初中数学竞赛专项训练(5)及答案

合集下载

初中数学竞赛专项训练(5)及答案

初中数学竞赛专项训练(5)及答案

图9-3初中数学竞赛专项训练(9)(面积及等积变换)一、选择题:1、如图9-1,在梯形ABCD 中,AB ∥CD ,AC 与BD 交于O ,点P 在AB 的延长线上,且BP =CD ,则图形中面积相等的三角形有 ( ) A. 3对 B. 4对 C. 5对 D. 6对2、如图9-2,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE ,设AF 、CE 交于点G ,则ABCDAGCD S S 矩形四边形等于( )A.65 B.54 C.43 D.32 3、设△ABC 的面积为1,D 是边AB 上一点,且AB AD =31,若在边AC 上取一点E ,使四边形DECB 的面积为43,则EA CE 的值为 ( )A. 21B. 31C. 41D. 514、如图9-3,在△ABC 中,∠ACB =90°,分别以AC 、AB 为边,在△ABC 外作正方形ACEF 和正方形AGHB ,作CK ⊥AB ,分别交AB 和GH 于D 和K ,则正方形ACEF 的面积S 1与矩形AGKD 的面积S 2的大小关系是 ( ) A. S 1=S 2 B. S 1>S 2C. S 1<S 2D. 不能确定,与ABAC的大小有关5、如图9-4,四边形ABCD 中,∠A =60°,∠B =∠D =90°, AD =8,AB =7,则BC+CD 等于 ( )A. 36B. 53C. 43D. 336、如图9-5,若将左边正方形剪成四块,恰能拼成右边的矩形,设a =1,则正方形的面积为 ( ) 2537+A.B.253+C.215+ D.图9-1 F图9-2 A B C D 图9-4图9-5CD图9-6图9-7图9-10图9-11图9-122)21(+7、如图9-6,矩形ABCD 中,AB =a ,BC =b ,M 是BC 的中点,DE ⊥AM ,E 为垂足,则DE =( ) A.2242b a ab + B.224b a ab +C. 2242ba ab + D. 224ba ab +8、O 为△ABC 内一点,AO 、BO 、CO 及其延长线把△ABC 分成六个小三角形,它们的面积如图9-7所示,则S △ABC =( ) A. 292 B. 315 C. 322 D. 357 二、填空题1、如图9-8,梯形ABCD 的中位线EF 的长为a ,高为h ,则图中阴影部分的面积为___2、如图9-9,若等腰三角形的底边上的高等于18cm ,腰上的中线等于15cm ,则这个等腰三角形的面积等于____3、如图9-10,在△ABC 中,CE ∶EB =1∶2,DE ∥AC ,若△ABC 的面积为S ,则△ADE 的面积为_____4、如图9-11,已知D 、E 分别是△ABC 的边BC 、CA 上的点,且BD =4,DC =1,AE =5,EC =2。

初三数学竞赛试题(含答案)-

初三数学竞赛试题(含答案)-

初三数学竞赛试题班级 姓名一、选择题(共8小题,每小题5分,共40分)1.要使方程组⎩⎨⎧=+=+23223y x a y x 的解是一对异号的数,则a 的取值范围是( )(A )334<<a (B )34<a (C )3>a (D )343<>a a 或 2.一块含有︒30AB =8cm, 里面空 心DEF ∆的各边与ABC ∆的对应边平行,且各对应边的距离都是1cm,那么DEF ∆的周长是( )(A)5cm (B)6cm (C) cm )(36- (D) cm )(33+3.将长为15cm 的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有( )(A)5种 (B) 6种 (C)7种 (D)8种4.作抛物线A 关于x 轴对称的抛物线B ,再将抛物线B 向左平移2个单位,向上平移1个单位,得到的抛物线C 的函数解析式是1122-+=)x (y ,则抛物线A 所对应的函数表达式是 ( )(A)2322-+-=)x (y (B) 2322++-=)x (y(C) 2122---=)x (y (D) 2322++-=)x (y5.书架上有两套同样的教材,每套分上、下两册,在这四册教材中随机抽取两册,恰好组成一套教材的概率是( ) (A)32 (B) 31 (C) 21 (D) 61 6.如图,一枚棋子放在七边形ABCDEFG 的顶点处,现顺时针方向移动这枚棋子10次,移动规则是:第k 次依次移动k 个顶点。

如第一次移动1个顶点,棋子停在顶点B 处,第二次移动2个顶点,棋子停在顶点D 。

依这样的规则,在这10次移动的过程中,棋子不可能分为两停到的顶点是( )(A)C,E,F (B)C,E,G (C)C,E (D)E,F.7.一元二次方程)a (c bx ax 002≠=++中,若b ,a 都是偶数,C 是奇数,则这个方程( )(A)有整数根 (B)没有整数根 (C)没有有理数根 (D)没有实数根8.如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L 形,那么在由54⨯ 个小方格组成的方格纸上可以画出不同位置的L 形图案个数是( )(A)16 (B) 32 (C) 48 (D) 64二、填空题:(共有6个小题,每小题5分,满分30分)9.已知直角三角形的两直角边长分别为3cm,4cm ,那么以两直角边为直径的两圆公共弦的长为 cm.10.将一组数据按由小到大(或由大到小)的顺序排列,处于最中间位置的数(当数据的个数是奇数时),或最中间两个数据的平均数(当数据的个数是偶数时)叫做这组数据的中位数,现有一组数据共100个数,其中有15个数在中位数和平均数之间,如果这组数据的中位数和平均数都不在这100个数中,那么这组数据中小于平均数的数据占这100个数据的百分比是11.ABC ∆中,c ,b ,a 分别是C ,B ,A ∠∠∠的对边,已知232310-=+==C ,b ,a ,则C s i n c B s i n b +的值是等于 。

数学初中竞赛 数与式 专题训练(含答案)

数学初中竞赛 数与式 专题训练(含答案)

数学初中竞赛 数与式 专题训练一.选择题1.已知100个整数a 1,a 2,a 3,…,a 100满足下列条件:a 1=1,a 2=﹣|a 1+1|,a 3=﹣|a 2+1|,……a 100=﹣|a 99+1|,则a 1+a 2+a 3+…+a 100=( )A .0B .﹣50C .100D .﹣1002.a 为绝对值小于2019的所有整数的和,则2a 的值为( )A .4036B .4038C .2D .03.多项式a 3﹣b 3+c 3+3abc 有因式( )A .a +b +cB .a ﹣b +cC .a 2+b 2+c 2﹣bc +ca ﹣abD .bc ﹣ca +ab4.由(a +b )(a 2﹣ab +b 2)=a 3﹣a 2b +ab 2+a 2b ﹣ab 2+b =a 3+b 3,即(a +b )(a 2﹣ab +b 2)=a 3+b 3.我们把这个等式叫做立方公式.下列应用这个立方公式进行的变形不正确的是( )A .(x +4y )(x 2﹣4xy +16y 2)=x 3+64y 3B .(a +1)(a 2﹣a +1)=a 3+1C .(2x +y )(4x 2﹣2xy +y 2)=8x 3+y 3D .(x +3)(x 2﹣6x +9)=x 3+275.已知x =﹣,则x 3+12x 的算术平方根是( ) A .0B .2C .D .2 6.如果,p ,q 是正整数,则p 的最小值是( ) A .15 B .17 C .72 D .1447.式子|x ﹣2|+|x ﹣4|+|x ﹣4|+|x ﹣8|的最小值是( )A .2B .4C .6D .88.如果对于某一特定范围内x 的任意允许值,s =|2﹣2x |+|2﹣3x |+|2﹣5x |的值恒为一常数,则此常数值为( )A .0B .2C .4D .69.如果实数a 满足:﹣2014<a <0,则|x ﹣a |+|x +2014|+|x ﹣a +2014|的最小值是( )A .2014B .a +2014C .4028D .a +402810.在,,0.2012,,这5个数中,有理数的个数为( )A .2B .3C .4D .511.现有一列数a 1,a 2,a 3,…,a 2008,a 2009,a 2010,其中a 2=﹣1,a 31=﹣7,a 2010=9,且满足任意相邻三个数的和为相等的常数,则a 1+a 2+a 3+…+a 98+a 99+a 100的值为( )A .0B .40C .32D .2612.以下三个判断中,正确的判断的个数是( )(1)x 2+3x ﹣1=0,则x 3﹣10x =﹣3(2)若b +c ﹣a =2+,c +a ﹣b =4﹣,a +b ﹣c =﹣2,则a 4+b 4+c 4﹣2(a 2b 2+b 2c 2+c 2a 2)=﹣11(3)若a 2=a 1q ,a 3=a 2q ,a 4=a 3q ,则a 1+a 2+a 3+a 4=(q ≠1) A .0B .1C .2D .3二.填空题13.如果(x +3)(x +a )﹣2可以因式分解为(x +m )(x +n )(其中m ,n 均为整数),则a 的值是 . 14.已知互不相等的实数a ,b ,c 满足,则t = . 15.将1、2、3……、20这20个自然数,任意分为10组,每组两个数,现将每组的两个数中任一数值记作x ,另一个记作y ,代入代数式(|x ﹣y |+x +y )中进行计算,求出其结果,10组数代入后可求得10个值,则这10个值的和的最小值是 .16.若对于某一特定范围内的x 的任一允许值,P =|1﹣2x |+|1﹣3x |+…+|1﹣9x |+|1﹣10x |为定值,则这个定值是 .17.甲、乙两同学进行数字猜谜游戏,甲说一个数a 的相反数是它本身,乙说一个数b 的倒数也是它本身,则a ﹣b = .18.已知a 2+4a +1=0,且,则m = .19.对于任意实数a 、b 、c 、d ,定义有序实数对(a ,b )与(c ,d )之间的运算“△”为:(a ,b )△(c ,d )=(ac +bd ,ad +bc ).如果对于任意实数u 、v ,都有(u ,v )△(x ,y )=(u ,v ),那么(x ,y )为 .20.设p 是给定的奇质数,正整数k 使得也是一个正整数,则k = .(结果用含p 的代数式表示)三.解答题21.a ,b ,c 是三角形三边长,且a 2﹣16b 2﹣c 2+6ab +10bc =0,求证:a +c =2b .22.阅读材料:把代数式x 2﹣6x ﹣7因式分解,可以如下分解: x 2﹣6x ﹣7=x 2﹣6x +9﹣9﹣7=(x ﹣3)2﹣16=(x ﹣3+4)(x ﹣3﹣4)=(x +1)(x ﹣7)(1)探究:请你仿照上面的方法,把代数式x 2﹣8x +7因式分解;(2)拓展:把代数式x 2+2xy ﹣3y 2因式分解:当= 时,代数式x 2+2xy ﹣3y 2=0.23.阅读下列材料:我们知道|x |的几何意义是在数轴上数x 对应的点与原点的距离,即|x |=|x ﹣0|,也就是说,|x |表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为|x 1﹣x 2|表示在数轴上数x 1与数x 2对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x |=2的解为x =±2.例2.解不等式|x ﹣1|>2.在数轴上找出|x ﹣1|=2的解(如图1),因为在数轴上到1对应的点的距离等于2的点对应的数为﹣1或3,所以方程|x﹣1|=2的解为x=﹣1或x =3,因此不等式|x﹣1|>2的解集为x<﹣1或x>3.例3.解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和﹣2对应的点的距离之和等于5的点对应的x的值.因为在数轴上1和﹣2对应的点的距离为3(如图2),满足方程的x对应的点在1的右边或﹣2的左边.若x对应的点在1的右边,可得x=2;若x对应的点在﹣2的左边,可得x=﹣3,因此方程|x﹣1|+|x+2|=5的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为;(2)解不等式:|x﹣3|≥5;(3)解不等式:|x﹣3|+|x+4|≥9.24.有一台单功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数x1,只显示不运算,接着再输入整数x2后则显示|x1﹣x2|的结果.比如依次输入1,2,则输出的结果是|1﹣2|=1;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.(1)若小明依次输入1,2,3,4,则最后输出的结果是;若将1,2,3,4这4个整数任意的一个一个的输入,全部输入完毕后显示的结果的最大值是,最小值是;(2)若随意地一个一个的输入三个互不相等的正整数2,a,b,全部输入完毕后显示的最后结果设为k,k的最大值为10,求k的最小值.25.(1)一个正整数如果能表示为若干个正整数平方的算术平均值,就称这个正整数为“好整数”,如4=,2007=,2008=,4,2007,2008都是“好整数”,记“好整数”的集合为M,正整数的集合为N+,求证:M=N+.(2)记a=12+22+32+…+20122+20132,求证:a可以写成2012个不同的正整数的平方和.参考答案一.选择题1.解:∵a 1=1,a 2=﹣|a 1+1|,a 3=﹣|a 2+1|,……a 100=﹣|a 99+1|,∴a 2=﹣2,a 3=﹣1,a 4=0,a 5=﹣1,a 6=0,a 7=﹣1,……,a 100=0,∴从a 3开始2个一循环,∴a 1+a 2+a 3+…+a 100=(1﹣2)+(﹣1+0)×49=﹣50.故选:B .2.解:∵绝对值小于2019的所有整数有0,±1,2,±3,…,±2016,±2017,±2018, ∴a =2018+2017+2016+…+1+0+(﹣1)+(﹣2)+…+(﹣2017)+(﹣2018)=[2018+(﹣2018)]+[2017+(﹣2017)]+…+[2+(﹣2)]+[1+(﹣1)]+0=0∴2a =0故选:D .3.解:原式=(a ﹣b )3+3ab (a ﹣b )+c 3+3abc=[(a ﹣b )3+c 3]+3ab (a ﹣b +c )=(a ﹣b +c )[(a ﹣b )2﹣c (a ﹣b )+c 2]+3ab (a ﹣b +c )=(a ﹣b +c )(a 2+b 2+c 2+ab +bc ﹣ca ).故选:B .4.解:∵立方公式(a +b )(a 2﹣ab +b 2)=a 3+b 3∵A .(x +4y )(x 2﹣4xy +16y 2)=.(x +4y )[x 2﹣4y •x +(4y )2]=x 3+64y 3=x 3+(4y )3;∴符合以上公式,故A 正确;∵B .(a +1)(a 2﹣a +1)=(a +1)(a 2﹣1×a +13)=a 3+13;∴符合以上公式,故B 正确; ∵C .(2x +y )(4x 2﹣2xy +y 2)=(2x +y )[(2x )2﹣2x •y +y 2)]=(2x )3+y 3;∴符合以上公式,故C 正确;∵D .(x +3)(x 2﹣6x +9)=(x +3)(x 2﹣2×3×x +9)=x 3+27∴不符合以上公式,故D 正确;故选:D .5.解:设=a ,=b ,则a 3=+1,b 3=﹣1.又∵4=(+1)(﹣1)=a3b3,∴x=a2b﹣ab2,x2=a4b2﹣2a3b3+a2b4,故原式=x(x2+12)=(a2b﹣ab2)(a4b2﹣2a3b3+a2b4+12)=(a2b﹣ab2)(a4b2﹣8+a2b4+12)=(a2b﹣ab2)(a4b2+a2b4+4)=ab(a﹣b)a2b2(a2+b2+ab)=a3b3(a3﹣b3)=(+1)(﹣1)(+1﹣+1)=4×2=8.则其算术平方根是:2.故选:D.6.解:由题意得, p<q<p,如果p=15,则此时13.325<q<13.33,q没有正整数值;如果p=17,则此时14.875<q<15.111,q可取15;如果p=72,则此时63<q<64,q没有正整数值;如果p=144,则此时126<q<128,q可取127;综上可得p的最小值为17.故选:B.7.解:当x≤2时,原式=(2﹣x)+(4﹣x)+(4﹣x)+(8﹣x)=18﹣4x,∵﹣4<0,∴此时|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|≥10;当2<x≤4时,原式=(x﹣2)+(4﹣x)+(4﹣x)+(8﹣x)=14﹣2x,∵﹣2<0,∴此时6≤|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|<10;当4<x≤8时,原式=(x﹣2)+(x﹣4)+(x﹣4)+(8﹣x)=2x﹣2,∵2>0,∴此时6<|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|≤14;当x>8时,原式=(x﹣2)+(x﹣4)+(x﹣4)+(x﹣8)=4x﹣18,∵4>0,∴此时|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|>14.综上可知:|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|的最小值为6.故选:C.8.解:∵s为定值,∴s的表达式化简后x的系数为0,由于2+3=5,∴x的取值范围是:2﹣3x≥0且2﹣5x≤0,即≤x≤,∴P=2﹣3x+2﹣3x﹣(2﹣5x)=4﹣2=2.故选:B.9.解:∵﹣2014<a<0,∴a﹣2014<﹣2014<a,当x<a﹣2014时,|x﹣a|+|x+2014|+|x﹣a+2014|,=﹣(x﹣a)﹣(x+2014)﹣(﹣a+2014),=2a﹣4028﹣3x>2014﹣a>2014;当a﹣2014≤x<﹣2014时,|x﹣a|+|x+2014|+|x﹣a+2014|,=﹣(x﹣a)﹣(x+2014)+(x﹣a+2014),=﹣x∈(2014,2014﹣a];当﹣2014≤x<a时,|x﹣a|+|x+2014|+|x﹣a+2014|,=﹣(x﹣a)+(x+2014)+(x﹣a+2014),=x+4028∈[2014,4028+a];当a≤x时,|x﹣a|+|x+2014|+|x﹣a+2014|,=(x﹣a)+(x+2014)+(x﹣a+2014),=3x﹣2a+4028≥4028+a>2014.综上|x﹣a|+|x+2014|+|x﹣a+2014|的最小值为2014.故选:A.10.解:是分数,是有理数;是无限不循环小数,是无理数;0.2012是分数,是有理数;=(﹣)=(﹣)=(﹣1﹣)=﹣,是有理数;对于,假设n+4=m2(m为正整数)是完全平方数,则n+2=m2﹣2,不是完全平方数,故是无理数.故选:B.11.解:∵a1+a2+a3=a2+a3+a4,∴a1=a4,同理可得a 1=a4=a7=…=a100=a31=﹣7,a 2=a5=a8=…=a98=﹣1,a 3=a6=a9=…=a99=a2010=9,由各数出现的规律可知,从a1开始到a100的数列中,﹣7出现了34次,﹣1出现了33次,9出现了33次,则a1+a2+a3+…+a98+a99+a100=(﹣7)×34+(﹣1)×33+9×33 =26.故选:D.12.解:(1)x3﹣10x=x(x2﹣10)=x(1﹣3x﹣10)=﹣3(x2+3x)=﹣3,故(1)正确;(2)a4+b4+c4﹣2(a2b2+b2c2+c2a2)=(a2﹣b2﹣c2)2﹣4b2c2=(a2﹣b2﹣c2+2bc)(a2﹣b2﹣c2﹣2bc)=(a+b﹣c)(a﹣b+c)(a+b+c)(a﹣b﹣c)又知b+c﹣a=2+,c+a﹣b=4﹣,a+b﹣c=﹣2,可得a+b+c=4+,故a4+b4+c4﹣2(a2b2+b2c2+c2a2)=﹣11,故(2)正确;(3)当q=1时,a1+a2+a3+a4=4a1,当q≠1时,a1+a2+a3+a4=,故(3)正确,正确的有3个,故选D.二.填空题(共8小题)13.解:∵(x+3)(x+a)﹣2可以因式分解为(x+m)(x+n),∴(x+3)(x+a)﹣2=(x+m)(x+n),展开得:a+3=m+n 3a﹣2=mn,进一步得到:mn=3m+3n﹣11,整理得(m﹣3)(3﹣n)=2,∵其中m,n均为整数,∴m﹣3=±1或±2,∴m=4,n=1 a=2 或m=5 n=2 a=4或m=2 n=5 a=4或m=1 n=4 a=2,∴a的值是2或4,故答案为2或4.14.解:设a+=t,则b=,代入b+=t,得: +=t,整理得:ct2﹣(ac+1)t+(a﹣c)=0 ①又由c+=t,可得ac+1=at②,把②代入①式得ct2﹣at2+(a﹣c)=0,即(c﹣a)(t2﹣1)=0,又∵c≠a,∴t2﹣1=0,∴t=±1.验证可知:b=,c=时,t=1;b=﹣,c=﹣时,t=﹣1.∴t=±1.故答案为:±1.15.解:①若x≥y,则代数式中绝对值符号可直接去掉,∴代数式等于x,②若y>x则绝对值内符号相反,∴代数式等于y,由此一来,只要20个自然数里面最小的十个数字从1到10任意俩个数字不同组,这样最终求得十个数之和最大值就是十个数字从1到10的和,1+2+3+…+10=55.故答案为:55.16.解:∵P为定值,∴P的表达式化简后x的系数为0;由于2+3+4+5+6+7=8+9+10;∴x的取值范围是:1﹣7x≥0且1﹣8x≤0,即≤x≤;所以P=(1﹣2x)+(1﹣3x)+…+(1﹣7x)﹣(1﹣8x)﹣(1﹣9x)﹣(1﹣10x)=6﹣3=3.故答案为:3.17.解:∵一个数a的相反数是它本身,∴a=0,∵一个数b的倒数也是它本身,∴b=±1,∴a﹣b=0﹣1=﹣1,或a﹣b=0﹣(﹣1)=0+1=1,∴a﹣b=±1.故答案为:±1.18.解:∵a2+4a+1=0,∴a2=﹣4a﹣1,=====5,∴(16+m)(﹣4a﹣1)+8a+2=5(m﹣12)(﹣4a﹣1),原式可化为(16+m)(﹣4a﹣1)﹣5(m﹣12)(﹣4a﹣1)=﹣8a﹣2,即[(16+m)﹣5(m﹣12)](﹣4a﹣1)=﹣8a﹣2,∵a≠0,∴(16+m)﹣5(m﹣12)=2,解得m=.故答案为.19.解:∵(a,b)△(c,d)=(ac+bd,ad+bc),∴(u,v)△(x,y)=(ux+vy,uy+vx),∵(u,v)△(x,y)=(u,v),∴,∵对于任意实数u、v,该方程组都成立,∴x=1,y=0,故答案为x=1,y=0.20.解:设=n,k2﹣pk﹣n2=0,k=,从而p2+4n2是平方数,设为m2,p2+4n2=m2,则(m﹣2n)(m+2n)=p2∵p是质数,p≥3,∴,解得:∴,∴k1=,k2=(负值舍去)故答案为:三.解答题(共5小题)21.解:∵a2﹣16b2﹣c2+6ab+10bc=0,∴a2+6ab+9b2﹣(c2﹣10bc+25b2)=0,∴(a+3b)2﹣(c﹣5b)2=0,∴(a+3b+c﹣5b)(a+3b﹣c+5b)=0,即(a+c﹣2b)(a+8b﹣c)=0,∵a,b,c是三角形三边长,∴a+b﹣c>0,∴a+8b﹣c>0,∴a+c﹣2b=0,∴a+c=2b.22.解:(1)x2﹣8x+7=x2﹣8x+16﹣16+7=(x﹣4)2﹣32=(x﹣4+3)(x﹣4﹣3)=(x﹣1)(x﹣7)(2)x2+2xy﹣3y2=x2+2xy+y2﹣y2﹣3y2=(x+y)2﹣4y2=(x+y+2y)(x+y﹣2y)=(x+3y)(x﹣y),当=﹣3或1时,x2+2xy﹣3y2的值为0.23.解:(1)∵在数轴上到﹣3对应的点的距离等于4的点对应的数为1或﹣7,∴方程|x+3|=4的解为x=1或x=﹣7.(2)在数轴上找出|x﹣3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为﹣2或8,∴方程|x﹣3|=5的解为x=﹣2或x=8,∴不等式|x﹣3|≥5的解集为x≤﹣2或x≥8.(3)在数轴上找出|x﹣3|+|x+4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和﹣4对应的点的距离之和等于9的点对应的x的值.∵在数轴上3和﹣4对应的点的距离为7,∴满足方程的x对应的点在3的右边或﹣4的左边.若x对应的点在3的右边,可得x=4;若x对应的点在﹣4的左边,可得x=﹣5,∴方程|x﹣3|+|x+4|=9的解是x=4或x=﹣5,∴不等式|x﹣3|+|x+4|≥9的解集为x≥4或x≤﹣5.24.解:(1)根据题意可以得出:|1﹣2|=|﹣1|=1,|1﹣3|=|﹣2|=2,|2﹣4|=|﹣2|=2,对于1,2,3,4,按如下次序|||1﹣3|﹣4|﹣2|=0,|||1﹣3|﹣2|﹣4|=4,故全部输入完毕后显示的结果的最大值是4,最小值是0;故答案为:2,4,0;(2)∵随意地一个一个的输入三个互不相等的正整数2,a,b,全部输入完毕后显示的最后结果设为k,k的最大值为10,∴设b为较大数字,当a=1时,|b﹣|a﹣2||=|b﹣1|=10,解得:b=11,故此时任意输入后得到的最小数为:|2﹣|11﹣1||=8,设b为较大数字,当b>a>2时,|b﹣|a﹣2||=|b﹣a+2|=10,则b﹣a+2=10,即b﹣a=8,则a﹣b=﹣8,故此时任意输入后得到的最小数为:|a﹣|b﹣2||=|a﹣b+2|=6,综上所述:k的最小值为6.25.(1)证明:因为每个“好整数”都是正整数,所以M⊆N+;另一方面,对每个n∈N+,都有n=,所以n是“好整数”,即n∈M,所以N+⊆M,因此M=N+;(2)证明:只需从12至20132中去掉两个,根据勾股定理,换上一个大于20132的数,∵20002=42×5002,32+42=52,∴32×5002+42×5002=52×5002,即15002+20002=25002,因此从a中去掉15002和20002,添加25002,即将a写成了2012个不同的正整数的平方和.。

2024全国初中数学竞赛试题

2024全国初中数学竞赛试题

1、已知直角三角形的两条直角边长度分别为3和4,则斜边上的高为:A. 2.4B. 1.2C. 5D. 不能确定(答案)A2、若a、b、c为三角形的三边长,且满足a² + b² + c² + 50 = 10a + 6b + 8c,则此三角形为:A. 直角三角形B. 等腰三角形C. 等边三角形D. 不能确定(答案)A3、解方程组 { x + 2y = 5, 3x - 4y = -2 } 时,若先消去y,则得到的方程是:A. 5x = 14B. 5x = 10C. 7x = 16D. 7x = 22(答案)B4、在平行四边形ABCD中,若∠A : ∠B = 2 : 3,则∠C的度数为:A. 60°B. 90°C. 120°D. 不能确定(答案)C5、已知 |x| = 5,y = 3,则x - y等于:A. 8或-2B. 2或-8C. -2或8D. -8或2(答案)D6、若关于x的一元二次方程x² - (k - 1)x - k = 0有两个相等的实数根,则k的值为:A. -3B. 3C. -1D. 1(答案)D7、在圆O中,弦AB的长度等于半径OA,则∠AOB的度数为:A. 30°B. 60°C. 120°D. 30°或150°(答案)B8、若a > b > 0,c < d < 0,则一定有:A. a² > b²B. c² > d²C. a/d > b/cD. a/d < b/c(答案)A9、已知一次函数y = kx + b的图像经过点(2, 3)和(-1, -3),则它的图像不经过:A. 第一象限B. 第二象限C. 第三象限D. 第四象限(答案)C10、在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为:A. 45°B. 60°C. 75°D. 90°(答案)C。

山东初三初中数学竞赛测试带答案解析

山东初三初中数学竞赛测试带答案解析

山东初三初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列说法中,正确的是( ).A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等2.下列函数:①;②;③;④,其中的值随值的增大而增大的函数有( ) .A.4个B.3个C.2个D.1个3.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是 ( ).A.(2, )B.(-2,-)C.(2, )或(-2,)D.(2, )或(-2,-)4.一个钢筋三角架三边长分别为20cm,50cm,60cm,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有( ).A.一种B.两种C.三种D.四种5.如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴交于B(2,0)、C(8,0)两点,与y轴相切于点D,则点A 的坐标是().A.(3,5)B.(4,5)C.(5,3)D.(5,4)6.如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是().A、πr2B、πr2C、πr2D、πr27.某城市为了申办冬运会,决定改善城市容貌,绿化环境,计划用两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是().A.B.C.D.8.直角三角形纸片的两直角边长分别为6,8,现将如图那样折叠,使点与点重合,折痕为,则的值是().A.B.C.D.9.若关于x 的一元二次方程有解,那么m的取值范围是().A.B.C.且D.且10.下列说法中,①方程x(x-2)=x-2的解是x=1;②小明沿着坡度为1:2的山坡向上走了1000m,则他升高了m;③若直角三角形的两边长为3和4,则第三边的长为 5;④将抛物线向左平移2个单位后,得到的抛物线的解析式是,正确的命题有( ).A.0个B.1个C.2个D.3个11.准备两张大小一样,分别画有不同图案的正方形纸片,把每张纸都对折、剪开,将四张纸片放在盒子里,然后混合,随意抽出两张正好能拼成原图的概率是( ).A.B.C.D.12.由若干个同样大小的正方体堆积成一个实物,从不同侧面观察到如图所示的投影图,则构成该实物的小正方体个数为( ).A.6个B.7个C.8个D.9个13.如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为().A.cm B.4cm C.cm D.cm14.将抛物线y=x2-6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是( ). A.y=(x-4)2-6B.y=(x-4)2-2C.y=(x-2)2-2D.y=(x-1)2-315.已知反比例函数y = (a≠0)的图象,在每一象限内,y 的值随x 值的增大而减小,则一次函数y =-ax +a 的图象不经过( ). A .第一象限B .第二象限C .第三象限D .第四象限16.将一副三角板如图叠放,交点为O.则△AOB 与△COD 面积之比是( ).A .B .C .D .17.如图,直线l 和双曲线y =(k>0)交于A ,B 两点,P 是线段AB 上的点(不与A ,B 重合),过点A ,B ,P 分别向x 轴作垂线,垂足分别是C ,D ,E ,连接OA ,OB ,OP ,设△AOC 面积是S 1,△BOD 面积是S 2,△POE 面积是S 3,则( ).A .S 1<S 2<S 3B .S 1>S 2>S 3C .S 1=S 2>S 3D .S 1=S 2<S 318.△ABC 中,D 、E 、F 分别是在AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,那么下列各式正确的是( ). A.=B.=C.=D.=19.一渔船上的渔民在A 处看见灯塔M 在北偏东60°方向,这艘渔船以28km/时的速度向正东航行,半小时到B 处,在B 处看见灯塔M 在北偏东15°方向,此时,灯塔M 与渔船的距离是( ).A .B .C .D .20.已知二次函数y=ax 2+bx+c (a≠0)的图象如图,且关于x 的一元二次方程ax 2+bx+c ﹣m=0没有实数根,有下列结论:①b 2﹣4ac >0;②abc <0;③m >2.其中,正确结论的个数是( ).A .0B .1C .2D .3二、填空题1.y=自变量x 的取值范围是 .2.如图,直线AB 与半径为2的⊙O 相切于点C ,点D 、E 、F 是⊙O 上三个点,EF//AB ,若EF=2,则∠EDC的度数为__________.3.把正方形ABCD 沿对角线AC 的方向移动到A 1B 1C 1D 1的位置,它们重叠部分的面积是正方形ABCD 的面积的一半,若AC=,则平移的距离是 .4.为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米、宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出____个这样的停车位.(≈1.4)三、解答题1.(8分)某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为25元时,可卖出105件,而售价每上涨1元,就少卖5件.(1)当售价定为30元时,一个月可获利多少元?(2)当售价定为每件多少元时,一个月的获利最大?最大利润是多少元?2.(10分)如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC=∠ACB=90°,E 为AB 的中点,(1)求证:AC 2=AB•AD ; (2)求证:CE ∥AD ;(3)若AD=4,AB=6,求的值.3.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A,B两点,与反比例函数y=的图象在第二象限的交点为C,CD⊥x轴,垂足为D,若OB=2,OD=4,△AOB的面积为1.(1)求一次函数与反比例的解析式;(2)直接写出当x<0时,kx+b﹣>0的解集.4.(10分)如图,△ABC是等腰三角形,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为2,BE=1,求cosA的值.5.(12分)如图,△OAB是边长为2的等边三角形,过点A的直线与x轴交于点E .(1)求点E的坐标;(2)求过 A、O、E三点的抛物线解析式;(3)若点P是(2)中求出的抛物线AE段上一动点(不与A、E重合),设四边形OAPE的面积为S,求S的最大值.山东初三初中数学竞赛测试答案及解析一、选择题1.下列说法中,正确的是( ).A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等【答案】B.【解析】A.一条弦可以对优弧,也可以对劣弧,故此项错误;B. 等弧所对的弦相等,这个命题是正确的;要强调在同圆或等园,相等的圆心角所对的弦才相等,相等的弦所对的圆心角也相等,故C、D错误.故选:B.【考点】圆心角、弧、弦的关系.2.下列函数:①;②;③;④,其中的值随值的增大而增大的函数有( ) .A.4个B.3个C.2个D.1个【答案】C.【解析】①,y随x的增大而减小;②,y随x的增大而增大;③,在第二象限内,y随x的增大而增大;④,抛物线开口向下,在对称轴左侧,y随x的增大而增大,在对称轴右侧,y随x的增大而减小;所以满足条件的有两个.故选:C.【考点】1、一次函数的增减性;2、反比例函数的增减性;3、二次函数的增减性.3.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是 ( ).A.(2, )B.(-2,-)C.(2, )或(-2,)D.(2, )或(-2,-)【答案】D.【解析】根据位似图形的性质可知,当矩形OA′B′C′在第一象限时,,,此时点B′的坐标为(2, );当矩形OA′B′C′在第四象限时,点B′的坐标为(-2,-).故选:D.【考点】位似图形的性质.4.一个钢筋三角架三边长分别为20cm,50cm,60cm,现要再做一个与其相似的钢筋三角架,而只有长为30cm和50cm的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有( ).A.一种B.两种C.三种D.四种【答案】B.【解析】取30cm为一边,另两边设为xcm、ycm;(1)30cm与20cm对应,即,解得x=75,y=90;75+90>50,不可以.(2)30cm与50cm对应,即,解得x=12,y=36;12+36=48<50,可以.(3)30cm与60cm对应,即,解得x=10,y=25;10+25<50,可以.所以有两种不同的截法.故选:B.【考点】相似三角形的性质.5.如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴交于B(2,0)、C(8,0)两点,与y轴相切于点D,则点A 的坐标是().A.(3,5)B.(4,5)C.(5,3)D.(5,4)【答案】D.【解析】连接AD,AB,AC,再过点A作AE⊥OC于E,则ODAE是矩形,∵点A在第一象限,⊙A与x轴交于B(2,0)、C(8,0)两点,与y轴相切于点D,∴OB=2,OC=8,BC=6,∵⊙A与y轴相切于点D,∴AD⊥OD,∵由垂径定理可知:BE=EC=3,∴OE=AD=5,∴AB=AD=5,利用勾股定理知AE=4,∴A(5,4).故选:D.【考点】1、垂径定理;2、勾股定理.6.如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是().A 、πr 2 B 、πr 2 C 、πr 2 D 、πr 2【答案】B.【解析】连接OC 、OD .∵△COD 和△CDA 等底等高, ∴S △COD =S △ACD .∵点C ,D 为半圆的三等分点,AB=2r , ∴∠COD=180°÷3=60°,OA=r , ∴阴影部分的面积=S 扇形COD =.故选:B .【考点】扇形面积的求法.7.某城市为了申办冬运会,决定改善城市容貌,绿化环境,计划用两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是( ).A .B .C .D .【答案】B.【解析】设这两年平均每年绿地面积的增长率是x ,根据题意列方程得: ,解得x=0.2=20%,x=-2.2舍去.故选:B.【考点】一元二次方程的应用—增长率问题.8.直角三角形纸片的两直角边长分别为6,8,现将如图那样折叠,使点与点重合,折痕为,则的值是( ).A .B .C .D .【答案】C.【解析】根据题意,BE=AE .设BE=x ,则CE=8-x . 在Rt △BCE 中,x 2=(8-x )2+62, 解得x=,故CE=8-=,∴tan ∠CBE=.故选:C.【考点】锐角三角函数.9.若关于x 的一元二次方程有解,那么m 的取值范围是( ). A .B .C .且D .且【答案】D.【解析】∵关于x 的一元二次方程有解,∴判别式,m-20,解得:且.故选:D.【考点】一元二次方程的判别式的应用.10.下列说法中,①方程x(x-2)=x-2的解是x=1;②小明沿着坡度为1:2的山坡向上走了1000m,则他升高了m;③若直角三角形的两边长为3和4,则第三边的长为 5;④将抛物线向左平移2个单位后,得到的抛物线的解析式是,正确的命题有( ).A.0个B.1个C.2个D.3个【答案】B.【解析】①方程x(x-2)=x-2的解是x=1或x=2,故错误;②小明沿着坡度为1:2的山坡向上走了1000m,则他升高了200 m,故正确;③若直角三角形的两边长为3和4,则第三边的长为5或,故错误;④将抛物线y=-x2向左平移2个单位后,得到的抛物线的解析式是y=-(x+2)2,故错误;其中正确的命题有一个.故选:B.【考点】命题与定理.11.准备两张大小一样,分别画有不同图案的正方形纸片,把每张纸都对折、剪开,将四张纸片放在盒子里,然后混合,随意抽出两张正好能拼成原图的概率是( ).A.B.C.D.【答案】A.【解析】设分成的四张纸片中,1和2为一张;3和4为一张;如图:那么共有12种情况,正好能拼成的占4种,概率是 .故选:A.【考点】概率的求法.12.由若干个同样大小的正方体堆积成一个实物,从不同侧面观察到如图所示的投影图,则构成该实物的小正方体个数为( ).A.6个B.7个C.8个D.9个【答案】B.【解析】综合主视图,俯视图,左视图底面有4个正方体,第二层有2个正方体,第三层有个1正方体,所以搭成这个几何体所用的小立方块的个数是7.故选:B.【考点】三视图.13.如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为().A.cm B.4cm C.cm D.cm【答案】C.【解析】∵半径为1cm的圆形,∴底面圆的半径为:1,周长为2π,扇形弧长为:2π=,∴R=4,即母线为4cm,∴圆锥的高为:(cm).故选:C.【考点】圆锥的计算.14.将抛物线y=x2-6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是( ). A.y=(x-4)2-6B.y=(x-4)2-2C.y=(x-2)2-2D.y=(x-1)2-3【答案】B.【解析】抛物线y=x2-6x+5=,向上平移2个单位长度,即纵坐标加2,再向右平移1个单位长度,即横坐标减1,得到的抛物线解析式是,即y=(x-4)2-2.故选:B.【考点】求抛物线的解析式.15.已知反比例函数y=(a≠0)的图象,在每一象限内,y的值随x值的增大而减小,则一次函数y=-ax+a的图象不经过( ).A.第一象限B.第二象限C.第三象限D.第四象限【答案】C.【解析】根据反比例函数的性质可知,a>0,再根据一次函数的性质,y=-ax+a与y轴交于正半轴,-a<0,则直线y=-ax+a随x的增大而减小,所以图象经过第一、二、四象限,不经过第三象限.故选:C.【考点】1、反比例函数的性质;2、一次函数的图象和性质.16.将一副三角板如图叠放,交点为O.则△AOB与△COD面积之比是().A.B.C.D.【答案】B.【解析】∵直角三角板(含45°角的直角三角板ABC及含30°角的直角三角板DCB)按图示方式叠放,∴∠D=30°,∠A=45°,AB∥CD,∴∠A=∠OCD,∠D=∠OBA,∴△AOB∽△COD,设BC=a,∴CD= ,∴S △AOB :S △COD =1:3.故选:B.【考点】1、解直角三角形;2、相似三角形的性质.17.如图,直线l 和双曲线y = (k>0)交于A ,B 两点,P 是线段AB 上的点(不与A ,B 重合),过点A ,B ,P 分别向x 轴作垂线,垂足分别是C ,D ,E ,连接OA ,OB ,OP ,设△AOC 面积是S 1,△BOD 面积是S 2,△POE 面积是S 3,则( ).A .S 1<S 2<S 3B .S 1>S 2>S 3C .S 1=S 2>S 3D .S 1=S 2<S 3【答案】D.【解析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S= .结合题意可得:A 、B 都在双曲线y=上,则有S 1=S 2;而线段AB 之间,直线在双曲线上方;故S 1=S 2<S 3.故选:D.【考点】反比例函数综合题.18.△ABC 中,D 、E 、F 分别是在AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,那么下列各式正确的是( ).A.=B.=C.=D.=【答案】C.【解析】根据题意画出图形,如图:∵DE ∥BC ,∴,故A 、D 错误;∵EF ∥AB ,∴△ABC ≌△EFC ,∴,故B 错误;∵DE ∥BC ,EF ∥AB ,∴, ∴ ,故C 正确; 故选:C.【考点】1、相似三角形的判定和性质;2、平行线分线段成比例定理.19.一渔船上的渔民在A 处看见灯塔M 在北偏东60°方向,这艘渔船以28km/时的速度向正东航行,半小时到B 处,在B 处看见灯塔M 在北偏东15°方向,此时,灯塔M 与渔船的距离是( ).A .B .C .D .【答案】A.【解析】由已知得,AB=×28=14海里,∠A=30°,∠ABM=105°.过点B作BN⊥AM于点N.∵在直角△ABN中,∠BAN=30°,∴BN= AB=7海里.在直角△BNM中,∠MBN=45°,则直角△BNM是等腰直角三角形.即BN=MN=7海里,∴BM= (海里).故选:A.【考点】方位角.20.已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是().A.0B.1C.2D.3【答案】D.【解析】①∵二次函数y=ax2+bx+c与x轴有两个交点,∴b2-4ac>0,故①正确;②∵抛物线的开口向下,∴a<0,∵抛物线与y轴交于正半轴,∴c>0,∵对称轴x=->0,∴ab<0,∵a<0,∴b>0,∴abc<0,故②正确;③∵一元二次方程ax2+bx+c-m=0没有实数根,∴y=ax2+bx+c和y=m没有交点,由图可得,m>2,故③正确.故选:D.【考点】图象与二次函数的系数的关系.二、填空题1.y=自变量x的取值范围是 .【答案】.【解析】要使函数有意义,则x-3≥0,x-4≠0,解得:x≥3且x≠4.故答案为:x≥3且x≠4.【考点】函数自变量的取值范围.2.如图,直线AB 与半径为2的⊙O 相切于点C ,点D 、E 、F 是⊙O 上三个点,EF//AB ,若EF=2,则∠EDC 的度数为__________.【答案】30°.【解析】连接OE 、OC ,设OC 与EF 的交点为M ;∵AB 切⊙O 于C , ∴OC ⊥AB ; ∵EF ∥AB ,∴OC ⊥EF ,则EM=MF=;Rt △OEM 中,EM=,OE=2; 则sin ∠EOM=,∴∠EOM=60°;∴∠EDC=∠EOM=30°. 故答案为:30°.【考点】1、切线的性质;2、解直角三角形.3.把正方形ABCD 沿对角线AC 的方向移动到A 1B 1C 1D 1的位置,它们重叠部分的面积是正方形ABCD 的面积的一半,若AC=,则平移的距离是 . 【答案】. 【解析】∵重叠部分的面积是正方形ABCD 面积的一半,即重叠部分与正方形的面积的比是1:2.则相似比是1:. ∴C :AC=1:, ∵AC=, ∴A =AC-C=-1. 故答案为:-1.【考点】1、正方形的性质;2、相似三角形的性质.4.为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米、宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出____个这样的停车位.(≈1.4)【答案】17.【解析】如图,BC=2.2×sin45°=2.2×≈1.54米,CE=5×sin45°=5×≈3.5米,BE=BC+CE≈5.04米,EF=2.2÷sin45°=2.2÷≈3.1米,(56-5.04)÷3.1+1=50.96÷3.1+1≈16.4+1=17.4(个).故这个路段最多可以划出17个这样的停车位.故答案为:17.【考点】特殊角的三角函数值.三、解答题1.(8分)某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为25元时,可卖出105件,而售价每上涨1元,就少卖5件.(1)当售价定为30元时,一个月可获利多少元?(2)当售价定为每件多少元时,一个月的获利最大?最大利润是多少元?【答案】(1)800元;(2)当售价定为每件33元时,一个月的利润最大,最大利润是845元.【解析】(1)首先表示每件的利润,再计算售价定为30元时一个月卖出的件数,每件的利润与一个月卖出的件数的积即为一个月的利润;(2)设售价为每件元时,一个月的获利为元,则每件的利润为(x-20)元,一个月卖出的件数为[105-5(x-25)]件,则y=(x-20)[105-5(x-25)],再求x为多少时,y有最大值,此时y的最大值是多少即可.试题解析:解:(1)获利:(30-20)[105-5(30-25)]="800" ,(2)设售价为每件元时,一个月的获利为元,由题意,得,当时,的最大值为845,故当售价定为每件33元时,一个月的利润最大,最大利润是845元.【考点】二次函数的应用—利润问题.2.(10分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.【答案】(1)详见解析;(2)详见解析;(3).【解析】(1)由相似三角形的判定证得△ADC∽△ACB,根据相似三角形的性质得AD:AC=AC:AB;(2)证得∠DAC=∠ECA,根据平行线的判定得CE∥AD;(3)由CE∥AD得到△AFD∽△CFE,应用相似三角形的性质得AD:CE=AF:CF,代入数值进行计算即可. 试题解析:(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴.【考点】相似三角形的判定和性质.3.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A,B两点,与反比例函数y=的图象在第二象限的交点为C,CD⊥x轴,垂足为D,若OB=2,OD=4,△AOB的面积为1.(1)求一次函数与反比例的解析式;(2)直接写出当x<0时,kx+b﹣>0的解集.【答案】(1)y=﹣x﹣1;y=﹣;(2)x<﹣4.【解析】(1)根据△ABC的面积求出点A的坐标,把点A、B的坐标代入一次函数解析式求出k和b的值,即可得到一次函数的解析式;根据一次函数解析式求出点C的坐标,利用点C的坐标求出反比例函数解析式;(2)一次函数与反比例函数在第二象限的交点为C,根据点C的坐标得到kx+b﹣>0的解集.试题解析:解:(1)∵OB=2,△AOB的面积为1,∴B(﹣2,0),OA=1,∴A(0,﹣1),∴,解得:,∴y=﹣x﹣1,又∵OD=4,OD⊥x轴,∴C(﹣4,y),将x=﹣4代入y=﹣x﹣1得y=1,∴C(﹣4,1),∴1=,∴m=﹣4,∴y=﹣,答:一次函数解析式为y=﹣x﹣1,反比例函数解析式为y=﹣;(2)当x<0时,kx+b﹣>0的解集是x<﹣4.【考点】1、待定系数法求解析式;2、一次函数与反比例函数的交点.4.(10分)如图,△ABC是等腰三角形,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为2,BE=1,求cosA的值.【答案】(1)详见解析;(2) .【解析】(1)证得OD⊥DE,根据切线的判定定理得到DE是⊙O的切线;(2)由OD//AE,得到,通过转换得到,解得FC的长,进而求得AF的长,应用锐角三角函数求出cosA的值.试题解析:解:(1)证明:连结AD、OD,∵AC是直径,∴AD⊥BC,∵AB=AC,∴D是BC的中点,又∵O是AC的中点∴OD//AB,∵DE⊥AB,∴OD⊥DE,∴DE是⊙O的切线;(2)由(1)知OD//AE,∴,∴,∴,解得FC=2,∴AF=6,∴cosA=.【考点】1、切线的判定;2、平行线分线段成比例定理;3、锐角三角函数.5.(12分)如图,△OAB是边长为2的等边三角形,过点A的直线与x轴交于点E .(1)求点E的坐标;(2)求过 A、O、E三点的抛物线解析式;(3)若点P是(2)中求出的抛物线AE段上一动点(不与A、E重合),设四边形OAPE的面积为S,求S的最大值.【答案】(1)(4,0);(2);(3)当时, .【解析】(1)应用锐角三角函数求出点A的坐标,而后求出一次函数解析式,求出直线与x轴的交点E的坐标;(2)应用待定系数法列出方程组,求出a、b、c的值,得到二次函数解析式;(3)设点,根据用点P的坐标表示面积,整理得到S=,即当时, .试题解析:解:(1)作AF⊥x轴与F,∴OF=OAcos60°=1,AF=OFtan60°=,∴点A(1,),代入直线解析式,得,∴m=,∴,当y=0时,,得x=4,∴点E(4,0);(2)设过A、O、E三点抛物线的解析式为,∵抛物线过原点,∴c=0,∴,∴,∴抛物线的解析式为;(3)作PG⊥x轴于G,设,,,,,当时, .【考点】1、一次函数的应用;2、二次函数综合题.。

数学竞赛初中试题及答案

数学竞赛初中试题及答案

数学竞赛初中试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的值:(3x^2 - 2x + 1) + (x^2 + 4x - 3) = ?A. 4x^2 + 2x - 2B. 4x^2 + 2x + 2C. 5x^2 + 2x - 2D. 5x^2 + 2x + 2答案:D3. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:C4. 如果一个数的平方是36,那么这个数是?A. 6B. ±6C. 36D. ±36答案:B5. 以下哪个分数是最简分数?A. 6/8B. 9/12C. 5/10D. 7/14答案:B6. 一个等差数列的第一项是2,公差是3,那么第5项是多少?A. 17B. 14C. 11D. 8答案:A7. 下列哪个图形的面积是最大的?A. 边长为4的正方形B. 半径为2的圆C. 长为5,宽为3的矩形D. 底为6,高为2的三角形答案:B8. 一个正方体的体积是27立方厘米,那么它的表面积是多少?A. 54平方厘米B. 63平方厘米C. 81平方厘米D. 108平方厘米答案:A9. 一个数的立方根是2,那么这个数是?A. 6B. 8C. 2D. 4答案:D10. 下列哪个方程的解是x=2?A. x^2 - 4x + 4 = 0B. x^2 - 3x + 2 = 0C. x^2 - 5x + 6 = 0D. x^2 - 6x + 9 = 0答案:A二、填空题(每题4分,共20分)11. 一个数的相反数是-5,那么这个数是________。

答案:512. 一个等腰三角形的底边长是6厘米,两腰长分别是8厘米,那么这个三角形的周长是________厘米。

答案:2213. 如果一个数除以3余1,除以5余2,那么这个数最小是________。

初三数学竞赛试题及答案

初三数学竞赛试题及答案

初三数学竞赛试题及答案一、选择题(每题5分,共30分)1. 下列哪个数是无理数?A. 2.5B. πC. 0.33333...D. -12. 若a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定3. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 以上都不是4. 某工厂生产的产品数量y与时间x(小时)成正比,已知2小时生产了40个产品,那么4小时生产的产品数量是:A. 80B. 100B. 120D. 1605. 一个圆的半径是5,那么这个圆的面积是:A. 25πB. 50πC. 75πD. 100π6. 下列哪个是二次根式的化简结果?A. \(\sqrt{48}\)B. \(\sqrt{64}\)C. \(\sqrt{81}\)D. \(\sqrt{144}\)二、填空题(每题4分,共20分)1. 一个数的立方根是2,这个数是________。

2. 若一个等差数列的第3项是10,第5项是14,那么这个等差数列的公差是________。

3. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么这个长方体的体积是________cm³。

4. 一个多项式\(ax^2 + bx + c\)的系数a、b、c满足\(a + b + c = 6\),且\(a - b + c = 0\),那么\(2a - 2b + 2c\)的值是________。

5. 若一个二次方程\(x^2 - 4x + 4 = 0\),那么这个方程的判别式Δ是________。

三、解答题(每题15分,共50分)1. 已知一个直角三角形的两条直角边分别为3和4,求这个直角三角形的斜边长。

2. 一个水池的底部有一个排水口,水池的容积是100立方米。

如果打开排水口,水池的水在2小时内可以排完。

现在同时打开排水口和进水口,进水口每小时可以注入20立方米的水。

2024年全国初中数学知识竞赛试题及答案

2024年全国初中数学知识竞赛试题及答案
(1)若圆周上依次放着数 1,2,3,4,5,6,问:是否能经过有限 次操作后,对圆周上任意依次相连的 4 个数 a,b,c,d,都有
第9页
(a d )(b c) ≤0 ?请说明理由. (2 )若圆周上从小到大按顺时针方向依次放着2003 个正整数1 ,
2 ,…,2 0 0 3 ,问:是否能经过有限次操作后,对圆周上任意依次相连 的 4 个数a ,b ,c ,d ,都有(a d )(b c) ≤0 ?请说明理由.
1 0 .已知二次函数y ax2 bx c (其 中 a 是正整数)的图象经 过点 A ( - 1 ,4 ) 与点 B ( 2 ,1 ),并且与x 轴有两个不同的交点,则 b+c 的 最大值为 . 三、解答题(共 4 题,每小题 15 分,满分 60 分)
第3页
1 1 .如图所示,已知AB 是⊙O 的直径,B C 是⊙O 的切线,O C 平行于
第7页
注:1 3 B 和14B 相对于下面的13A 和14A 是较容易的题. 13B 和14B 与 前面的12 个题组成考试卷.后面两页13A 和14A 两题可留作考试后的研究题 。
1 3 A .如图所示,⊙O 的直径的长是关于 x 的二次方程 x2 2(k 2) x k 0
(k是整数)的最大整数根. P 是⊙O 外一点,过点 P 作⊙O 的切线 PA
和割线 P B C ,其中 A 为切点,点 B ,C 是直线 PBC 与⊙O 的交点.若
PA ,P B ,P C 的长都是正整数,且 PB 的长不是合数,求 PA2 PB2 PC2 的 值.
A O
解:
P
B
C
第8页
(第 13A 题图)
1 4 A .沿着圆周放着一些数,如果有依次相连的 4 个数 a,b,c,d 满 足不等式(a d )(b c) >0,那么就可以交换 b,c 的位置,这称为一次操 作.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学竞赛专项训练(5)(方程应用)一、选择题:1、甲乙两人同时从同一地点出发,相背而行1小时后他们分别到达各自的终点A 与B ,若仍从原地出发,互换彼此的目的地,则甲在乙到达A 之后35分钟到达B ,甲乙的速度之比为 ( ) A. 3∶5 B. 4∶3 C. 4∶5 D. 3∶42、某种产品按质量分为10个档次,生产最低档次产品,每件获利润8元,每提高一个档次,每件产品利润增加2元,用同样工时,最低档次产品每天可生产60件,提高一个档次将减少3件,如果获利润最大的产品是第R 档次(最低档次为第一档次,档次依次随质量增加),那么R 等于 ( ) A. 5 B. 7 C. 9 D. 103、某商店出售某种商品每件可获利m 元,利润为20%(利润=-售价进价进价),若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m 元,则提价后的利润率为 ( ) A. 25% B. 20% C. 16% D. 12.5%4、某项工程,甲单独需a 天完成,在甲做了c (c<a )天后,剩下工作由乙单独完成还需b 天,若开始就由甲乙两人共同合作,则完成任务需( )天 A.c a b+ B.ab a b c+- C. 2c b a -+D.cb a bc ++ 5、A 、B 、则:A 、B 两队比赛时,A 队与B 队进球数之比为 ( ) A. 2∶0 B. 3∶1 C. 2∶1 D. 0∶26、甲乙两辆汽车进行千米比赛,当甲车到达终点时,乙车距终点还有a 千米(0<a <50)现将甲车起跑处从原点后移a 千米,重新开始比赛,那么比赛的结果是 ( ) A. 甲先到达终点 B. 乙先到达终点 C. 甲乙同时到达终点 D. 确定谁先到与a 值无关7、一只小船顺流航行在甲、乙两个码头之间需a 小时,逆流航行这段路程需b 小时,那么一木块顺水漂流这段路需( )小时 A. b a ab -2 B. a b ab -2 C. ba ab - D. a b ab -8、A 的年龄比B 与C 的年龄和大16,A 的年龄的平方比B 与C 的年龄和的平方大1632,那么A 、B 、C 的年龄之和是 ( ) A. 210 B. 201 C. 102 D. 120 二、填空题1、甲乙两厂生产同一种产品,都计划把全年的产品销往济南,这样两厂的产品就能占有济南市场同类产品的43,然而实际情况并不理想,甲厂仅有21的产品,乙厂仅有31的产品销到了济南,两厂的产品仅占了济南市场同类产品的31,则甲厂该产品的年产量与乙厂该产品的年产量的比为_______2、假期学校组织360名师生外出旅游,某客车出租公司有两种大客车可供选择,甲种客车每辆有40个座位,租金400元;乙种客车每辆有50个座位,租金480元,则租用该公司客车最少需用租金_____元。

3、时钟在四点与五点之间,在_______时刻(时针与分针)在同一条直线上?4、为民房产公司把一套房子以标价的九五折出售给钱先生,钱先生在三年后再以超出房子原来标价60%的价格把房子转让给金先生,考虑到三年来物价的总涨幅为40%,则钱先生实际上按_____%的利率获得了利润(精确到一位小数)5、甲乙两名运动员在长100米的游泳池两边同时开始相向游泳,甲游100米要72秒,乙游100米要60秒,略去转身时间不计,在12分钟内二人相遇____次。

6、已知甲、乙、丙三人的年龄都是正整数,甲的年龄是乙的两倍,乙比丙小7岁,三人的年龄之和是小于70的质数,且质数的各位数字之和为13,则甲、乙、丙三人的年龄分别是_________三、解答题1、某项工程,如果由甲乙两队承包,522天完成,需付180000元;由乙、丙两队承包,433天完成,需付150000元;由甲、丙两队承包,762天完成,需付160000元,现在工程由一个队单独承包,在保证一周完成的前提下,哪个队承包费用最少?2、甲、乙两汽车零售商(以下分别简称甲、乙)向某品牌汽车生产厂订购一批汽车,甲开始定购的汽车数量是乙所订购数量的3倍,后来由于某种原因,甲从其所订的汽车中转让给乙6辆,在提车时,生产厂所提供的汽车比甲、乙所订购的总数少了6辆,最后甲所购汽车的数量是乙所购的2倍,试问甲、乙最后所购得的汽车总数最多是多少量?最少是多少辆?3、8个人乘速度相同的两辆小汽车同时赶往火车站,每辆车乘4人(不包括司机),其中一辆小汽车在距离火车站15km的地方出现故障,此时距停止检票的时间还有42分钟。

这时惟一可利用的交通工具是另一辆小汽车,已知包括司机在内这辆车限乘5人,且这辆车的平均速度是60km/h,人步行的平均速度是5km/h。

试设计两种方案,通过计算说明这8个人能够在停止检票前赶到火车站。

4、某乡镇小学到县城参观,规定汽车从县城出发于上午7时到达学校,接参观的师生立即出发到县城,由于汽车在赴校途中发生了故障,不得不停车修理,学校师生等到7时10分仍未见汽车来接,就步行走向县城,在行进途中遇到了已修理好的汽车,立即上车赶赴县城,结果比原来到达县城的时间晚了半小时,如果汽车的速度是步行速度的6倍,问汽车在途中排除故障花了多少时间?参考答案一、选择题1、D 。

解:设甲的速度为1v 千米/时,乙的速度为2v 千米/时,根据题意知,从出发地点到A 的路程为1v 千米,到B 的路程为2v 千米,从而有方程:60352112=-v v v v ,化简得012)(7)(1221221=-+v v v v ,解得34(432121-==v v v v 不合题意舍去)。

应选D 。

2、C 。

解:第k 档次产品比最低档次产品提高了(k -1)个档次,所以每天利润为864)9(6)]1(28)][1(360[2+--=-+--=k k k y 所以,生产第9档次产品获利润最大,每天获利864元。

3、C 。

解:若这商品原来进价为每件a 元,提价后的利润率为%x ,则⎩⎨⎧⋅+=⋅=%%)251(%20x a m a m 解这个方程组,得16=x ,即提价后的利润率为16%。

4、B 。

解:设甲乙合作用x 天完成。

由题意:1)11(=-+x ba ca ,解得cb a abx -+=。

故选B 。

5、A 。

解:A 与B 比赛时,A 胜2场,B 胜0场,A 与B 的比为2∶0。

就选A 。

6、A 。

解:设从起点到终点S 千米,甲走(s+a)千米时,乙走x 千米。

千米。

甲先到。

故选乙走(千米时, 即甲走 A )a)(s 000))((:)()(:22222sa s s sa s a s s a sa s s a s a s x x a s a s s -+<-∴>∴>>-=+-=∴+=- 7、B 。

解:设小船自身在静水中的速度为v 千米/时,水流速度为x 千米/时,甲乙之间的距离为S 千米,于是有b S x v a S x v =-=+,求得ab S a b x 2)(-=所以ab ab x S -=2。

8、C 。

解:设A 、B 、C 各人的年龄为A 、B 、C ,则A =B+C+16 ①A 2=(B +C )2+1632 ② 由②可得(A +B +C )(A -B -C )=1632 ③,由①得A -B -C =16 ④,①代入③可求得A +B +C =102 二、填空题1、2∶1。

解甲厂该产品的年产量为x ,乙厂该产品的年产量为y 。

则:31433121=++y x yx ,解得1:2:2=∴=y x y x 2、3520。

解:因为9辆甲种客车可以乘坐360人,故最多需要9辆客车;又因为7辆乙种客车只能乘坐350人,故最多需要8辆客车。

①当用9辆客车时,显然用9辆甲种客车需用租金最少,为400×9=3600元;②当用8辆客车时,因为7辆甲种客车,1辆乙种客车只能乘坐40×7+50=330人,而6辆甲种客车,2辆乙种客车只能乘坐40×6+50×2=340人,5辆甲种客车,3辆乙种客车只能乘坐40×5+50×3=350人,4辆甲种客车,4辆乙种客车只能乘坐40×4+50×4=360人,所以用8辆客车时最少要用4辆乙种客车,显然用4辆甲种客车,4辆乙种客车时需用租金最少为400×4+480×4=3520元。

3、4点11921分或4点11654分时,两针在同一直线上。

解:设四点过x 分后,两针在同一直线上,若两针重合,则x x 211206+=,求得11921=x 分,若两针成180度角,则180211206++=x x ,求得11654=x 分。

所以在4点11921分或4点11654分时,两针在同一直线上。

4、20.3。

解:钱先生购房开支为标价的95%,考虑到物价上涨因素,钱先生转让房子的利率为%3.20203.014.195.06.11%)401%(95%601=≈-⨯=-++5、共11次。

6、30岁、15岁、22岁。

解:设甲、乙、丙的年龄分别为x 岁、y 岁、z 岁,则⎪⎩⎪⎨⎧++<++-==为质数 ③且 ② ① z y x z y x z y y x 7072 显然z y x ++是两位数,而13=4+9=5+8=6+7∴z y x ++只能等于67 ④。

由①②④三式构成的方程组,得30=x ,15=y ,22=z 。

三、解答题1、设甲、乙、丙单独承包各需x 、y 、z 天完成,则⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+207111541112511x z z y y x 解得⎪⎩⎪⎨⎧===1064z y x再设甲、乙、丙单独工作一天,各需u 、v 、w 元,则⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+160000)(720150000)(415180000)(512u w w v v u ,解得⎪⎩⎪⎨⎧===105002950045500w v u于是,甲队单独承包费用是45500×4=182000(元),由乙队单独承包费用是29500×6=177000(元),而丙不能在一周内完成,所以,乙队承包费最少。

2、解:设甲、乙最后所购得的汽车总数为x 辆,在生产厂最后少供的6辆车中,甲少要了y辆(60≤≤y ),乙少要了(y -6)辆,则有)]6(6)6(41[26)6(43y x y x --++=--+,整理后得y x 1218+=。

当6=y 时,x 最大,为90;当0=y 时,x 最小为18。

所以甲、乙购得的汽车总数至多为90辆,至少为18辆。

3、解:[方案一]:当小汽车出现故障时,乘这辆车的4个人下车步行,另一辆车将车内的4个人送到火车站,立即返回接步行的4个人到火车站。

相关文档
最新文档