2018年秋八年级数学沪科版课件:解题技巧专题:等腰三角形中利用“三线合一”作辅助线.pptx (共13张PPT)
沪科版八年级上册数学第15章 轴对称图形与等腰三角形 活用“三线合一”巧解题

7.如图,已知 AB∥CD,AE 平分∠BAC,点 E 为 BD 的中点. 求证:(1)CE 平分∠ACD;
证明:延长 AE 交 CD 的延长线于点 F. ∵AB∥CD,∴∠BAE=∠F,∠B=∠EDF. ∵点 E 为 BD 的中点,∴BE=DE,∴△ABE≌△FDE, ∴AE=FE. ∵AE 平分∠BAC,∴∠BAE=∠CAE, ∴∠CAE=∠F,∴AC=CF. 又∵AE=FE,∴CE 平分∠ACD.
(2)AC=AB+CD.
证明:由(1)知△ABE≌△FDE,∴AB=FD. ∴AC=CF=CD+DF=AB+CD.
证明:连接 ED,DF.∵AB=AC,∴∠B=∠C.
BE=CD, 在△BED 和△CDF 中,∠B=∠C,∴△BED≌△CDF,
BD=CF,
∴DE=DF.∵G 是 EF 的中点,∴DG⊥EF.
6.如图,在△ABC 中,AB=AC,BD⊥AC 于点 D,求证: ∠DBC=12∠BAC.
证明:过点 A 作 AF⊥BC 于点 F. ∵AB=AC,AF⊥BC,∴∠CAF=∠BAF=12∠BAC. ∵AF⊥BC,BD⊥AC,∴∠CAF+∠C=∠DBC+∠C=90°. ∴∠DBC=∠CAF.∴∠DBC=12∠BAC.
第15章 轴对称图形与等腰三角形
15.3等腰三角形 第5课时 活用“三线合一”巧解题
提示:点击 进入习题
答案显示
1 见习题 2 见习题 3 见习题 4 见习题 5 见习题 6 见习题 7 见习题
1.【马鞍山 12 中期中】如图,在△ABC 中,AB=AC,D 是 BC 边上的中点,AD=AE,∠1=30°,求∠EDC 的度数.
证明:连接 AD.∵AB=AC,D 为 BC 的中点,∴∠BAD=∠CAD. ∵AB=AC,∠BAC=90°, ∴∠B=∠C=45°,∠BAD=∠CAD=45°. ∴∠B=∠CAD=∠BAD=45°.∴BD=AD. 又∵BE=AF,∴△BDE≌△ADF(SAS).∴DE=DF.
三线合一解题PPT课件

A
E3 B
2
D
1
C
18
1、当题目中出现等腰三角形和“三线” 之一时,直接得到其余两线的性质,
但表达要规范; 2、当题目中没有出现等腰三角形时, 要善于发现“补形”的条件:是否能 产生“两线合一”的情境?
3、应用“三线合一基本图形”是一个重 要 的解题策略,为我们解决问题又提 供了一种手段。
4
在△ABC中,对于以下四个条件
①AB=AC或(∠B=∠ C)
② ∠BAD=∠CAD
A
③ AD⊥BC
④ BD=CD
我们已经知道了 ① ②
①③ ①④
思考: ② ③
②④
③
④
②B
D
C
①
①
③④
①
5
在△ABC中 ①AB=AC或(∠B=∠ C)
A
② ∠BAD=∠CAD
③ AD⊥BC
④ BD=CD
已知:
B
D
C
求证:CE=ED
A
C
D
B'
E
B
9
例3.已知:如图,在△ABC中,AB=AC, E在 AC上,D 在BA的延长线上,
AD=AE,连接DE.求证:DE⊥BC.
D
A
E
B
C
10
添加辅助线思路
图中AR这条线段的引出可以看成是: 1 .过A点作DE的平行线. 2 .过A点作BC的垂线. 3 . ∠BAC的角平分线. 4 . BC边的中线.
证明:∵∠1=∠2 (对顶角相等) ∠A=∠D=90° AB=CD
∴△ABF≌△DCF (AAS) ∴BF=CF ∴ △BCF是等腰三角形. 又 E是BC的中点, ∴EF是∠BFC的角平分线.
最新2019-2018秋沪科版八年级数学上册第15章教学课件:15.3 第1课时 等腰三角形的性质定理及推论(共36张PPT

系,∠ABC、∠C呢?
x
⌒
∠BDC= ∠A+ ∠ABD=2 ∠A=2 ∠ABD,
∠ABC= ∠BDC=2 ∠A,
∠C= ∠BDC=2 ∠A.
(2)设∠A=x,请把△ ABC的内角和用含
2x B
x的式子表示出来.
∵ ∠A+ ∠ABC+ ∠ C=180 ° ∴x+2x+2x=180 °,
D 2x
C
解:∵AB=AC,BD=BC=AD, ∴∠ABC=∠C=∠BDC, ∠A=∠ABD.
4.(1)等腰三角形一个底角为75°,它的另外两个角为 __7_5_°, 3_0_°;
(2)等腰三角形一个角为36°,它的另外两个角为 _7_2_°__,_7_2_°__或__3_6_°__,1_0_8_°_;
(3)等腰三角形一个角为120°,它的另外两个角为 30°,30°.
5.在△ABC中, AB=AC,AB的垂直平分线与AC 所在的直线相交得的锐角为50°,则底角的大小为 __7_0_°__或__2_0_°_. A
B
DC
BD=DC(作图),
应用格式:
AD=AD(公共边),
∵AB=AC(已知)
∴△ABD≌△ACD(SSS). ∴∠B=∠C(等边对等角)
∴∠B=∠C(全等三角形对应角相等).
证法2: 证明:作顶角∠BAC的平分线AD, 交BC于点D.
∵AD平分∠BAC , ∴∠1=∠2.
在△ABD与△ACD中, AB=AC(已知), ∠1=∠2(已证), AD=AD(公共边), ∴ △ABD ≌ △ACD(SAS), ∴ ∠B=∠C.
图①
图②
证明:(1)如图①,过A作AG⊥BC于G. ∵AB=AC,AD=AE, ∴BG=CG,DG=EG, ∴BG-DG=CG-EG, ∴BD=CE; (2)∵BD=CE,F为DE的中点, ∴BD+DF=CE+EF, ∴BF=CF. ∵AB=AC,∴AF⊥BC.
等腰三角形的性质2(三线合一)PPT教学课件

A
∠ADB =∠ A__D_C__=_9_0_°
B
D
C
19
已知:AB=AE,BC=ED, ∠B=∠E, F是CD的中点.求证:AF⊥CD
A
B
C
有什么共同点?
有两条边相等
等腰三角形中,相等的两边叫做腰,另一边叫做底边, 两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
6
如图:在△ABC中,AB=AC,
它的各部分名称分别是什么?
(1)相等的两条边都叫做腰。
(2)另一边叫底边。
腰
(3)两腰的夹角∠A叫顶角。
顶角 A
腰
(4)腰与底边夹角∠B、∠C叫底角。
顶角的平分线与底边的关系 ?三线合一.exe
A
结论:等腰三角形顶角的平分线平分 底边并且垂直于底边。
性质定理:等腰三角形的顶角平分线、
底边上的中线、底边上高的互相重合。
(简称:三线合一)
B
D
C
15
你能发现什么现象?
⒈ 等腰三角形是个轴对称图形; 2 ∠B=∠C
等腰三角形的两个底角相等。(等边对等角)
∴ ∠B=∠C(等边对等角)B
D
C
∴ ∠B= ∠C= 1 (180 °-∠BAC)=40 °(三角形
内角和定理)
2
又∵AD⊥BC(已知)
∴ ∠BAD= ∠CAD(等腰三角形顶角的平分线与底边 上的高互相重合)
∴ ∠BAD= ∠CAD=50°
18
同步练习1
解题技巧专题:利用等腰三角形的'三线合一'作辅助线与构造等腰三角形的解题技巧(6类热点题型讲练)解析

第05讲解题技巧专题:利用等腰三角形的'三线合一'作辅助线与构造等腰三角形的解题技巧(6类热点题型讲练)目录【考点一等腰三角形中底边有中点时,连中线】 (1)【考点二等腰三角形中底边无中点时,作高】 (6)【考点三利用平行线+角平分线构造等腰三角形】 (12)【考点四过腰或底作平行线构造等腰(边)三角形】 (15)【考点五巧用“角平分线+垂线合一”构造等腰三角形】 (24)【考点六利用倍角关系构造新等腰三角形】 (28)【考点一等腰三角形中底边有中点时,连中线】例题:(2023上·浙江宁波·八年级统考期末)如图,在ABC 中,120BAC ∠=︒,AB AC =,D 为BC 的中点,DE AC ⊥于E .(1)求EDC ∠的度数;(2)若2AE =,求CE 的长.【答案】(1)60︒(2)6【分析】本题考查了等腰三角形的“三线合一”,含30︒角的直角三角形的性质等知识,(1)连接AD ,根据等腰三角形的“三线合一”即可作答;(2)根据含30︒角的直角三角形的性质即可作答.【详解】(1)连接AD ,∵AB AC =,120BAC ∠=︒,∴AD BC ⊥,AD 平分BAC ∠,∴1602∠=∠=︒DAC BAC ,ADC ∠1.(2023上·北京·八年级期末)如图,在ABC 中,AB AC =,D 是BC 的中点,过A 作EF BC ∥,且AE AF =.求证:(1)DE DF =;(2)BG CH =.【答案】(1)见解析(2)见解析【分析】(1)连接AD ,利用等腰三角形“三线合一"的性质得AD BC ⊥,再利用平行线的性质得90DAF ADB ∠=∠=︒,从而说明AD 垂直平分EF ,则有DE DF =;(2)利用等角的余角相等EDB FDC ∠=∠,再利用ASA 证明BDG CDH ≌,从而证明结论.【详解】(1)证明:连接AD ,ABAC =,点D 为BC 的中点,∴AD BC ⊥,∴90ADB ∠=︒,EF BC ∥,∴90DAF ADB ∠=∠=︒,∴AD EF ⊥,AE AF =,∴AD 垂直平分EF ,∴DE DF =;(2),,DE DF DA EF =⊥ ,EAD FAD ∴∠=∠,ADB ADC ∠=∠ ,EDB FDC ∴∠=∠,AB AC =,B C ∴∠=∠在BDG 和CDH △中,,B C BD CD BDG CDH ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA),BDG CDH ∴△≌△.BG CH ∴=【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定与性质,线段垂直平分线的性质,余角的性质,熟练掌握等腰三角形“三线合一"的性质是解题的关键.2.(2023上·辽宁葫芦岛·八年级统考期末)如图,在ABC 中,AB 的垂直平分线EF 交BC 于点E ,交AB 于点F ,D 为线段CE 的中点,且BE AC =.(1)求证:AD BC ⊥.(2)若90BAC ∠=︒,2DC =,求BD 的长.【答案】(1)见解析(2)6【分析】(1)连接AE ,根据线段垂直平分线的性质得到BE AE =,证明AE AC =,根据等腰三角形的三线合一证明结论;(2)证明AEC △为等边三角形,根据等边三角形的性质解答即可.【详解】(1)证明:连接AE ,EF 是AB 的垂直平分线,BE AE ∴=,BE AC = ,AE AC ∴=,AEC ∴ 是等腰三角形,D 为线段CE 的中点,AD BC ∴⊥;(2)解:BE AE = ,EAB B ∴∠=∠,2AEC EAB B B ∴∠=∠+∠=∠,AE AC = ,AEC C ∴∠=∠,2C B ∴∠=∠,90BAC ∠=︒ ,60C ∴∠=︒,AEC ∴ 为等边三角形,2DC ED ==,24AE EC BE DC ∴====,426BD BE ED ∴=+=+=.【点睛】本题考查的是线段垂直平分线的性质、等腰三角形的性质、等边三角形的判定和性质,掌握等腰三角形的三线合一是解题的关键.3.(2023上·全国·八年级专题练习)如图,已知ABC 中,AB AC =,90BAC ∠=︒,点D 为BC 的中点,点E 、F 分别在直线AB AC 、上运动,且始终保持AE CF =.(1)如图①,若点E F 、分别在线段AB AC 、上,DE 与DF 相等且DE 与DF 垂直吗?请说明理由;(2)如图②,若点E F 、分别在线段AB CA 、的延长线上,(1)中的结论是否依然成立?说明理由.【答案】(1)DE DF =且DE DF ⊥,见解析(2)成立,见解析【分析】(1)先利用等腰直角三角形的性质得到45BAD DAC B C ∠=∠=∠=∠=︒和AD BD DC ==,再证明AED CFD SAS ≌(),利用全等三角形的性质即可求解;(2)利用等腰直角三角形的性质得到45BAD DAC B C ∠=∠=∠=∠=︒和AD BD DC ==,再证明AED CFD SAS ≌(),利用全等三角形的性质即可求解.【详解】(1)DE DF =且DE DF ⊥,理由是:如图①,连接AD ,∵90BAC ∠=︒,AB AC =,D 为BC 中点,∴45BAD DAC B C ∠=∠=∠=∠=︒,∴AD BD DC ==,在AED △和CFD △中,AE CF EAD DAC AD DC =⎧⎪∠=∠⎨⎪=⎩∴AED CFD SAS ≌(),∴DE DF =,ADE CDF ∠=∠,又∵90CDF ADF ∠+∠=︒,∴90ADE ADF ∠+∠=︒,∴90EDF ∠=︒,∴DE DF ⊥.(2)若点E F 、分别在线段AB ,CA 的延长线上,(1)中的结论依然成立,如图②,连接AD ,理由如下:∵AB AC =,90BAC ∠=︒,点D 为BC 的中点,∴45BAD DAC B C ∠=∠=∠=∠=︒,∴AD BD DC ==,在AED △和CFD △中,AE CF EAD DAC AD DC =⎧⎪∠=∠⎨⎪=⎩∴AED CFD SAS ≌();∴DE DF ADE CDF =∠=∠,,又∵90CDF ADF ∠-∠=︒,∴90ADE ADF ∠-∠=︒,∴90EDF ∠=︒,∴DE DF ⊥.【点睛】本题考查了等腰直角三角形的性质和全等三角形的判定与性质,解题关键是正确作出辅助线构造全等三角形.【考点二等腰三角形中底边无中点时,作高】例题:(2023上·福建厦门·八年级厦门一中校考期中)如图,已知60AOB ∠=︒,点P 在边OA 上,12OP =,点M N 、在边OB 上,PM PN =,若5OM =,求MN 的长.【答案】2【分析】本题考查了等腰三角形的性质、含角形的性质可得CM 练掌握等腰三角形的三线合一以及直角三角形中PM PN = ,PC ⊥CM CN ∴=,在OPC 中,PCO ∠162OC OP ∴==,5OM = ,1.(2023上·河南省直辖县级单位·八年级校联考期末)在ABC 中,点,D E 是边BC 上的两点.(1)如图1,若AB AC =,AD AE =.求证:BD CE =;(2)如图2,若90BAC ∠=︒,BA BD =,设B x ∠=︒,CAD y ∠=︒.(2)①猜想:2x y =,理由是:∵BA BD =,B x ∠=︒,∴(11802BAD BDA ∠=∠=︒-∠∵90BAC ∠=︒,CAD y ∠=︒,∴90BAD CAD ∠+∠=︒,即90整理得:2x y =;(1)如图1,当点E 与点C 重合时,AD 与CB '的位置关系是表示)(2)如图2,当点E 与点C 不重合时,连接DE .①用等式表示BAC ∠与DAE ∠之间的数量关系,并证明;②用等式表示线段BE ,CD ,DE 之间的数量关系,并证明.则90AMC ADC ∠∠=︒=∵AB AC =,∴1122CM BM BC ===在ACD 与ACM △中,∵AB AC =,∴B ACB ∠=∠,∵ACB ACB '∠=∠,∴B ACB ACD '∠=∠=∠【考点三利用平行线+角平分线构造等腰三角形】例题:(2024上·北京西城·八年级校考期中)如图,在ABC 中,BD 平分ABC ∠,DE CB ∥,F 是BD 的中点.(1)求证:BDE 是等腰三角形(2)若50ABC ∠=︒,求DEF ∠的度数.【答案】(1)见解析(2)65︒【分析】本题考查了等腰三角形的判定与性质,熟记相关定理内容是解题关键.(1)由角平分线的定义得EBD CBD ∠=∠,由DE CB ∥得EDB CBD ∠=∠即可求证;(2)先求出EDB ∠,根据“三线合一”得EF BD ⊥,即可求解.【详解】(1)证明:∵BD 平分ABC ∠,∴EBD CBD ∠=∠,∵DE CB ∥,是等腰三角形;(1)如图1,求证:CDE∠交AC于E,(2)如图2,若DE平分ADC的长.【答案】(1)见解析(2)4【分析】本题考查角平分线、平行线的性质以及直角三角形的边角关系,掌握角平分线的定义,平行线的性质是解决问题的关键.∠=∠(1)根据角平分线的定义得出BCD(1)当53BE CF ==,,则EF =___________;(2)当BE CF >时,若CO 是ACB ∠的外角平分线,如图2,它仍然和∠作EF BC ∥,交AB 于E ,交AC 于F ,试判断EF BE ,,CF 之间的关系,并说明理由.【答案】(1)8(2)EF BE CF =-,见解析∴∠EOB =∠OBC ,∠FOC =∠OCB ,∵ABC ∠和ACB ∠的平分线交于点O ,∴∠EBO =∠OBC ,∠FCO =∠BCO ,∴∠EBO =∠EOB ,∠FCO =∠FOC ,∴53BE OE OF CF ====,,∴8EF EO FO =+=,故答案为:8;(2)EF BE CF =-,理由如下:∵BO 平分ABC ∠,∴ABO OBC ∠=∠,∵EO BC ∥,∴EOB OBC ∠=∠,∴ABO EOB ∠=∠,∴BE EO =,同理可得FO CF =,∴EF EO FO BE CF =-=-.【考点四过腰或底作平行线构造等腰(边)三角形】例题:(2023上·吉林通化·八年级统考期末)如图,ABC 是等边三角形,点D 在AC 上,点E 在BC 的延长线上,且BD DE =.(1)若点D 是AC 的中点,如图1,则线段AD 与CE 的数量关系是__________;(2)若点D 不是AC 的中点,如图2,试判断AD 与CE 的数量关系,并证明你的结论;(提示:过点D 作DF BC ∥,交AB 于点F )(3)若点D 在线段AC 的延长线上,(2)中的结论是否仍成立?如果成立,请给予证明;如果不成立,请说明理由.【答案】(1)AD CE =,理由见解析(2)AD CE =,理由见解析(3)成立,理由见解析【分析】本题考查全等三角形判定与性质,平行线性质,等腰三角形性质,等边三角形性质与判定.(1)求出E CDE ∠=∠,推出CD CE =,根据等腰三角形性质求出AD DC =,即可得出答案;(2)过D 作DF BC ∥,交AB 于F ,证明BFD DCE ≌,推出DF CE =,证ADF △是等边三角形,推出AD DF =,即可得出答案;(3)过点D 作DP BC ∥,交AB 的延长线于点P ,证明BPD DCE ≌,得到PD CE =,即可得到AD CE =.【详解】(1)解:AD CE =,理由如下:ABC 是等边三角形,60,ABC ACB AB AC BC ∴∠=∠=== .∵点D 为AC 中点,30,DBC AD DC ∴∠== ,BD DE = ,30E DBC ∴∠=∠= ,ACB E CDE ∠=∠+∠ ,30CDE E ∴∠=∠= ,CD CE ∴=,又AD DC = ,AD CE ∴=.故答案为:AD CE =;(2)解:AD CE =,理由如下:如图,过点D 作DF BC ∥,交AB 于点F ,则60ADF ACB ∠=∠= ,60A ∠= ,AFD ∴ 是等边三角形,,60AD DF AF AFD ∴==∠= ,18060120BFD DCE ∴∠=∠=-= ,D F B C ∥ ,FDB DBE E ∴∠=∠=∠,在BFD △和DCE △中,FDB E BFD DCE BD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,BFD DCE ∴ ≌()AAS ,DF CE ∴=,又AD DF = ,AD CE ∴=;(3)解:结论仍成立,理由如下:如图,过点D 作DP BC ∥,交AB 的延长线于点P ,则60,60ABC APD ACB ADP ∠=∠=∠=∠= ,60A ∠= ,APD ∴ 是等边三角形,AP PD AD ∴==,ACB DCE ∠=∠ ,DCE ACB P ∴∠=∠=∠,DP BC ∥ ,PDB CBD ∴∠=∠,DB DE = ,DBC DEC ∴∠=∠,PDB DEC ∴∠=∠,在BPD △和DCE △中,PDB CED P DCE BD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,BPD DCE ∴ ≌()AAS ,PD CE ∴=,又AD PD = ,AD CE ∴=.【变式训练】(1)如图1,当点E 运动到线段AB 的中点,点D 在线段(2)如图2,当点E 在线段AB 上运动,点D 在线段说明理由.【答案】(1)12∵EF BC ∥,∴60AFE ACB ∠=∠=︒120,EFC AFE ∴∠=︒∠EF EA∴=∵60ABC ∠=︒,(1)【感知】如图1,当点E为AB的中点时,则线段(2)【类比】如图2,当点E为AB边上任意一点时,∥,交AC于点F.示如下:过点E作EF BC(3)【拓展】在等边三角形ABC中,点E在直线(2)AE DB =,理由如下:过点E 作EF BC ∥,交AC 于点F ,则AEF ABC AFE ACB ∠=∠∠=∠,,FEC ECD ∠=∠,∵ABC 是等边三角形,∴60AB AC A ABC ACB =∠=∠=∠=︒,,∴60120AEF AFE A DBE ∠=∠=∠=︒∠=︒,,∴AEF △为等边三角形,120EFC ∠=︒,∴AE EF =,∵ED EC =,∴D ECD ∠=∠,∴D FEC ∠=∠,在DBE 和EFC 中,DBE EFC D FEC ED EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS DBE EFC ≌,∴DB EF =,∴AE DB =;(3)过点E 作EF BC ∥,交AC 于点F ,如图3所示:同(2)得:AEF △是等边三角形,()AAS DBE EFC ≌,∴33AE EF DB EF ====,,∵2BC =,∴235CD BC DB =+=+=.故答案为:5.【点睛】本题是三角形综合题目,考查了等边三角形的判定与性质、全等三角形的判定与性质、等腰三角形的性质、平行线的性质等知识,熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.(1)求证:2AP AQ AB +=(2)求证:PD DQ =;(3)如图,过点P 作PE ⊥出这个长度;如果变化,请说明理由.【答案】(1)见解析(2)见解析(3)ED 为定值5,理由见解析【分析】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,平行线的性质,线段的和差,准确作出辅助线找出全等三角形是解题关键.(1)利用P 、Q 的移动速度相同,得到CQ PB ∴=,AB AC = ,2AP AQ AB PB AC CQ AB ∴+=-++=;(2)如图,过点P 作PF AC ∥,交BC 于点F ,PF AC ∥,,PFB ACB DPF DQC ∴∠=∠∠=∠,AB AC = ,B ACB ∴∠=∠,B PFB ∴∠=∠,BP PF ∴=,由(1)得BP CQ =,PF CQ ∴=,在PFD 与QCD 中,PDF QDC DPF DQC PF CQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS PFD QCD ∴ ≌,PD DQ ∴=;(3)解:ED 为定值5,理由如下:如图,过点P 作PF AC ∥,交BC 于点F ,由(2)得:PB PF =,【考点五巧用“角平分线+垂线合一”构造等腰三角形】例题:如图,在ABC 中,AD 平分BAC ∠,E 是BC 的中点,过点E 作FG AD ⊥交AD 的延长线于H ,交AB 于F ,交AC 的延长线于G .求证:(1)AF AG =;(2)BF CG =.【答案】(1)见解析(2)见解析【分析】(1)根据ASA 证明AHF AHG ≌ ,即可得出AF AG =;(2)过点C 作CM AB ∥交FG 于点M ,由AHF AHG ≌ 可得AFH G ∠=∠,根据平行线的性质得出CMG AFH ∠=∠,可得CMG G ∠=∠,进而得出CM CG =,再根据据ASA 证明BEF CEM ≌ ,得出BF CM =,等量代换即可得到BF CG =.【详解】(1)证明:∵AD 平分BAC ∠,∴FAH GAH ∠=∠,∵FG AH ⊥,∴90AHF AHG ∠=∠=︒,在AHF △和AHG 中,FAH GAH AH AH AHF AHG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA AHF AHG ≌ ,∴AF AG =;(2)证明:过点C 作CM AB ∥交FG 于点M ,∵AHF AHG ≌ ,∴AFH G ∠=∠,∵CM AB ∥,∴CMG AFH ∠=∠,∴CMG G ∠=∠,∴CM CG =,∵E 是BC 的中点,∴BE CE =,∵CM AB ∥,∴B ECM ∠=∠,在BEF △和CEM 中,B ECM BE CE BEF CEM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA BEF CEM ≌ ,∴BF CM =,∴BF CG =.【点睛】此题考查了全等三角形的判定与性质,等角对等边,平行线的性质,熟记全等三角形的判定定理、性质定理及作出合适的辅助线是解此题的关键.【变式训练】1.如图:(1)【问题情境】利用角平分线构造全等三角形是常用的方法,如图1,OP 平分MON ∠.点A 为OM 上一点,过点AC OP ⊥,垂足为C ,延长AC 交ON 于点B ,可根据证明AOC BOC ≌△△,则AO 点C 为AB 的中点).(2)【类比解答】如图2,在ABC 中,CD 平分ACB ∠,AE CD ⊥于E ,若63EAC ∠=︒,37B ∠=︒,通过上述构造全等的办法,可求得DAE ∠=.(3)【拓展延伸】如图3,ABC 中,AB AC =,90BAC ∠=︒,CD 平分ACB ∠,BE CD ⊥,垂足E 在CD 究BE 和CD 的数量关系,并证明你的结论.(4)【实际应用】如图4是一块肥沃的三角形土地,其中AC 边与灌渠相邻,李伯伯想在这块地中划出一块直角三角形土地进行水稻试验,故进行如下操作:①用量角器取ACB ∠的角平分线CD ;②过点A 作AD 13BC =,10AC =,ABC 面积为20,则划出的ACD 的面积是多少?请直接写出答案.【答案】(1)ASA(2)26︒(3)12BE CD =,证明见解析100【考点六利用倍角关系构造新等腰三角形】例题:(2023上·河南信阳·八年级统考期中)阅读材料:截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一长边相等,解答下列问题:如图1,在ABC 中,交BC 于点D ,AD 平分BAC ∠,且2B C ∠=∠.(1)为了证明结论“AB BD AC +=”,小亮在AC 上截取AE ,使得AE AB =,解答了这个问题,请按照小亮的思路写证明过程;(2)如图2,在四边形ABCD 中,已知58BAD ∠=︒,109D ∠=︒,42ACD ∠=︒,80ACB ∠=︒,10AD =,CE AB ⊥3EB =,求AB 的长.【答案】(1)见解析(2)16【分析】本题考查了全等三角形的判定与性质,等腰三角形的判定及性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.(1)在AC 上截取AE ,使得AE AB =,连接DE ,根据角平分线的定义可得BAD DAC ∠=∠,再利用SAS 证明ABD AED ≌,从而可得B AED ∠=∠,BD DE =,进而可得2AED C ∠=∠,然后利用三角形的外角性质可得AED C EDC ∠=∠+∠,从而可得C EDC ∠=∠,进而可得DE CE =,再根据等量代换可得BD EC =,最后利用线段的和差关系进行计算,即可解答;(2)在AE 上截取AF AD =,连接CD ,先利用三角形内角和定理可得29DAC ∠=︒,从而可得29DAC FAC ∠=∠=︒,再利用SAS 证明DAC FAC ≌,从而可得109AFC D ∠=∠=︒,进而可得71CFE ∠=︒,然后利用三角形内角和定理可得71B CFE ∠=∠=︒,从而可得CF BC =,再利用等腰三角形的三线合一性质可得26BF BE ==,最后利用线段的和差关系进行计算,即可解答.【详解】(1)解:证明:在AC 上截取AE ,使得AE AB =,∵AD 平分BAC ∠,∴BAD DAC ∠=∠,∵AD AD =,∴()SAS ABD AED ≌,∴B AED ∠=∠,BD DE =,∵2B C ∠=∠,∴2AED C ∠=∠,∵AED ∠是DEC 的一个外角,∴AED C EDC ∠=∠+∠,∴C EDC ∠=∠,∴DE CE =,∴BD EC =,∵AE EC AC +=,∴AB BD AC +=;(2)在AE 上截取AF AD =,连接CF ,∵109D ∠=︒,42ACD ∠=︒,∴18029DAC D ACD ∠=︒-∠-∠=︒,∵58BAD ∠=︒,∴29FAC BAD DAC ∠=∠-∠=︒,∴29DAC FAC ∠=∠=︒,∵AC AC =,∴()SAS DAC FAC ≌,∴109AFC D ∠=∠=︒,∴18071CFE AFC ∠=︒-∠=︒,∵80ACB ∠=︒,29FAC ∠=︒,∴18071B ACB FAC ∠=︒-∠-∠=︒,∴B CFE ∠=∠,∴CF BC =,∵CE AB ⊥,∴26BF BE ==,∴10616AB AF BF =+=+=,∴AB 的长为16.【变式训练】1.在Rt ABC 中,90BAC ∠=︒,点D 在边BC 上,AB AD =,点E 在线段BD 上,3BAE EAD ∠=∠.(1)如图1,若点D 与点C 重合,则AEB ∠=______︒;(2)如图2,若点D 与点C 不重合,试说明C ∠与EAD ∠的数量关系;(3)在(1)的情况下,试判断BE ,CD 与AC 的数量关系,并说明你的理由.【答案】(1)67.5(2)2C EAD∠=∠(3)BE CD AC +=,理由见解析【分析】(1)根据等腰直角三角形的性质得到45D ∠=︒,根据题意求出EAD ∠,根据三角形的外角性质计算,得到答案;(2)根据直角三角形的两锐角互余得到90B C ∠=︒-∠,根据等腰三角形的性质、三角形内角和定理得到2BAD C ∠=∠,进而证明结论;(3)在BD 上截取BF DE =,连接AF ,证明ABF △≌ADE V ,根据求等三角形的性质得到BAF DAE ∠=∠,根据三角形的外角性质得到CAF CFA ∠=∠,得到AC CF =,进而得出结论.【详解】(1)解:在Rt BAD 中,90BAD ∠=︒,AB AD =,则45D ∠=︒,90BAD ∠=︒Q ,3BAE EAD ∠=∠,22.5EAD ∴∠=︒,67.5AEB EAD D ∴∠=∠+∠=︒,故答案为:67.5;(2)解:2C EAD ∠=∠,理由如下:90BAC ∠=︒ ,90B C ∴∠=︒-∠,AB AD = ,则BE BF EF DE EF DF =+=+=,BE CD DF CD CF ∴+=+=,在ABF △和ADE V 中,AB AD B ADE BF DE =⎧⎪∠=∠⎨⎪=⎩,()SAS ADE △(1)写出图1中与BAC ∠相等的角,BAC ∠=______(2)如图1,若GFC FGE ∠=∠,在图中找出与AG (3)如图2,若2,3HC CE ==,求BC 的长度.【答案】(1)AGF∠(2)AG CE =,证明见解析(3)72MGN AGF BAC∠=∠=∠,∠=∠,则N BAC∴∠=∠,N MGNMG MN∴=,∠=∠=∠+∠FGE BEG BEG2∴∠=∠,BEG GME∴=,MG GE,=AC GE∴=,MN AC。
解题技巧专题:利用等腰三角形的“三线合一”作辅助线压轴题三种模型全攻略(解析版)

解题技巧专题:利用等腰三角形的'三线合一'作辅助线压轴题三种模型全攻略【考点导航】目录【典型例题】【类型一等腰三角形中底边有中点时,连中线】【类型二等腰三角形中底边无中点时,作高线】【类型三巧用“角平分线+垂线合一”构造等腰三角形】【典型例题】【类型一等腰三角形中底边有中点时,连中线】1如图,在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,过D 作直线DE 交直线AB 与E ,过D 作直线DF ⊥DE ,并交直线AC 与F .(1)若E点在线段AB 上(非端点),则线段DE 与DF 的数量关系是;(2)若E 点在线段AB 的延长线上,请你作图(用黑色水笔),此时线段DE 与DF 的数量关系是,请说明理由.【答案】(1)DE =DF(2)图见解析,DE =DF ,理由见解析【分析】(1)连接AD ,先根据等腰直角三角形的性质可得AD =BD =CD ,∠B =∠DAF =45°,AD ⊥BC ,再根据垂直的定义、等量代换可得∠BDE =∠ADF ,然后根据三角形全等的判定证出△BDE ≅△ADF ,根据全等三角形的性质即可得出结论;(2)分①当点E 在线段AB 的延长线上,且在BC 的下方时,②当点E 在线段AB 的延长线上,且在BC 的上方时两种情况,参考(1)的思路,根据三角形全等的判定与性质即可得出结论.【详解】(1)解:如图,连接AD ,∵在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,∴AD =BD =CD ,∠B =∠DAF =45°,AD ⊥BC ,∴∠BDE +∠ADE =90°,∵DF ⊥DE ,∴∠ADF+∠ADE =90°,∴∠BDE =∠ADF ,在△BDE 和△ADF 中,∠B =∠DAFBD =AD ∠BDE =∠ADF,∴△BDE ≅△ADF ASA ,∴DE =DF ,故答案为:DE =DF .(2)解:DE =DF ,理由如下:①如图,当点E 在线段AB 的延长线上,且在BC 的下方时,如图,连接AD ,∵在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,∴AD =BD ,∠ABD =∠DAC =45°,AD ⊥BC ,∴∠DBE =∠DAF =135°,∠ADF +∠BDF =90°,∵DF ⊥DE ,∴∠BDE +∠BDF =90°,∴∠BDE =∠ADF ,在△BDE 和△ADF 中,∠DBE =∠DAFBD =AD ∠BDE =∠ADF,∴△BDE ≅△ADF ASA ,∴DE =DF ;②如图,当点E 在线段AB 的延长线上,且在BC 的上方时,如图,连接AD ,∵在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,∴AD =CD ,∠ACD =∠DAB =45°,AD ⊥BC ,∴∠DCF =∠DAE =135°,∠ADE +∠CDE =90°,∵DF ⊥DE ,∴∠CDF +∠CDE =90°,∴∠ADE =∠CDF ,在△ADE 和△CDF 中,∠DAE =∠DCFAD =CD ∠ADE =∠CDF,∴△ADE ≅△CDF ASA ,∴DE =DF ;综上,线段DE 与DF 的数量关系是DE =DF ,故答案为:DE =DF .【点睛】本题考查了等腰直角三角形的性质、三角形全等的判定与性质等知识点,通过作辅助线,构造全等三角形是解题关键.【变式训练】1如图,在等腰直角三角形ABC 中,∠C =90°,AC =a ,点E 为边AC 上任意一点,点D 为AB 的中点,过点D 作DF ⊥DE 交BC 于点F .求证:CE +CF为定值.【答案】证明见解析【分析】连接CD ,证明△CDE ≌△BDF ,得CE =BF ,进一步证明CE +CF =BC =AC =a ,从而得到结论.【详解】证明:连接CD ,如图,∵△ABC 是等腰直角三角形,且D 为AB 的中点,∴CD ⊥AB ,CD 平分∠ACB ,AD =BD =CD∴∠DCA =∠DCB =∠DBC =45°又DE ⊥DF∴∠EDC +∠FDC =90°而∠FDC +∠FDB =90°∴∠EDC =∠FDB在△CDE 和△BDF 中,∠DCE =∠DBFCD =CD∠EDC =∠BDF∴△CDE ≌△BDF∴CE =BF∵BC =AC =a ∴CE +CF =BE +CF =BC =AC =a ,故:CE +CF 为定值.【点睛】此题主要考查了全等三角形的判定与性质以及等腰直角三角形的性质,证明CE =BF 是解答此题的关键.2如图1,在Rt △ABC 中,∠C =90°,AC =BC ,点P 是斜边AB 的中点,点D ,E 分别在边AC ,BC 上,连接PD ,PE ,若PD ⊥PE.(1)求证:PD =PE ;(2)若点D ,E 分别在边AC ,CB 的延长线上,如图2,其他条件不变,(1)中的结论是否成立?并加以证明;(3)在(1)或(2)的条件下,△PBE 是否能成为等腰三角形?若能,请直接写出∠PEB 的度数(不用说理);若不能,请说明理由.【答案】(1)见解析(2)成立,见解析(3)能成为等腰三角形,此时∠PEB 的度数为22.5°或67.5°或90°或45°【分析】(1)连接PC ,根据等腰直角三角形的性质可得∠DCP =45°=∠B ,从而得到CP =BP ,再由PD ⊥PE ,可得∠DPC =∠EPB ,可证得△DPC ≌△EPB ,即可求证;(2)连接PC ,根据等腰直角三角形的性质可得∠ECP =45°=∠ABC =∠A =∠ACP ,从而得到CP =AP ,再由∵PD ⊥PE ,CP ⊥AB ,可得∠APD =∠CPE ,可证得△APD ≌△CPE ,即可;(3)根据等腰三角形的性质,分四种情况讨论,即可求解.【详解】(1)明∶连接PC,∵∠ACB =90°,AC =BC ,∴∠A =∠B =45°,∵P 为斜边AB 的中点,∴CP ⊥AB ,∴∠DCP =45°=∠B ,∴CP =BP ,∵PD ⊥PE ,∴∠DPC +∠CPE =∠CPE +∠EPB =90°,∴∠DPC =∠EPB ,在△DPC 和△EPB 中,∠DCP =∠BPC =PB ∠DPC =∠EPB,∴△DPC ≌△EPB ASA ,∴PD =PE ;(2)解:PD =PE 仍成立,理由如下:连接CP,∵∠C =90°,AC =BC ,∴∠A =∠ABC =45°,∵P 为斜边AB 的中点,∴CP ⊥AB ,∴∠ECP =45°=∠ABC =∠A =∠ACP ,∴CP =AP ,又∵PD ⊥PE ,CP ⊥AB ,∴∠DPE =∠CPA =90°,∴∠DPE +∠CPD =∠CPA +∠CPD ,∴∠APD =∠CPE ,在△APD 和△CPE 中,∠PAD =∠PCEPC =PA ∠APD =∠CPE,∴△APD ≌△CPE ASA ,∴PD =PE ;(3)解:△PBE 能成为等腰三角形,①当BE =BP ,点E 在CB 的延长线上时,则∠E =∠BPE ,又∵∠E +∠BPE =∠ABC =45°,∴∠PEB =22.5°;②当BE =BP ,点E 在CB 上时,则∠PEB =∠BPE =12180°-45° =67.5°;③当EP =EB 时,则∠B =∠BPE =45°,∴∠PEB =180°-∠B -∠BPE =90°;④当EP =PB ,点E 和C 重合,∴∠PEB =∠B =45°;综上所述,△PBE 能成为等腰三角形,∠PEB 的度数为22.5°或67.5°或90°或45°.【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的性质,全等三角形的判定和性质,利用分类讨论思想解答是解题的关键.3在Rt△ABC中,AC=BC,∠ACB=90°,点O为AB的中点.(1)若∠EOF=90°,两边分别交AC,BC于E,F两点.①如图1,当点E,F分别在边AC和BC上时,求证:OE=OF;②如图2,当点E,F分别在AC和CB的延长线上时,连接EF,若OE=6,则S△EOF=.(2)如图3,若∠EOF=45°,两边分别交边AC于E,交BC的延长线于F,连接EF,若CF=3,EF=5,试求AE的长.【答案】(1)①见解析;②18(2)2【分析】(1)①由“ASA”可证△AOE≌△COF,可得OE=OF;②由“ASA”可证△COE≌△BOF,可得OE=OF=6,即可求解;(2)由“ASA”可证△COF≌△AOH,可得CF=AH=3,OF=OH,由“SAS”可证△EOF≌△EOH.,可得EF=EH=5,即可求解.【详解】(1)①证明:如图1,连接OC,∵AC=BC,∠ACB=90°,∴∠=∠B=45°.∵点O为AB的中点,∴∠AOC=∠EOF=90°,∴△AOC和△BOC是等腰直角三角形,∴AO=CO=BO,∴∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF;②解:如图2,连接OC,同理可证:AO=CO=BO,∠ABC=∠ACO=45°,∴∠OCE=∠OBF=135°,∵∠AOC=∠EOF=90°,∴∠COE=∠BOF,∴△COE≌△BOF(ASA),∴OE=OF=6,×OE⋅OF=18,∴SΔEOF=12故答案为:18;(2)解:如图3,连接CO,过点O作HO⊥FO,交CA的延长线于点H,∵AC=BC,∠ACB=90°,点O为AB的中点,∴AO=CO=B0,∠AOC=∠FOH=90°,∠BAC=∠BCO=45°,∴.∠COF=∠AOH,∠OCF=∠OAH=135°,∴△COF≌△AOH(ASA),∴CF=AH=3,OF=OH,∵∠EOF=45°,∠FOH=90°,∴∠EOF=∠EOH=45°,又∵OF=OH,EO=EO,∴△EOF≌△EOH(SAS),∴EF=EH=5,∴.AE=EH-AH=2.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.【类型二等腰三角形中底边无中点时,作高线】1如图,点D,E在△ABC的边BC上,AB=AC,AD=AE.(1)如图1,求证:BD=CE;(2)如图2,当AD=CD时,过点C作CM⊥AD于点M,如果DM=2,求CD-BD的值.【答案】(1)见解析(2)4【分析】(1)过A作AH⊥BC于点H,根据三线合一可得:BH=CH,DH=EH,即可证明;(2)过A作AH⊥BC于点H,易证△AHD≌△CMD,可得MD=DH,即可求解.【详解】(1)证明:如图过A作AH⊥BC于点H,∵AB=AC,AH⊥BC,∴BH=CH,∵AD=AE,∴DH=EH,∴BD=CE;(2)解:过A作AH⊥BC于点H,在△AHD 和△CMD 中,∠CDM =∠ADH∠CMD =∠AHD =90°CD =AD∴△AHD ≌△CMD AAS ,∴DH =MD ,∴CD -BD =CH +DH -BH -DH =2DH =2MD =4.【点睛】本题考查了全等三角形的性质与判定,等腰三角形的性质“三线合一”,熟练掌握全等三角形的判定方法是解题的关键.【变式训练】1如图,△ADB 与△BCA 均为等腰三角形,AD =AB =CB ,且∠ABC =90°,E 为DB 延长线上一点,∠DAB =2∠EAC.(1)若∠EAC =20°,求∠CBE 的度数;(2)求证:AE ⊥EC ;(3)若BE =a ,AE =b ,CE =c ,求△ABC 的面积(用含a ,b ,c 的式子表示).【答案】(1)20°(2)见解析(3)12a 2+12bc 【分析】(1)先,是等腰三角形性质与三角形内角和定理求出∠D =∠DBA =70°,即可由∠CBE =180°-∠DBA -∠ABC 求解;(2)过点A 作AF ⊥DE 于点F ,过点C 作CG ⊥DE 于点G ,证明△BAF ≌△CBG AAS ,得出AF =BG ,BF =CG ,进而求得∠AEF =∠ACB =45°,∠CEG =∠AEF =45°,即可得出∠AEC =90°,从而得出结论;(3)由(2)可知CG =BF ,AF =EF ,从而有CG =BF =EF -BE =AF -BE ,再根据S △ABC =S △AEB +S △AEC -S △BEC ,则有S △ABC =12BE ⋅AF +12AE ⋅EC -12BE ⋅CG =12BE AF -CG +12AE ⋅EC =12BE ⋅BE +12AE ⋅EC ,即可求解.【详解】(1)解:∵∠EAC =20°,∠DAB =2∠EAC ,∴∠BAD =40°,∵AD =AB ,∴∠D =∠DBA =12180°-∠BAD =12180°-40° =70°,又∵∠ABC =90°,∴∠CBE =180°-70°-90°=20°.(2)证明:过点A 作AF ⊥DE 于点F ,过点C 作CG ⊥DE 于点G ,∴∠AFB =∠ABC =∠CGB =90°,又∵AD =AB =CB ,∴∠BAC =∠ACB =45°,∠FAB =12∠DAB =∠CAE ,∵∠FAB +∠FBA =∠FBA +∠CBG =90°,∴∠FAB =∠CBG =∠CAE ,∴在△BAF 和△CBG 中,∠BAF =∠CBG∠AFB =∠CGB AB =BC,∴△BAF ≌△CBG AAS ,∴AF =BG ,BF =CG ,∵∠CBG =∠CAE ,设AE 、BC 交于点O ,则∠AEF =180°-∠CBG -∠BOE∠ACB =180°-∠CAE -∠AOC又∠BOE =∠AOC ,∴∠AEF =∠ACB =45°,∴AF =EF =BG ,BF =CG ,∴BF =EG =CG ,∴∠CEG =∠AEF =45°,∴∠AEC =90°,∴AE ⊥EC .(3)解:由(2)可知CG =BF ,AF =EF ,∴CG =BF =EF -BE =AF -BE ,∵S △ABC =S △AEB +S △AEC -S △BEC ,∴S △ABC =12BE ⋅AF +12AE ⋅EC -12BE ⋅CG .=12BE AF -CG +12AE ⋅EC =12BE ⋅BE +12AE ⋅EC =12a 2+12bc .【点睛】本题考查等腰三角形的性质与判定,等腰直角三角形的性质,三角形内角和,三角形外角性质,全等三角形的判定与性质,三角形面积,属三角形综合题目,难度适中.2已知OP 平分∠MON ,如图1所示,点B 在射线OP 上,过点B 作BA ⊥OM 于点A ,在射线ON 上取一点C ,使得BC =BO .(1)若线段OA =3cm ,求线段OC 的长;(2)如图2,点D 是线段OA 上一点,作∠DBE ,使得∠DBE =∠ABO ,∠DBE 的另一边交ON 于点E ,连接DE .①∠OBC =2∠DBE 是否成立,请说明理由;②请判断三条线段CE ,OD ,DE 的数量关系,并说明理由.【答案】(1)6cm(2)①∠OBC =2∠DBE 成立,理由见解析;②CE =OD +DE ,理由见解析【分析】(1)如图所示,过点B作BH⊥OC于H,由三线合一定理得到OC=2OH,由角平分线的定义得到∠BOA=∠BOH,进一步证明△BAO≌△BHO,得到OH=OA=3cm,则OC=2OH=6cm;(2)①如图所示,过点B作BH⊥OC于H,由三线合一定理得到∠OBC=2∠OBH,同(1)可得△BAO≌△BHO,则∠OBH=∠OBA,由∠DBE=∠ABO,即可推出∠OBC=2∠OBH=2∠DBE;②如图所示,在CE上截取CQ=OD,连接BQ,先证明∠BOD=∠BCQ,进而证明△BOD≌△BCQ,得到BD=BQ,∠OBD=∠CBQ,进一步证明∠EBQ=∠EBD,从而证明△EBD≌△EBQ,得到DE=QE,由CE=CQ+QE可证明CE=OD+DE.【详解】(1)解:如图所示,过点B作BH⊥OC于H,∵BC=OB,BH⊥OC,∴OH=CH,即OC=2OH,∵OP平分∠MON,∴∠BOA=∠BOH,∵BA⊥OM,BH⊥OC,∴∠BAO=∠BHO=90°,又∵OB=OB,∴△BAO≌△BHO AAS,∴OH=OA=3cm,∴OC=2OH=6cm(2)解:①∠OBC=2∠DBE成立,理由如下:如图所示,过点B作BH⊥OC于H,∵BC=OB,BH⊥OC,∴∠OBH=∠CBH,即∠OBC=2∠OBH,同(1)可得△BAO≌△BHO,∴∠OBH=∠OBA,∵∠DBE=∠ABO,∴∠DBE=∠OBH,∴∠OBC=2∠OBH=2∠DBE;②CE=OD+DE,理由如下:如图所示,在CE上截取CQ=OD,连接BQ,∵OB=BC,∴∠BOC=∠BCO,∵△BAO≌△BHO,∴∠BOA=∠BOH,∴∠BOD=∠BCQ,∴△BOD≌△BCQ SAS,∴BD=BQ,∠OBD=∠CBQ,∠OBC,∵∠DBE=12∠OBC,∴∠OBD+∠ODE=12∴∠CBQ+∠ODE=1∠OBC,∴∠EBQ =12∠OBC ,∴∠EBQ =∠EBD ,又∵EB =EB ,∴△EBD ≌△EBQ SAS ,∴DE =QE ,∵CE =CQ +QE ,∴CE =OD +DE .【点睛】本题主要考查了全等三角形的性质与判定,三线合一定理,正确作出辅助线构造全等三角形是解题的关键.【类型三巧用“角平分线+垂线合一”构造等腰三角形】1如图,在△ABC 中,AD 平分∠BAC ,E 是BC 的中点,过点E 作FG ⊥AD 交AD 的延长线于H ,交AB 于F ,交AC 的延长线于G .求证:(1)AF =AG ;(2)BF =CG .【答案】(1)见解析(2)见解析【分析】(1)根据ASA 证明△AHF ≌△AHG ,即可得出AF =AG ;(2)过点C 作CM ∥AB 交FG 于点M ,由△AHF ≌△AHG 可得∠AFH =∠G ,根据平行线的性质得出∠CMG =∠AFH ,可得∠CMG =∠G ,进而得出CM =CG ,再根据据ASA 证明△BEF ≌△CEM ,得出BF =CM ,等量代换即可得到BF =CG .【详解】(1)证明:∵AD 平分∠BAC ,∴∠FAH =∠GAH ,∵FG ⊥AH ,∴∠AHF =∠AHG =90°,在△AHF 和△AHG 中,∠FAH =∠GAHAH =AH ∠AHF =∠AHG,∴△AHF ≌△AHG ASA,∴AF =AG ;(2)证明:过点C 作CM ∥AB 交FG 于点M ,∵△AHF ≌△AHG ,∴∠AFH =∠G ,∵CM ∥AB ,∴∠CMG =∠AFH ,∴∠CMG =∠G ,∴CM =CG ,∵E 是BC 的中点,∴BE =CE ,∵CM ∥AB ,∴∠B =∠ECM ,在△BEF 和△CEM 中,∠B =∠ECMBE =CE ∠BEF =∠CEM,∴△BEF ≌△CEM ASA ,∴BF =CM ,∴BF =CG .【点睛】此题考查了全等三角形的判定与性质,等角对等边,平行线的性质,熟记全等三角形的判定定理、性质定理及作出合适的辅助线是解此题的关键.【变式训练】1如图所示,D 为△ABC 内一点,CD 平分∠ACB ,BD ⊥CD ,∠A =∠ABD ,若BD =1,BC =3,求:线段AC的长.【答案】5【分析】延长BD 交AC 于点E ,由题意可推出BE =AE ,依据等角的余角相等,即可得等腰三角形BCE ,可推出BC =CE ,AE =BE =2BD ,根据BD =1,BC =3,即可求出AC 的长度.【详解】解∶延长BD 交AC 于点E ,∵∠A =∠ABD ,∴BE =AE ,∵BD ⊥CD ,∴BE ⊥CD ,∴∠BDC =∠EDC =90°,∴∠BCD +∠EBC =∠ECD +∠BEC =90°,∵CD 平分∠ACB ,∴∠BCD =∠ECD ,∴∠EBC =∠BEC ,∴BC =CE,∵BE ⊥CD ,∴BE =2BD ,∵BD =1,BC =3,∴BE =2,CE =3,∴AE =BE =2,∴AC =AE +EC =2+3=5.【点睛】本题主要考查等腰三角形的判定与性质,解题的关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.2如图,AD 为△ABC的角平分线.(1)如图1,若CE ⊥AD 于点F ,交AB 于点E ,AB =8,AC =5.则BE =.(2)如图2,若∠C =2∠B ,点E 在AB 上,且AE =AC ,AB =a ,AC =b ,求CD 的长;(用含a 、b 的式子表示)(3)如图3,BG ⊥AD ,点G 在AD 的延长线上,连接CG ,若△ACG 的面积是7,求△ABC 的面积.【答案】(1)3(2)a -b(3)14【分析】(1)利用ASA 证明△AEF ≌△ACF ,得出AE =AC =5,再利用BE =AB -AE 即可求得答案;(2)利用SAS 证明△AED ≌△ACD ,得出∠AED =∠C ,ED =CD ,由题意可得出BE =AB -AE =a -b ,再利用等角对等边证得DE =BE ,即可得出答案;(3)延长AC 、BG 交于H ,先证明△ABG ≌△AHG ,得出:BG =GH ,S △ABG =S △AHG ,利用等底等高的两个三角形面积相等可得S △CBG =S △CGH ,设S △CBG =S △CGH =x ,即可得出答案.【详解】(1)解:∵AD 平分∠BAC ,∴∠EAF =∠CAF ,∵CE ⊥AD ,∴∠AFE =∠AFC =90°,在△AEF 和△ACF 中,∠EAF =∠CAFAF =AF ∠AFE =∠AFC,∴△AEF ≌△ACF ASA ∴AE =AC =5,∵AB =8,∴BE =AB -AE =8-5=3;故答案为:3.(2)解:∵AD 平分∠BAC ,∴∠EAD =∠CAD ,在△AED 和△ACD 中,AE =AC∠EAD =∠CAD AD =AD,∴△AED ≌△ACD SAS ,∴∠AED =∠C ,ED =CD ,∵AE =AC ,AB =a ,AC =b ,∴BE =AB -AE =a -b ,在△BDE 中,∠AED =∠B +∠BDE ,∴∠C =∠B +∠BDE ,∵∠C =2∠B ,∴∠B =∠BDE ,∴DE =BE =a -b ,∴CD =a -b ;(3)解:如图,延长AC 、BG 交于H ,∵AD 平分∠BAC ,∴∠BAG =∠HAG ,∵BG ⊥AD ,∴∠AGB =∠AGH =90°,在△ABG 和△AHG 中,∠BAG =∠HAGAG =AG ∠AGB =∠AGH,∴△ABG ≌△AHG ASA ,∴BG =GH ,S △ABG =S △AHG ,∴S △CBG =S △CGH ,设S △CBG =S △CGH =x ,∵S △ACG =7,∴S △AGH =S △ACG +S △CGH =7+x ,∴S △ABG =S △AHG =7+x ,∴S △ABH =27+x =14+2x ,∴S △ABC =S △ABH -S △CBG +S △CGH =14+2x -x +x =14.【点睛】本题考查了角平分线定义,三角形面积,全等三角形的判定和性质,等腰三角形判定和性质等,熟练掌握全等三角形的判定和性质是解题关键.3△ABC 中,∠ACB =90°,AC =BC ,点D 是BC 边上的一个动点,连接AD 并延长,过点B 作BF ⊥AD 交AD 延长线于点F.(1)如图1,若AD 平分∠BAC ,AD =6,求BF 的值;(2)如图2,M 是FB 延长线上一点,连接AM ,当AD 平分∠MAC 时,试探究AC 、CD 、AM 之间的数量关系并说明理由;(3)如图3,连接CF ,①求证:∠AFC =45°;②S △BCF =354,S △ACF =21,求AF 的值.【答案】(1)3(2)AC +CD =AM ,理由见解析(3)①证明见解析;②12【分析】(1)如图,分别延长AC ,BF 交于点E .证明△ADC ≌△BEC ASA ,得到BE =AD =6,再证明△ABF ≌△AEF ,即可得到BF =EF =12BE =3;(2)如图,分别延长BF ,AC 交于点E ,由(1)可得△ACD ≌△BCE ,得CD =CE ,再证△AFM ≌△AFE 得到AM =AE ,由此可得结论;(3)如图所示,在AD 上截取AH =BF ,证明△ACH ≌△BCF ,得到CH =CF ,∠ACH =∠BCF ,进一步证明∠HCF =90°,则∠CFH =∠CHF =180°-∠HCF 2=45°;②如图所示,过点C 作CG ⊥HF 于G ,则△CGH 、△CGF 都是等腰直角三角形,可得GH =GF =GC ,由全等三角形的性质得到S △ACH =S △BCF =354则S △CHF =S △ACF -S △ACH =494,据此求出HF =7,则CG =3.5,进一步求出AH =5则AF =AH +HF =12.【详解】(1)解:如图,分别延长AC ,BF 交于点E .∵BF ⊥AD ,∴∠AFB =∠ACB=90°,又∵∠ADC =∠BDF ,∴∠DAC =∠EBC .在△ADC 和△BEC 中,∠DAC =∠EBCAC =BC∠ACD =∠BCE =90°∴△ADC ≌△BEC ASA .∴BE =AD =6;∵BF ⊥AD ,∴∠AFB =∠AFE =90°,∵AD 平分∠BAC ,∴∠BAF =∠EAF .在△ABF 和△AEF 中,∠BAF =∠EAFAF =AF∠AFB =∠AFE∴△ABF ≌△AEF ASA .∴BF =EF =12BE =3;(2)解:AC +CD =AM ,理由如下:如图所示,延长MF ,AC 交于点E .由(1)可得,△ADC ≌△BCE ,∴CD =CE .∵BF ⊥AD ,∴∠AFM =∠AFE =90°,∵AF 平分∠MAE ,∴∠MAF =∠EAF .在△AMF 和△AEF 中,∠MAF =∠EAFAF =AF∠AFM =∠AFE∴△AFM ≌△AFE ASA .∴AM =AE .∵AE =AC +CE =AC +CD .∴AC +CD =AM .(3)解:①如图所示,在AD 上截取AH =BF ,在△ACH 和△BCF 中,AH =BF∠CAH =∠CBF AC =BC,∴△ACH ≌△BCF SAS ,∴CH =CF ,∠ACH =∠BCF ,∵∠ACH +∠BCH =90°,∴∠BCF +∠BCH =90°,即∠HCF =90°,∴∠CFH =∠CHF =180°-∠HCF 2=45°;②如图所示,过点C 作CG ⊥HF 于G ,∴∠GCH =GCF =45°,∴△CGH 、△CGF 都是等腰直角三角形,∴GH =GF =GC ,∵△ACH ≌△BCF ,∴S △ACH =S △BCF =354∴S △CHF=S △ACF -S △ACH =494,∴12HF ⋅CG =494,即12HF ⋅12HF =494,∴HF =7,∴CG=3.5,∴1 2AH×3.5=354,∴AH=5,∴AF=AH+HF=12.【点睛】本题主要考查了全等三角形的性质与判定,角平分线的定义,三角形内角和定理,三角形面积,等腰直角三角形的性质与判定等等,正确作出辅助线构造全等三角形是解题的关键.4(2022春·河北石家庄·八年级校考期中)(1)【问题情境】利用角平分线构造全等三角形是常用的方法,如图1,OP平分∠MON.点A为OM上一点,过点A作AC⊥OP,垂足为C,延长AC交ON于点B,可根据证明△AOC≌△BOC,则AO=BO,AC= BC(即点C为AB的中点).(2)【类比解答】如图2,在△ABC中,CD平分∠ACB,AE⊥CD于E,若∠EAC=63°,∠B=37°,通过上述构造全等的办法,可求得∠DAE=.(3)【拓展延伸】如图3,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上,试探究BE和CD的数量关系,并证明你的结论.(4)【实际应用】如图4是一块肥沃的三角形土地,其中AC边与灌渠相邻,李伯伯想在这块地中划出一块直角三角形土地进行水稻试验,故进行如下操作:①用量角器取∠ACB的角平分线CD;②过点A作AD⊥CD于D.已知BC=13,AC=10,△ABC面积为20,则划出的△ACD的面积是多少?请直接写出答案.【答案】(1)ASA(2)26°(3)BE=12CD,证明见解析(4)△ACD的面积是10013【分析】(1)证△AOC≌△BOC(ASA),得AO=BO,AC=BC即可;(2)延长AE交BC于点F,由问题情境可知,AC=FC,再由等腰三角形的性质得∠EFC=∠EAC=63°,然后由三角形的外角性质即可得出结论;(3)拓展延伸延长BE、CA交于点F,证△ABF≌△ACD(ASA),得BF=CD,再由问题情境可知,BE=FE =12BF ,即可得出结论;(4)实际应用延长AD 交BC 于E ,由问题情境可知,AD =ED ,EC =AC =10,则S △ACD =S △ECD ,再由三角形面积关系得S △ACE =1013S △ABC =20013,即可得出结论.【详解】(1)解:∵OP 平分∠MON ,∴∠AOC =∠BOC ,∵AC ⊥OP ,∴∠ACO =∠BCO ,∵OC =OC ,∴△AOC ≌△BOC (ASA ),∴AO =BO ,AC =BC ,故答案为:ASA ;(2)解:如图2,延长AE 交BC 于点F ,由可知,AC =FC ,∴∠EFC =∠EAC =63°,∵∠EFC =∠B +∠DAE ,∴∠DAE =∠EFC -∠B =63°-37°=26°,故答案为:26°;(3)解:BE =12CD ,证明如下:如图3,延长BE 、CA 交于点F ,则∠BAF =180°-∠BAC =90°,∵BE ⊥CD ,∴∠BED =90°=∠BAC ,∵∠BDC =∠ABF +∠BED =∠ACD +∠BAC ,∴∠ABF =∠ACD ,又∵AB =AC ,∴△ABF ≌△ACD (ASA ),∴BF =CD ,由问题情境可知,BE =FE =12BF ,∴BE =12CD ;(4)解:如图4,延长AD 交BC 于E ,由问题情境可知,AD =ED ,EC =AC =10,∴S △ACD =S △ECD ,∵S △ABC =20,∴S △ACE =1013S △ABC =20013,∴S △ACD =12S △ACE =10013,答:△ACD 的面积是10013.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰三角形的性质、三角形的外角性质、角平分线定义以及三角形面积等知识,本题综合性强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键,属于中考常考题型.。
专题08 解题技巧专题:利用等腰三角形的'三线合一'作辅助线压轴题三种模型全攻略(解析版)

专题08解题技巧专题:利用等腰三角形的'三线合一'作辅助线压轴题三种模型全攻略【考点导航】目录【典型例题】 (1)【类型一等腰三角形中底边有中点时,连中线】 (1)【类型二等腰三角形中底边无中点时,作高线】 (11)【类型三巧用“角平分线+垂线合一”构造等腰三角形】 (17)【典型例题】【类型一等腰三角形中底边有中点时,连中线】例题:已知,在ABC 中,90ACB ∠=︒,AC BC =,点M 是AB 的中点,作90DME ∠=︒,使得射线MD 与射线ME 分别交射线AC ,CB 于点D ,E .(1)如图1,当点D 在线段AC 上时,线段MD 与线段ME 的数量关系是___________;(2)如图2,当点D 在线段AC 的延长线上时,用等式表示线段CD ,CE 和BC 之间的数量关系并加以证明.【答案】(1)MD ME =;(2)CE CD BC =+,理由见解析.【分析】(1)连接CM ,由等腰直角三角形的性质可得CM MB =,ACM B ∠=∠,根据90DME ∠=︒可推导CMD BME ∠=∠,进而证明CMD BME △≌△,即可得到线段MD 与线段ME 的数量关系;(2)连接CM ,利用(1)中的证明思路,再次证明CMD BME △≌△,证得CD BE =,即可利用等量代换得到CE CD BC =+.【详解】(1)解:连接CM ,∵90ACB ∠=︒,AC BC =,点M 是AB 的中点∴CM AM MB ==,且CM AB ⊥,CM 平分ACB ∠,45A B ∠=∠=︒∴45ACM BCM B ∠=∠=︒=∠,90CMB ∠=︒,又∵90DME ∠=︒∴CMB CME DME CME∠-∠=∠-∠∴CMD BME∠=∠∴CMD BME △≌△(ASA )∴MD ME =.(2)CE CD BC =+,理由如下:连接CM ,由(1)可知:CM BM =,45ACM ABC ∠=∠=︒,CMD BME∠=∠∴135DCM EBM ∠=∠=︒在CMD △和BME 中,CMD BME CM BM DCM EBM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴CMD BME △≌△(ASA )∴CD BE=∵CE BC BE=+∴CE CD BC =+.【点睛】本题考查等腰直角三角形的性质,全等三角形的判定,熟练掌握等腰直角三角形的性质是解决问题的关键.【变式训练】1.在ABC 中,90A ∠=︒,AB AC =,点D 是边BC 的中点.(1)如图,若点E ,F 分别在边AB ,AC 上,DE DF ⊥,求证:BE AF =,并说明理由;(2)在(1)的条件下,AB AC a ==,求AE AF +的值.【答案】(1)证明见解析;(2)a .【分析】(1)连接AD ,证明()BDE ADF ASA ≌即可得到BE AF =;(2)由(1)可得:BE AF =,进一步得到:AE BE AE AF AB a +=+==.【详解】(1)证明:连接AD ,∵90A ∠=︒,AB AC =,∴45B C ∠==︒∠,∵点D 是边BC 的中点,∴45B BAD DAC C ∠=∠=∠=∠=︒,AD BC ⊥,AD BD =,∵DE DF ⊥,∴90EDA ADF Ð+Ð=°,∵90BDE EDA ∠+∠=︒,∴ADF BDE ∠=∠,在BDE △和ADF △中,BDE ADF BD AD B DAC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()BDE ADF ASA ≌,∴BE AF =.(2)解:由(1)可知:()BDE ADF ASA ≌,∴BE AF =,∵AB AC a ==,∴AE AF AE BE AB a +=+==.【点睛】本题考查全等三角形的判定及性质,等腰直角三角形的性质,解题的关键是掌握全等三角形的判定及性质.2.如图1,在Rt ABC △中,90C ∠=︒,AC BC =,点P 是斜边AB 的中点,点D ,E 分别在边,AC BC 上,连接,PD PE ,若PD PE ⊥.(1)求证:PD PE =;(2)若点D ,E 分别在边,AC CB 的延长线上,如图2,其他条件不变,(1)中的结论是否成立?并加以证明;(3)在(1)或(2)的条件下,PBE △是否能成为等腰三角形?若能,请直接写出PEB ∠的度数(不用说理);若不能,请说明理由.【答案】(1)见解析(2)成立,见解析(3)能成为等腰三角形,此时PEB ∠的度数为22.5︒或67.5︒或90︒或45︒【分析】(1)连接PC ,根据等腰直角三角形的性质可得45DCP B ∠=︒=∠,从而得到CP BP =,再由PD PE ⊥,可得DPC EPB ∠=∠,可证得DPC EPB △△≌,即可求证;(2)连接PC ,根据等腰直角三角形的性质可得45ECP ABC A ACP ∠=︒=∠=∠=∠,从而得到CP AP =,再由∵,PD PE CP AB ⊥⊥,可得APD CPE ∠=∠,可证得APD CPE △≌△,即可;(3)根据等腰三角形的性质,分四种情况讨论,即可求解.【详解】(1)明∶连接PC ,∵90,ACB AC BC ∠=︒=,∴45A B ∠=∠=︒,∵P 为斜边AB 的中点,∴CP AB ⊥,∴45DCP B ∠=︒=∠,∴CP BP =,∵PD PE ⊥,∴90DPC CPE CPE EPB ∠+∠=∠+∠=︒,∴DPC EPB ∠=∠,在DPC △和EPB △中,DCP B PC PB DPC EPB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA DPC EPB △△≌,∴PD PE =;(2)解:PD PE =仍成立,理由如下:连接CP ,∵90,C AC BC ∠=︒=,∴45A ABC ∠=∠=︒,②当BE BP =,点E ③当EP EB =时,则∴180PEB B ∠=︒-∠-④当EP PB =,点∴PEB B ∠=∠=综上所述,PBE △【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的性质,全等三角形的判定和性质,利用分类讨论思想解答是解题的关键.3.在ABC 中,E(1)如图1,若点(2)如图2,BF 为腰(3)如图3,当点【答案】(1)见解析(2)PD PE BF +=,理由见解析(3)143【分析】(1)根据ABP S S =△APC ,即可得证;∵AB AC =,点P ∴ABP S S =△△APC即1122AB DP AC ⋅=∴PD PE =,∵AB AC =,PD ∴=ABP APC ABCS S S + ∴1122AB DP AC ⋅+∴PD PE BF +=,∵AB AC =,PD AB ⊥∴=ABC ABP APCS S S - ∴11=22AC BF AB PD ⋅⋅(1)若90EOF ∠=︒,两边分别交,AC BC 于E ,F 两点.==同理可证:AO CO BO∵AC BC =,90ACB ∠=︒,点O 为AB 的中点,∴0,90,45AO CO B AOC FOH BAC BCO ︒︒==∠=∠=∠=∠=,∴.,135COF AOH OCF OAH ︒∠=∠∠=∠=,∴(ASA)COF AOH ≌,∴3,CF AH OF OH ===,∵45,90EOF FOH ︒︒∠=∠=,∴45EOF EOH ︒∠=∠=,又∵,OF OH EO EO ==,∴(SAS)EOF EOH ≌,∴5EF EH ==,∴.2AE EH AH =-=.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.【类型二等腰三角形中底边无中点时,作高线】例题:如图,已知点D 、E 在△ABC 的边BC 上,AB =AC ,AD =AE .(1)求证:BD =CE ;(2)若AD =BD =DE =CE ,求∠BAE 的度数.【答案】(1)见解析;(2)90°.【分析】(1)作AF ⊥BC 于点F ,利用等腰三角形三线合一的性质得到BF =CF ,DF =EF ,相减后即可得到正确的结论.(2)根据等边三角形的判定得到△ADE 是等边三角形,根据等边三角形的性质、等腰三角形的性质以及角的和差关系即可求解.【详解】(1)证明:如图,过点A 作AF ⊥BC 于F .【变式训练】(1)若20∠=︒EAC ,求CBE ∠(2)求证:AE EC ⊥;(3)若BE a =,AE b =,CE =【答案】(1)20°(2)见解析(3)21122a bc +∴AFB ABC CGB ∠=∠=∠又∵AD AB CB ==,∴45BAC ACB ∠=∠=︒,∵FAB FBA FBA ∠+∠=∠∴FAB CBG CAE ∠=∠=∠∴在BAF △和CBG 中,(1)如图1,若ACD ∠与BAC ∠互余,则DCB ∠=__________()如图,过A点作AE BC⊥于E点,)②如图,作BG AC ⊥于G ,作DN 垂直于AC 的延长线于N .则90BGA DNC ∠=∠=︒.∵AB AC =,AC CD =,∴AB CD =,∵ABC 与ACD 的面积相等,∴BG DN =.∴ABG ≌CDN △.∴BAG DCN ∠=∠.180ACD DCN ∠+∠=︒,∴180ACD BAC ∠+∠=︒,综上,ACD ∠与BAC ∠相等或互补.【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定和性质,同底等高的两个三角形面积相等,综合能力较强,有一定难度.熟练掌握以上知识是解题的关键.【类型三巧用“角平分线+垂线合一”构造等腰三角形】例题:如图,在ABC 中,AD 平分BAC ∠,E 是BC 的中点,过点E 作FG AD ⊥交AD 的延长线于H ,交AB 于F ,交AC 的延长线于G .求证:(1)AF AG =;(2)BF CG =.【答案】(1)见解析(2)见解析【分析】(1)根据ASA 证明AHF AHG ≌ ,即可得出AF AG =;(2)过点C 作CM AB ∥交FG 于点M ,由AHF AHG ≌ 可得AFH G ∠=∠,根据平行线的性质得出CMG AFH ∠=∠,可得CMG G ∠=∠,进而得出CM CG =,再根据据ASA 证明BEF CEM ≌ ,得出BF CM =,等量代换即可得到BF CG =.【详解】(1)证明:∵AD 平分BAC ∠,∴FAH GAH ∠=∠,∵FG AH ⊥,∴90AHF AHG ∠=∠=︒,在AHF △和AHG 中,FAH GAH AH AH AHF AHG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA AHF AHG ≌ ,∴AF AG =;(2)证明:过点C 作CM AB ∥交FG 于点M ,∵AHF AHG ≌ ,∴AFH G ∠=∠,∵CM AB ∥,∴CMG AFH ∠=∠,∴CMG G ∠=∠,∴CM CG =,∴BE CE =,∵CM AB ∥,∴B ECM ∠=∠,在BEF △和CEM 中,B ECM BE CE BEF CEM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA BEF CEM ≌ ,∴BF CM =,∴BF CG =.【点睛】此题考查了全等三角形的判定与性质,等角对等边,平行线的性质,熟记全等三角形的判定定理、性质定理及作出合适的辅助线是解此题的关键.【变式训练】(1)【问题情境】利用角平分线构造全等三角形是常用的方法,如图1,OP 平分MON ∠.点AC OP ⊥,垂足为C ,延长AC 交ON 于点B ,可根据证明AOC ≌△△【答案】[问题情境]ASA ,全等三角形对应边相等;[问题探究]见解析;[拓展延伸【分析】[问题情境]利用全等三角形的性质证明即可;[问题探究]延长BE 交CA 延长线于F ,证明CEF ∆≌CEB ASA ∆(),推出FE =ACD ∆≌ABF ASA ∆(),可得结论;[拓展延伸]结论:12BE DF =.过点D 作DG AC ∥,交BE 的延长线于点G ,与DG AC ∥,交BE 的延长线于点G ,与AE 相交于H ,证明方法类似.CD 平分ACB ∠,FCE BCE ∴∠=∠,在CEF ∆和CEB ∆中,90FCE BCE CE CE CEF CEB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,CEF ∴∆≌CEB ASA ∆(),DG AC ,GDB C BHD ∴∠=∠∠,12EDB C ∠=∠ ,12EDB EDC ∴∠=∠=∠BE ED ⊥ ,90BED ∴∠=︒,。
等腰三角形的判定-八年级数学上册课件(沪科版)

1、如图,关于△ABC,给出下列四组条件:
① △ABC 中,AB=AC;
② △ABC 中,∠B=56°,∠BAC=68°;
③ △ABC 中,AD⊥BC,AD 平分 ∠BAC;
④ △ABC 中,AD⊥BC,AD 平分边 BC.
∴ △ABC 是等腰三角形 “角平分线+平行线 是一种常见的基本图形
等腰三角形”
探究新知
思考 1:如何判断一个三角形是不是等边三角形?
猜想:三个角都相等的三角形是等边三角形.
已知:如图,△ABC 中, ∠ A=∠B=∠C
A
求证:△ABC 是等边三角形
证明:∵ ∠A=∠B (已知)
∴ BC=AC (等角对等边)
请你判断 △ABC 的形状,并说明理由.
解:△ABC 是等腰三角形. 理由如下:
∵ AE是 ∠DAC 的平分线
∴ ∠DAE=∠EAC (角平分线的定义)
∵ AE∥ BC
∴ ∠DAE=∠B (两直线平行,同位角相等)
∠EAC=∠C (两直线平行,内错角相等)
∴ ∠B=∠C
知识拓展:
∴ AB=AC (等角对等边)
拓展练习 2、如图 1,△ABC 中,∠ABC、∠ACB 的平分线交于 O 点,
过 O 点作 BC 平行线交 AB、AC 于 D、E. (1) 请写出图1中线段BD,CE,DE之间的数量关系?并说明理由 .
拓展练习 2、如图 1,△ABC 中,∠ABC、∠ACB 的平分线交于 O 点,
过 O 点作 BC 平行线交 AB、AC 于 D、E. (2) 如图 2,△ABC 若 ∠ABC 的平分线与 △ABC 的外角平分线