(强调互为倒数).上题也可直接这样算:(1)233333log 3log 322===原式. (2)332523232510log 3log 2log 3log 2339=⋅=⋅=原式.课堂练习3.利用换底公式证明: (1)1log log m a b b m a=; (2)log log m m a a b b =.活动:学生针对提出的问题,交流讨论,回顾所学,力求转化,教师适时指导,在讲授时可通过实物展示台放映学生解答过程.分析解答情况.证明:(1)log 1log log log m b m a b b b b a m a ==;(2)log log log log log log m m ma a a m a a ab m b b b a m a===.例3.一种放射性物质不断变化为其它物质,每经过一年剩留的质量约为原来的84%,估计约经过多少年,该物质的剩留量是原来的一半(结果保留1个有效数字).解:设最初的质量是1,经过x 年,剩留量是y ,则经过1年,剩留量是0.84y =;经过2年,剩留量是20.84y =; ……经过x 年,剩留量是0.84xy =; 方法一:根据函数关系式列表如下观察表中数据,0.5y ≈时对应有4x =, 即约经过4年,该物质的剩留量是原来的一半. 方法二:依题意得0.840.5x=,用科学计算器计算得0.84ln 0.5log 0.5 3.98ln 0.84x ==≈.即约经过4年,该物质的剩留量是原来的一半.四、课题小结1.换底公式可以完成不同底数的对数式之间的转化,该公式既可以正用,也可逆用,使用时的关键是选择底数,在对数的运算中,应尽量化为同底的对数,以便用于运算.2.不论是指数和对数的互化,还是把底数不同的对数转化为底数相同的对数,都用到了转化与化归的思想,方程思想.另外本堂课题还用到了数学建模思想等.五、课题延伸问题:对数有换底公式,指数有换底公式吗?一般地,根据指数函数的性质可以知道,对于任意的正数a 和b ,总能把a 的指数幂化为b 的指数幂.因为一定存在唯一的常数α,使得a b α=.所以根据实数指数幂的运算性质,得()n n n a b b αα==(log b a α=).问题与思考(1)你能证明指数换底公式吗?(2)已知lg 20.3010=,lg30.4771=,你能否较快地比较1002与653的大小吗?(3)指数换底公式的意义是什么?有什么作用?六、课题分层作业必做题: 教材88页B 组第4题.选做题:(1)已知77log 3,log 4a b ==,求48log 49的值;(2)已知lg lg 2lg(2)x y x y +=-,求的值. 七、板书设计八、教学反思本节课的成功之处:一、本节课采用学生探究的方式教学,充分发挥了学生的积极性和主动性,效果比较好.二、例题由易到难,设置得比较科学,学生做起来比较轻松. 不足之处:一、时间未把握好,课题延伸这一环节没有时间讲.。
高中数学第三章指数函数和对数函数3.4对数3.4.2换底公式课件北师大版必修1

【解析】 (1)lg 5=lloogg66150=log62+q log65=p+q q. (2)∵3x=36,4y=36,
∴x=log336,y=log436,
∴1x=log1336=log13636=log363,
log363
1y=log1436=log13636=log364,
方法归纳,
用已知对数的值表示所求对数的值,要注意以下几点: (1)增强目标意识,合理地把所求向已知条件靠拢,巧妙代换; (2)巧用换底公式,灵活“换底”是解决这种类型问题的关键; (3)注意一些派生公式的使用.
跟踪训练 2 (1)已知 log62=p,log65=q,则 lg 5=________;(用 p,q 表示)
类型二 用已知对数表示其他对数 [例 2] 已知 log189=a,18b=5,用 a,b 表示 log3645.
【解析】 法一:因为 log189=a,所以 9=18a. 又 5=18b, 所以 log3645=log2×18(5×9) =log2×1818a+b=(a+b)·log2×1818. 又因为 log2×1818=log18118×2 =1+l1og182=1+lo1g18198
3.4.2 换底公式
【课标要求】 1.理解换底公式的证明过程,会用换底公式将一般对数转化成自 然对数或常用对数,能正确运用换底公式计算一般对数. 2.能灵活地将换底公式和对数的运算法则结合起来,进行对数运 算.
|新知预习|
对数换底公式 logbN=llooggaaNb (a,b>0,a,b≠1,N>0), 特别 logba=log1ab(a>0,a≠1,b>0,b≠1).
A.18
高中数学第三章指数函数和对数函数3.4第2课时对数的运算性质及换底公式学案(含解析)北师大版必修1

第2课时 对数的运算性质及换底公式 内 容 标 准学 科 素 养 1.掌握对数的运算性质,能运用运算性质进行对数的有关计算.2.了解换底公式、能用换底公式将一般对数化为自然对数或常用对数. 准确定义概念 熟练等价转化 提升数学运算授课提示:对应学生用书第52页[基础认识]知识点一 对数的运算性质预习教材P 80-82,思考并完成以下问题当m >0,N >0时,log a (M +N )=log a M +log a N ,log a (MN )=log a M ·log a N 是否成立? 提示:不一定成立.知识梳理 对数的运算性质 条件 a >0,且a ≠1,M >0,N >0性质 log a (MN )=log a M +log a Nlog a M N=log a M -log a N log a M n =n log a M (n ∈R )思考并完成以下问题(1)换底公式中的底数a 是特定数还是任意数?提示:是大于0且不等于1的任意数.(2)换底公式有哪些作用?提示:利用换底公式可以把不同底数的对数化为同底数的对数,便于运用对数的运算性质进行化简、求值.知识梳理log a b =log c b log c a(a >0,且a ≠1;c >0,且c ≠1;b >0). 2.用换底公式推得的两个常用结论:(1)log a b ·log b a =1(a >0,且a ≠1;b >0,且b ≠1);(2)log am b n =n mlog a b (a >0,且a ≠1;b >0;m ≠0). 知识点三 常用结论思考并完成以下问题结合教材P 81-82,例4和例5,你认为怎样利用对数的运算性质计算对数式的值?提示:第一步:将积、商、幂、方根的对数直接运用运算性质转化.第二步:利用对数的性质化简、求值.知识梳理 常用结论由换底公式可以得到以下常用结论:(1)log a b =1log b a; (2)log a b ·log b c ·log c a =1;(3)log an b n =log a b ;(4)log an b m =m nlog a b ; (5)log 1ab =-log a b . 思考:M ·N >0,则式子log a (M ·N )=log a M +log a N 成立吗?提示:不一定成立.当M >0,N >0时成立;当M <0,N <0时不成立.2.换底公式一般在什么情况下应用?提示:(1)在运算过程中,出现不能直接用计算器或查表获得对数值时,可化成以10为底的常用对数进行运算.(2)在化简求值过程中,出现不同底数的对数不能运用运算法则时,可统一化成以同一个实数为底的对数,再根据运算法则进行化简与求值.[自我检测]1.若a >0,a ≠1,x >0,y >0,x >y ,下列式子中正确的个数是( )①log a x ·log a y =log a (x +y );②log a x -log a y =log a (x -y );③log a ⎝⎛⎭⎫x y =log a x ÷log a y ; ④log a (xy )=log a x ·log a y .A .0B .1C .2D .3解析:根据对数运算性质知4个式子均不正确,③应为log a x y=log a x -log a y ,④应为log a (xy )=log a x +log a y .答案:A2.(log 29)×(log 34)=( ) A.14 B.12C .2D .4 解析:∵log 29×log 34=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=4. 答案:D3.若lg a 与lg b 互为相反数,则a 与b 的关系式为________.解析:∵lg a +lg b =0,∴lg(ab )=0,∴ab =1.答案:ab =1授课提示:对应学生用书第52页探究一 利用对数的运算性质化简求值[例1] 计算下列各式的值:(1)lg 14-2lg 73+lg 7-lg 18; (2)lg 27+lg 8-3lg 10lg; (3)lg 52+23lg 8+lg 5·lg 20+(lg 2)2. [思路点拨] 灵活运用对数的运算性质求解. [解析] (1)法一:lg 14-2lg 73+lg 7-lg 18 =lg(2×7)-2(lg 7-lg 3)+lg 7-lg(32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.法二:lg 14-2lg 73+lg 7-lg 18 =lg 14-lg ⎝⎛⎭⎫732+lg 7-lg 18=lg 14×7⎝⎛⎭⎫732×18=lg 1=0. (2)lg 27+lg 8-3lg 10lg =lg (33)12+lg 23-3lg 1012lg 3×2210=32lg 3+3lg 2-32lg 10lg 3+2lg 2-1=32(lg 3+2lg 2-1)lg 3+2lg 2-1=32. (3)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2=2lg 10+(lg 5+lg 2)2=2+(lg 10)2=2+1=3.方法技巧 1.在应用对数运算性质时应注意保证每个对数式都有意义,应避免出现lg(-5)2=2lg(-5)等形式的错误,同时应注意对数性质的逆用在解题中的应用.譬如在常用对数中,lg 2=1-lg 5,lg 5=1-lg 2的运用.2.对于底数相同的对数式的化简,常用的方法是:(1)“收”,将同底的两对数的和(差)收成积(商)的对数;(2)“拆”,将积(商)的对数拆成对数的和(差).3.对数的化简求值一般是正用或逆用公式,对真数进行处理,选哪种策略化简,取决于问题的实际情况,一般本着便于真数化简的原则进行.跟踪探究 lg 243lg 9的值. 解析:lg 243lg 9=lg 35lg 32=5lg 32lg 3=52. 探究二 利用换底公式化简、求值[例2] 已知lg 2=a ,lg 3=b ,则log 312=( )A.2a +b bB.2a +b aC.a 2a +bD.b 2a +b[思路点拨] 把log 312利用换底公式:log 312=lg 12lg 3建立log 312同a ,b 的关系. [解析] ∵log 312=lg 12lg 3=lg 3+lg 4lg 3=lg 3+2lg 2lg 3, 又lg 2=a ,lg 3=b ,∴log 312=b +2a b.[答案] A延伸探究 把题设条件换成“log 23=b a”试求相应问题. 解析:∵log 23=b a, ∴log 312=log 212log 23=log 23+2log 23=b a +2b a=b +2a b. 方法技巧 1.换底公式的主要用途在于将一般对数化为常用对数或自然对数,然后查表求值,解决一般对数求值的问题.2.换底公式的本质是化异底为同底,这是解决对数问题的基本方法.跟踪探究 2.(1)已知log 23=a,3b =7,用a ,b 表示log 1256;(2)已知log 32=a ,log 37=b ,试用a ,b 表示log 28498. 解析:(1)∵3b =7,∴b =log 37.log 1256=log 356log 312=3log 32+log 371+2log 32=3a +b 1+2a=3+ab a +2. (2)∵log 32=a ,log 37=b ,log 28498=log 3498log 328=log 349-log 38log 34+log 37 =2log 37-3log 322log 32+log 37=2b -3a 2a +b. 探究三 换底公式、对数运算性质的综合应用[例3] (1)设3x =4y =36,求2x +1y的值; (2)若26a =33b =62c ≠1,求证:1a +2b =3c. [思路点拨] 用对数式表示出x ,y ,a ,b ,c 再代入所求(证)式.[解析] (1)∵3x =4y =36,∴x =log 336,y =log 436,∴2x =2log 336=2log 3636log 363=2log 363=log 369, 1y =1log 436=1log 3636log 364=log 364. ∴2x +1y=log 369+log 364=log 3636=1. (2)证明:设26a =33b =62c =k (k >0,且k ≠1).则6a =log 2k ≠0,3b =log 3k ≠0,2c =log 6k ≠0.∴1a =6log 2k =6log k 2,1b =3log 3k=3log k 3, 1c =2log 6k=2log k 6, ∴1a +2b =6log k 2+2×3log k 3=log k 26+log k 36=log k 66=6log k 6=3c, ∴1a +2b =3c. 方法技巧 1.带有附加条件的对数式或指数式的求值问题,需要对已知条件和所求式子进行化简转化,原则是化为同底的对数,以便利用对数的运算性质.要整体把握 对数式的结构特征,灵活运用指数式与对数式的互化.2.解对数方程时,先要对数有意义(真数大于0,底数大于0且不等于1)求出未知数的取值范围,去掉对数值符号后,再解方程,此时只需检验其解是否在其取值范围内即可.跟踪探究 .(1)12(lg x -lg 3)=lg 5-12lg(x -10); (2)lg x +2log (10x )x =2;(3)log (x 2-1)(2x 2-3x +1)=1.解析:(1)方程中的x 应满足x >10,原方程可化为lgx 3=lg 5x -10, ∴x 3=5x -10,即x 2-10x -75=0.解得x =15或x =-5(舍去),经检验,x =15是原方程的解.(2)首先,x >0且x ≠110, 其次,原方程可化为lg x +2lg x1+lg x =2, 即lg 2x +lg xt =lg x ,则t 2+t -2=0,解得t =1或t =-2,即lg x =1或lg x =-2.∴x =10或x =1100. 经检验,x =10,x =1100都是原方程的解. (3)首先,x 2-1>0且x 2-1≠1,即x >1或x <-1且x ≠±2.由2x 2-3x +1>0,得x <12或x >1. 综上可知,x >1或x <-1且x ≠±2.其次,原方程可化为x 2-1=2x 2-3x +1.∴x 2-3x +2=0,∴x =1或x =2.又∵x >1或x <-1且x ≠±2,∴x =2.经检验,x =2是原方程的解.授课提示:对应学生用书第53页[课后小结]1.换底公式可完成不同底数的对数式之间的转化,可正用,逆用;使用的关键是恰当选择底数,换底的目的是利用对数的运算性质进行对数式的化简.2.运用对数的运算性质应注意:(1)在各对数有意义的前提下才能应用运算性质.(2)根据不同的问题选择公式的正用或逆用.[素养培优]忽略对数的真数为正致错易错案例:lg(x +1)+lg x =lg 6易错分析:解对数方程时要注意验根,以保证所得方程的根满足对数的真数为正数,底数为不等于1的正数,否则得到的新方程与原方程不等价,产生了增根,考查概念、定义、数学运算的学科素养.自我纠正:∵lg(x+1)+lg x=lg(x2+x)=lg 6,∴x2+x=6,解得x=2或x=-3,经检验x =-3不符合题意,∴x=2.。
北师大版高中数学必修一教案第三章换底公式

§4.2换底公式一.教学目标: 1.知识与技能①通过实例推导换底公式,准确地运用对数运算性质进行运算, 求值、化简,并掌握化简求值的技能. ②运用对数运算性质解决有关问题. ③培养学生分析、综合解决问题的能力.培养学生数学应用的意识和科学分析问题的精神和态度. 2. 过程与方法①让学生经历并推理出对数的换底公式. ②让学生归纳整理本节所学的知识. 3. 情感、态度、和价值观让学生感觉对数运算性质的重要性,增加学生的成功感,增强学习的积极性. 二.教学重点、难点重点:对数运算的性质与换底公式的应用难点:灵活运用对数的换底公式和运算性质化简求值。
三.学法和教学用具学法:学生自主推理、讨论和概括,从而更好地完成本节课的教学目标. 教学用具:投影仪 四.教学过程 问题提出我们使用的计算器中,“log ”通常是常用对数,如何使用科学计算器计算㏒215? 分析理解 设㏒215=x , 写成指数式得 2x =15两边取常用对数得 Xlg2=lg15 所以x=2lg 15lg 这样就可以使用科学计算器计算㏒键算出㏒215=2lg 15lg ≈3.9068906. 同理也可以使用科学计算器计算ln 键算出㏒215=2ln 15ln ≈3.9068906. 由此我们有理由猜想 ㏒ b N=bNa a log log ( a,b>0,a,b ≠1,N>0).先让学生自己探究讨论,教师巡视,最后投影出证明过程.证明设㏒b N=x,根据对数定义,有 N=b x两边取以a 为底的对数,得㏒a N=㏒a b x故 x ㏒a b =㏒a N ,由于b ≠1则㏒a b ≠0,解得 x=bNa a log log故㏒ b N=bNa a log log由换底公式易知㏒a b=ab log 1例题分析 例7 计算:(1)㏒927; (2)㏒89㏒2732 注:由例7可以猜想并证明 b nmnb a m a log log例8 用科学计算器计算下列对数(精确到0.001): ㏒248 ㏒310 ㏒8∏ ㏒550 ㏒ 1.0822例9 一种放射性物质不断变化为其他物质,每经过一年剩留的质量是原来的84℅,估计约经过多少年,该物质的剩留量是原来的一半(结果保留1个有效数字)。
18版高中数学第三章指数函数和对数函数3指数函数一学案北师大版必修1
3 指数函数(一)学习目标 1.理解指数函数的概念,了解对底数的限制条件的合理性.2.掌握指数函数图像的性质.3.会应用指数函数的性质求复合函数的定义域、值域.知识点一指数函数思考细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成4个,第3次由4个分裂成8个,如此下去,如果第x次分裂得到y个细胞,那么细胞个数y与次数x的函数关系式是什么?这个函数式与y=x2有什么不同?梳理一般地,________________________叫作指数函数,其中x是自变量,函数的定义域是________.特别提醒:(1)规定y=a x中a>0,且a≠1的理由:①当a≤0时,a x可能无意义;②当a>0时,x可以取任何实数;③当a=1时,a x=1(x∈R),无研究价值.因此规定y=a x中a>0,且a≠1.(2)要注意指数函数的解析式:①底数是大于0且不等于1的常数;②指数函数的自变量必须位于指数的位置上;③a x的系数必须为1;④指数函数等号右边不会是多项式,如y=2x+1不是指数函数.知识点二指数函数的图像和性质思考函数的性质包括哪些?如何探索指数函数的性质?梳理指数函数y=a x(a>0,且a≠1)的图像和性质:类型一 求指数函数的解析式例1 已知指数函数f (x )的图像过点(3,π),求函数f (x )的解析式.反思与感悟(1)根据指数函数的定义,a是一个常数,a x的系数为1,且a>0,a≠1.指数位置是x,其系数也为1,凡是不符合这个要求的都不是指数函数.(2)要求指数函数f(x)=a x(a>0,且a≠1)的解析式,只需要求出a的值,要求a的值,只需一个已知条件即可.跟踪训练1 已知指数函数y=(2b-3)a x经过点(1,2),求a,b的值.类型二求指数函数与其他函数复合所得函数的定义域、值域命题角度1 f a x 型例2 求下列函数的定义域、值域.(1)y=3x1+3x;(2)y=4x-2x+1.反思与感悟 解此类题的要点是设a x=t ,利用指数函数的性质求出t 的范围,从而把问题转化为y =f (t )的问题.跟踪训练2 求下列函数的定义域与值域. (1)y =1-⎝ ⎛⎭⎪⎫12x; (2)y =a x -1a x +1(a >0,且a ≠1).命题角度2 af x型例3 求函数y = 32x -1-19的定义域、值域.反思与感悟 y =af (x )的定义域即f (x )的定义域,求y =af (x )的值域可先求f (x )的值域,再利用y =a t的单调性结合t =f (x )的范围求y =a t的范围. 跟踪训练3 求下列函数的定义域、值域.(1)110.3;x y -= (2)y =类型三 指数函数图像的应用 命题角度1 指数函数整体图像例4 在如图所示的图像中,二次函数y =ax 2+bx +c 与函数y =⎝ ⎛⎭⎪⎫b ax 的图像可能是( )反思与感悟 函数y =a x的图像主要取决于0<a <1还是a >1.但前提是a >0且a ≠1. 跟踪训练4 已知函数f (x )=4+a x +1的图像经过定点P ,则点P 的坐标是( )A .(-1,5)B .(-1,4)C .(0,4)D .(4,0)命题角度2 指数函数局部图像例5 若直线y =2a 与函数y =|2x-1|的图像有两个公共点,求实数a 的取值范围.反思与感悟 指数函数是一种基本函数,与其他函数一道可以衍生出很多函数,本例就体现了指数函数图像的“原料”作用.跟踪训练5 函数y =a |x |(a >1)的图像是( )1.下列各函数中,是指数函数的是( ) A .y =(-3)xB .y =-3xC .y =3x -1D .y =(13)x2.若函数y =(2a -1)x(x 是自变量)是指数函数,则a 的取值范围是( ) A .a >0,且a ≠1 B .a ≥0,且a ≠1 C .a >12,且a ≠1D .a ≥123.函数23x y -=的值域是( )A .(0,+∞)B .(-∞,0]C .(0,1]D .[-1,0)4.函数f (x )=ax -b的图像如图所示,其中a ,b 均为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <05.函数f (x )=1-2x+1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1]1.判断一个函数是不是指数函数,关键是看解析式是否符合y =a x(a >0,且a ≠1)这一结构形式,即a x的系数是1,指数是x 且系数为1.2.指数函数y =a x(a >0,且a ≠1)的性质分底数a >1,0<a <1两种情况,但不论哪种情况,指数函数都是单调的.3.由于指数函数y =a x(a >0,且a ≠1)的定义域为R ,即x ∈R ,所以函数y =a f (x )(a >0,且a ≠1)与函数f (x )的定义域相同. 4.求函数y =af (x )(a >0,且a ≠1)的值域的方法如下:(1)换元,令t =f (x ),并求出函数t =f (x )的定义域; (2)求t =f (x )的值域t ∈M ;(3)利用y =a t的单调性求y =a t在t ∈M 上的值域.答案精析问题导学 知识点一思考 y =2x .它的底为常数,自变量为指数,而y =x 2恰好反过来. 梳理 函数y =a x(a >0,且a ≠1) R 知识点二思考 函数的性质通常包括定义域、值域、特殊点、单调性、最值、奇偶性.可以通过描点作图,先研究具体的指数函数性质,再推广至一般. 梳理 (0,1) 0 1 y >1 0<y <1 0<y <1 y >1 增函数 减函数 题型探究例1 解 设f (x )=a x,将点(3,π)代入,得到f (3)=π, 即a 3=π,解得a =π13,于是f (x )=π3x .跟踪训练1 解 由指数函数定义可知2b -3=1,即b =2. 将点(1,2)代入y =a x,得a =2.例2 解 (1)函数的定义域为R (∵对一切x ∈R,3x≠-1). ∵y = 1+3x-11+3x =1-11+3x ,又∵3x>0,1+3x >1,∴0<11+3x <1,∴-1<-11+3x <0,∴0<1-11+3x <1,∴值域为(0,1).(2)定义域为R ,y =(2x )2-2x+1 =(2x-12)2+34,∵2x >0,∴2x=12,即x =-1时,y 取最小值34,同时y 可以取一切大于34的实数,∴值域为[34,+∞).跟踪训练2 解 (1)∵1-⎝ ⎛⎭⎪⎫12x≥0,∴⎝ ⎛⎭⎪⎫12x≤1,解得x ≥0, ∴原函数的定义域为[0,+∞).令t =1-⎝ ⎛⎭⎪⎫12x(x ≥0),则0≤t <1,∴0≤t <1,∴原函数的值域为[0,1). (2)原函数的定义域为R .方法一 设a x=t ,则t ∈(0,+∞).y =t -1t +1=t +1-2t +1=1-2t +1. ∵t >0,∴t +1>1, ∴0<1t +1<1,∴-2<-2t +1<0, ∴-1<1-2t +1<1. 即原函数的值域为(-1,1).方法二 由y =a x -1a x +1(a >0,且a ≠1),得a x=-y +1y -1. ∵a x >0,∴-y +1y -1>0,∴-1<y <1. ∴原函数的值域是(-1,1). 例3 解 要使函数有意义, 则x 应满足32x -1-19≥0, 即32x -1≥3-2.∵y =3x在R 上是增函数, ∴2x -1≥-2,解得x ≥-12.故所求函数的定义域为⎣⎢⎡⎭⎪⎫-12,+∞. 当x ∈⎣⎢⎡⎭⎪⎫-12,+∞时,32x -1∈⎣⎢⎡⎭⎪⎫19,+∞.∴32x -1-19∈[0,+∞). ∴原函数的值域为[0,+∞).跟踪训练3 解 (1)由x -1≠0,得x ≠1, 所以函数定义域为{x |x ≠1}. 由1x -1≠0,得y ≠1, 所以函数值域为{y |y >0且y ≠1}. (2)由5x -1≥0,得x ≥15,所以函数定义域为{x |x ≥15}.由5x -1≥0,得y ≥1, 所以函数值域为{y |y ≥1}.例4 A [根据图中二次函数图像可知c =0, ∴二次函数y =ax 2+bx ,∵b a>0, ∴二次函数的对称轴为x =-b2a <0,排除B 、D.对于A ,C ,都有0<b a<1, ∴-12<-b2a <0,C 不符合.故选A.]跟踪训练4 A [当x +1=0,即x =-1时,a x +1=a 0=1,为常数,此时f (x )=4+1=5. 即点P 的坐标为(-1,5).]例5 解 y =|2x-1|=⎩⎪⎨⎪⎧1-2x,x <0,2x-1,x ≥0,图像如下:11 由图可知,要使直线y =2a 与函数y =|2x -1|的图像有两个公共点,需0<2a <1,即0<a <12. 跟踪训练5 B [函数y =a |x |是偶函数,当x >0时,y =a x.由已知a >1,故选B.] 当堂训练1.D 2.C 3.C 4.D 5.A。
高一数学北师大版必修1教学教案第三章4-2换底公式(4)
《换底公式》教学设计一.教学内容:北师大版数学必修一第三章指数函数与对数函数第4节《换底公式》。
二.三维目标:1、知识与技能(1)理解对数的换地公式思想—两边同时取相同的对数运算(2)进一步掌握对数的运算性质,能灵活运用换底公式化简计算(3)拓展学生思维空间,培养学生的计算能力,交流合作能力,语言表达能力,培养学生探究问题,解决问题的兴趣和能力2、过程与方法.利用多媒体教学,采取学生合作讨论的方法,3、情感态度与价值观通过本章节的学习,使学生明白可以多角度思考问题,未知问题要用已有知识来解决,树立正确的人生价值观,不怕困难,勇于挑战的精神。
三、学生分析学生基础不错,大部分学生学习自觉性很强理解力很强,极少数学生学习吃力,不得方法,通过互助式学习得到帮助,缩小学生学习差距,共同进步。
四、教材分析1.本节的作用和地位本节内容是进一步学习对数运算,通常情况下,计算对数需要使用计算工具,而一般的科学计算器只能对常用对数和自然对数进行计算,因此需要对数换底公式。
2.本节主要内容、换底公式的证明以及应用3.教学重点难点:教学重点:对数的换底公式,教学难点:对数换底公式的证明及公式的合理运用4.课时要求:1课时五、教学理念通过学生自主探究,合作交流,让部分技术水平高的同学带动学习吃力的同学,让学生在参与中学到新的知识,培养相互帮扶的能;通过探究发现新问题,再用已有知识解决问题六、教学策略在教学中,尽量采用合作探究式,提问式,案例分析,例题讲解,练习等手段七、教学手段多媒体教学八、教学过程(一)复习回顾:对数的三条运算性质:如果则,0,0,1,0>>≠>NMaa(1))(log log log MN N M a a a =+ (2)NM N M a a a log log log =- (3))(log log R n M n M a n a ∈=(二)新知探究1. 请同学们用计算器计算下列对数思考1: 如何计算15l 2og =?探究1:设15215log 2=⇒=x x两边取以10为底的对数得探究2: 两边取以e 为底的对数得思考2: 成立吗?且)10(2log 15log 15log 2≠>=a a a a 猜一猜:这就是对数换底公式,下面我们给出证明。
数学北师大版高中必修1北师大版数学必修1第三章第三节《指数函数》学案
指数函数学案一、新课导航1.课时目标(1)了解指数函数模型的实际背景,理解指数函数的含义。
(2)理解函数图象的平移与对称,能运用指数函数的单调性,比较两个指数式值的大小。
(3)会求一类与指数有关的复合函数的定义域、值域、单调性。
2.自主预习(1)函数(0,1)x y a a a =>≠叫做指数函数,其中自变量是x ,函数定义域是,值是 。
图象过定点 。
(2)(0,1)x y a a a =>≠,当1a >时函数在区间上是 函数;当a ∈ 时,函数在区间(,)-∞+∞是减函数。
(3)已知0a >,1a ≠,x y a =-与x y a =的图象关于 对称;x y a -=与xy a =的图象关于 对称。
(4)已知0a >,1a ≠,0h >,由x y a =的图象向 平移个单位,得到x h y a +=的图象;向 平移 个单位,得到x h y a -=的图象。
二、新课导学【新知探究】 若函数2(55)xy a a a =-+⋅是指数函数,则a 的值为( )A.1a =或4a =B.1a =C.4a =D.0a >且1a ≠ 【温馨提醒】 解答指数函数概念问题时要抓住指数函数解析式的特征:(1)指数里面只有x ,且次数为1,不能为2x ,(2)指数式x a 的系数为1,但要注意有些函数表面上看不具有指数函数解析式的形式,但可以经过运算转化为指数函数的标准形式。
【典例探究】知识点1:利用指数函数的单调性比较指数式的大小例1.比较下列各组数的大小:(1)0.1和0.2; (2)162011()2012和152012()2011-;(3)20.8-和125()3-; (4)13a 和12a ,(0a >,1a ≠).思路分析:当两个幂形数底数相同时,要比较这两个数的大小,可根据它们的特征构造相应的指数函数,借助函数的单调性来比较大小。
解:(1)∵01<<,∴x y =在(,)-∞+∞上是减函数,又0.10.2<,故0.10.2>. (2)116620112012()()20122011-=, 由2012()2011x y =在R 上为增函数, 116520122012()()20112011-->即116520112012()()20122011-> (3)由20.81->而125()13-<,可知12250.8()3--> (4)当1a >时,1132a a <,当01a <<时,1132a a >名师指引:此题中第(3)小题的两个数不能看成某个指数函数的两个函数值,此时可以借助一些特殊数如0或1来搭桥间接比较两个数的大小,而(2)小题则可以通过指数运算化为底数相同的两个幂,构造指数函数来比较大小。
数学北师大版必修1精品教案:3.4.2《换底公式》
对数换底公式[教学目的]使学生理解对数换底公式的意义,掌握其推导方法,初步学会它在对数式恒等变形中的应用。
[教学重点]对数换底公式的应用[教学难点]对数换底公式的推导一、新课引入:已知lg2=0.3010,lg3=0.4771,求log 65=?像log 65这样的对数值是不能直接从常用对数表中查出的。
能不能将以5为底的对数,换成以10为底的对数呢?这就要学习对数换底公式。
什么是对数换底公式?怎样用我们所掌握的知识来得到它呢?又如何运用它呢?这就是本节课要解决的问题。
二、新课讲解: 公式:b N N a a b log log log = 证明:设N log x b =,则N b x =,两边取以a 为底的对数,得x Nlog b log a a =b log N log x a a =⇒,即b log N log N log a a b =。
1、成立前提:b>0且b ≠1,a>0,且a ≠12、公式应用:对数换底公式的作用在于“换底”,这是对数恒等变形中常用的工具。
一般常换成以10为底。
3、自然对数 lnN=log N e e=2.71828三、巩固新课:例1、求证:1:1a log b log b a =⋅2: b log m n b log a n a m =例2、求下列各式的值。
(1)、log 98•log 3227(2)、(log 43+log 83)•(log 32+log 92)(3)、log 49•log 32(4)、log 48•log 39(5)、(log 2125+log 425+log 85)•(log 52+log 254+log 1258)例3、若log 1227=a,试用a 表示log 616.解:法一、换成以2为底的对数。
法二、换成以3为底的对数。
法三、换成以10为底的对数。
练习:已知log 189=a,18b =5,求log 3645。
例4、已知12x =3,12y =2,求y x x+--1218的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.4.2 换底公式
1. 能推导出对数的换底公式.(重点)
2. 会用对数换底公式进行化简与求值.(难点、易混点)
[基础·初探]
教材整理 换底公式
阅读教材P 83~P 86有关内容,完成下列问题.
换底公式:log b N =log a N
log a b
(a ,b >0,a ,b ≠1,N >0).
特别地,log a b ·log b a =1,log b a =
.
1. 判断(正确的打“√”,错误的打“×”) (1)log a b =lg b lg a =ln b
ln a .( )
(2)log 52=
log
-2
log
-
5
.( ) (3)log a b ·log b c =log a c .( ) 【答案】 (1)√ (2)× (3)√ 2. (log 29)·(log 34)=( ) A.14 B.1
2
C .2
D .4 【解析】 法一:原式=lg 9lg 2·lg 4lg 3=2lg 3·2lg 2lg 2·lg 3=4.
法二:原式=2log 23·log 24
log 23=2×2=4.
【答案】 D
[小组合作型]
1681
(2)已知log 23=a ,log 37=b ,用a ,b 表示log 4256.
【精彩点拨】 在两个式子中,底数、真数都不相同,因而要用换底公式进行换底以便于计算求值.
【尝试解答】 (1)log 1627log 8132=lg 27lg 16×lg 32
lg 81
=lg 33
lg 24×lg 25
lg 34=
3lg 34lg 2×5lg 24lg 3=1516. (2)∵log 23=a ,则1
a
=log 32,又∵log 37=b ,
∴log 4256=log 356log 342=log 37+3·log 32log 37+log 32+1=ab +3
ab +a +1
.
1. 换底公式中的底可由条件决定,也可换为常用对数的底,一般来讲,对数的底越小越便于化简,如a n
为底的换为a 为底.
2. 换底公式的派生公式:log a b =log a c ·log c b ; log an b m
=m n
log a b .
[再练一题]
1. 化简:(log 43+log 83)(log 32+log 92) 【解】 原式=⎝ ⎛⎭⎪⎫lg 3lg 4+lg 3lg 8⎝ ⎛⎭
⎪
⎫lg 2lg 3+lg 2lg 9
=⎝
⎛⎭⎪⎫lg32lg 2+lg 33lg 2⎝ ⎛⎭
⎪
⎫lg 2lg 3+lg 22lg 3
=56log 23·32log 32=54
.
1836【精彩点拨】 运用换底公式,统一化为以18为底的对数. 【尝试解答】
法一:因为log 189=a ,所以9=18a
, 又5=18b
,
所以log 3645=log 2×18(5×9) =log 2×1818
a +b
=(a +b )·log 2×1818. 又因为log 2×1818=
1
log
18
=
11+log 182=1
1+log 18
18
9
=
11+1-log 189=1
2-a
,
所以原式=a +b
2-a
.
法二:∵18b
=5, ∴lo g 185=b ,
∴log 3645=log 1845log 1836=
log
18
log
18
=
log 185+log 1892log 182+log 189=a +b
2log 1818
9
+log 189
=
a +b
2-2log 189+log 189=a +b 2-a
.
法三:∵log 189=a,18b
=5,∴lg 9=a lg 18,lg 5=b lg 18, ∴log 3645=
lg 182
9
=
lg 9+lg 52lg 18-lg 9=a lg 18+b lg 182lg 18-a lg 18=a +b
2-a
.
用已知对数的值表示所求对数的值,要注意以下几点:增强目标意识,合理地
把所求向已知条件靠拢,巧妙代换;巧用换底公式,灵活“换底”是解决这种类型
问题的关键;
注意一些派生公式的使用
.
[再练一题]
2. 若本例条件不变,求log 9
2545(用a ,b 表示).
【解】 由18b
=5,得log 185=b ,
∴log 92545=log 1845log 18
9
25
=
log 185+log 189log 189-log 1825=b +a
a -2b
.
[探究共研型]
探究 1 设光线原来的强度为a ,通过x 块玻璃板以后的强度值为y .试写出y 关于x 的函数关系式.
【提示】 依题意得y =a ⎝ ⎛⎭⎪⎫1-110x =a ⎝ ⎛⎭
⎪⎫910x ,其中x ≥1,x ∈N .
探究 2 探究1中的已知条件不变,求通过多少块玻璃以后,光线强度减弱到原来强度的1
2
以下?(根据需要取用数据lg 3=0.477 1,lg 2=0.301 0)
【提示】 依题意得a ⎝ ⎛⎭⎪⎫910x
≤a ×12⇒⎝ ⎛⎭⎪⎫910x ≤12
⇒x (2lg 3-1)≤-lg 2⇒x ≥0.301 0
1-2×0.477 1≈6.572,
∴x min =7.
即通过7块以上(包括7块)的玻璃板后,光线强度减弱到原来强度的1
2
以下.
某城市现有人口数为100万,如果年自然增长率为1.2%,试解答下面的问题. (1)写出该城市x 年后的人口总数y (万人)与年数x (年)的函数关系式;
(2)计算大约多少年以后,该城市人口将达到120万?(精确到1年)(lg 1.012≈0.005 2,lg 1.2≈0.079 2)
【精彩点拨】 先利用指数函数知识列出y 与x 的函数关系式,再利用对数求值. 【尝试解答】 (1)由题意y =100(1+1.2%)x
=100·1.012x
(x ∈N +). (2)由100·1.012x
=120,得1.012x
=1.2, ∴x
=log 1.0121.2=lg 1.2lg 1.012≈0.079 20.005 2≈15,
故大约15年以后,该城市人口将达到120万.
解对数应用题的步骤
[再练一题]
3. 某种汽车安全行驶的稳定性系数μ随使用年数t 的变化规律是μ=μ0e
-λt
,其中
μ0,λ是正常数.经检测,当t =2时,μ=0.90 μ0,则当稳定性系数降为0.50μ0时,该种汽车已使用的年数为__________.(结果精确到1,参考数据:lg 2=0.301 0,lg 3=0.477 1)
【解析】 由0.90μ0=μ0(e -λ
)2,得e
-λ
=0.90,
又0.50μ0=μ0(e
-λ
)t
,
则12=(0.90)t
,两边取常用对数,得lg 12
= t
2
lg 0.90,
故t =
2lg 21-2lg 3=2×0.301 0
1-2×0.477 1
≈13.
【答案】 13
1. 若lg 3=a ,lg 5=b ,则log 53等于( ) A.b a
B.a b
C .a b
D .b a
【解析】 log 5 3=lg 3lg 5=a
b .
【答案】 B
2. log 2125·log 3 18·log 5 1
9
=________.
【解析】 原式=lg 125lg 2·lg 18lg 3·lg 19
lg 5
=
-
-
-
lg 2lg 3lg 5
=-12.
【答案】 -12
3. log 332·log 227=________. 【解析】 log 332·log 227 =log 325
·log 233
=5log 32·3log 23 =15·lg 2lg 3·lg 3lg 2
=15. 【答案】 15
4. 一种放射性物质不断变化为其他物质,每经过一年剩留的质量是原来的84%,估计约经过多少年,该物质的剩留量是原来的一半.(结果保留1个有效数字)
【解】 设最初的质量是1,经过x 年,剩留量是y ,则y 与x 的关系式为y =0.84x
.依题意得0.84x
=0.5,化为对数式,得log 0.840.5=x ,由换底公式知x =ln 0.5ln 0.84,用科学
计算器计算得x ≈3.98,即约经过4年,该物质的剩留量是原来的一半.。