初中数学竞赛辅导训练试题及答案
初中数学竞赛八年级数学竞赛赛前集训题二(含答案)

初二数学竞赛赛前集训题二一、填空题(每小题8分,共40分)1.若(2x-1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x+a 0,则a 2+a 4=______.2.在△ABC 中,M 是边AC 的中点,P 为AM 上一点,过P 作PK ∥AB 交BM 于X ,交BC 于K ,•若PX=2,XK=3,则AB=_______.3.a 、b 、c 是非负实数,并且满足3a+2b+c=5,2a+b-3c=1,设m=3a+b-7c ,记x 为m 的最小值,y 为m 的最大值,则xy=_______.4.在△ABC 中,AD 是边BC 上的中线,,则∠ABC=________. 5.已知xyz=1,x+y+z=2,x 2+y 2+z 2=16,则12xy z ++12yz x ++12zx y+=__________.二、(15分)若正数a 、b 、c 满足a+c=2b三、(15分)一个直角三角形的边长都是整数,它的面积和周长的数值相等,试确定这个直角三角形三边的长.四、(15分)如右图,以△ABC的三边为边分别向形外作正方形ABDE•、•CAFG•、•BCHK.连结EF、GH、KD.求证:以EF、GH、KD为边所以构成一个三角形,并且所构成的三角形的面积等于△ABC面积的3倍.五、(15分)13位运动员,他们着装的运动服号码分别是1~13号,问:这13名运动员能否站成一个圆圈,使得任意相邻的两名运动员号码数之差的绝对值都不小于3且不大于5?如果能,试举一例;如果不能,请说明理由.答案: 一、填空题1.令x=0,得a=-1.令x=1,得a 5+a 4+a 3+a 2+a 1+a 0=1; 令x=-1,得-a 5+a 4-a 3+a 2-a 1+a 0=-243.后面两式相加,得a 4+a 2+a 0=-121,因此,a 2+a 4=-120.2.如图,以BC 为对角线作ABDC ,延长PK 交BD 于Q ,过M 作AB 的平行线交BC 于O ,•交BD 于N ,则AB=PQ=MN .易知CO=BO ,点O 是ABDC 的中心.因此,MO=ON .于是,KQ=XK=•3,•所以,AB=PX+XK+KQ=2+3+3=8.3.由3a+2b+c=5,2a+b-3c=1,得325,213.a b c a b c +=-⎧⎨+=+⎩∴325,4226.a b c a b c +=-⎧⎨+=+⎩所以,a=7c-3,b=7-11c .由a 、b 、c 是非负实数,得730,7110,0.c c c -≥⎧⎪-≥⎨⎪≥⎩∴37≤c ≤711.又m=3a+b-7c=3c-2,故-57≤m ≤-111.于是,x=-57,y=-111,因此,xy=577.4.如图,延长BA 到E ,使得连结CE ,则CE ∥AD ,且 在△ACE 中,有AE 2+CE 2=2+24=26=AC 2. 故∠AEC=90°.在Rt △BCE 中,,故∠ABC=60°.5.因为x+y+z=2,两边平方得x 2+y 2+z 2+2xy+2yz+2zx=4. 已知x 2+y 2+z 2=16,所以xy+yz+zx=-6. 又z=2-x-y ,所以12xy z +=1422xy x y +--=1(2)(2)x y --,同理,12yz x + =1(2)(2)y z --,12zx y +=1(2)(2)z x --.故12xy z ++12yz x ++12zx y+=1(2)(2)x y --+1(2)(2)y z --+1(2)(2)z x --=(2)(2)(2)(2)(2)(2)z x y x y z -+-+----=62()4()8x y z xyz xy yz zx x y z ++--+++++-=2641128813-=-++-.二、由已知易知a-b=b-c ...三、设a 、b 分别为两条直角边长,则斜边长由于a 、b 、c 均为正整数,所以,a ≠b .不妨设a>b ,依题意有2ab. 两边平方并整数,得224a b -a 2b-ab 2+2ab=0,即ab-4a-4b+8=0.从而,(a-4)(b-4)=8=1×8=2×4. 由于a 、b 为正整数,a>b ,则 48,41;a b -=⎧⎨-=⎩ 或 44,42;a b -=⎧⎨-=⎩解得a=1,b=5,c=13;a=8,b=6,c=10.所以,这个直角三角形三边的长为(12,5,13)或(8,6,10). 四、如图,过D 作DP // KH ,则四边形DPHK 是平行四边形.所以,PH //DK.因为DP//BC,则四边形DPCB也是平行四边形.因此,PC//DB.又EA //DB,所以,EA//PC,•则四边形EACP也是平行四边形.所以,EP//AC,从而EP// FG.因此,四边形EFGP•也是平行四边形,故PG//EF.由此可见,对于△PHG,PH=DK,PG=EF,GH=GH,这表明以EF、GH、KD•为边可以构成一个三角形.由此知,在△PCG与△EAF中,PC=EA,CG=AF,PG=EF,所以,△PCG≌△EAF.同理,△PCH≌△DBK.因此,S△PHG=S△PCH+S△PCG +S△CGH =S△DBK +S△EAF +S△CGH.过A作AM⊥BC于M,延长KB交DP于N,则BN⊥DP,易知∠1=∠2.在Rt△BND与Rt△BMA中,因为BD=BA,∠1=∠2,所以,Rt△BND≌Rt•△BMA,•因此,DN=AM.故S△DBK =12KB×DN=12BC×AM=S△ABC.同理,S△EAF =S△ABC,S△CGH =S△ABC.因此,S△PHG =S△DBK +S△EAF +S△CGH =3S△ABC.五、不能办到.理由如下:假设能够排成一个圆圈,使得号码满足题设要求.我们将号码数分为A、B两组:A={1,2,3,11,12,13},B={4,5,6,7,8,9,10}.显然,A组中的任两个数的差要么小于3,要么大于5,所以,在排成的圆圈中A组中的任两个数都不能相邻.也就是说,A组中的任两个数之间至少都要插放一个B组中的数.但A组中有6个间隔,B组中有7个数,所以,排好后有且只有一个间隔插放了B•组中的两个数.我们将B组中每个数能与A组中的数之差的绝对值不小于3,且不大于5•的配成可相邻放置的一对,则有(4,1);(5,1),(5,2);(6,1),(6,2),(6,3),(6,11);(7,2),(7,3),(7,11),(7,12);(8,3),(8,11),(8,12),(8,13);(9,12),(9,13);(10,13).可见,B组中的数5,6,7,8,9都能与A组中的两个不同的数相邻放置,4只与1配对,10只与13配对,因此,排成圆圈后,4和10都不能单独插在A组中的两个不同数之间,•即4和10只能作为相邻的两个数插在A组中的两个不同数之间.也就是4与10相邻,此时10-4=6>5,与题设条件矛盾.因此,题设要求的排法不能办到.。
奥数-初中数学竞赛辅导资料及参考答案(初二下部分,共)-43

奥数-初中数学竞赛辅导资料及参考答案(初二下部分,共)-43初中数学竞赛辅导资料(43)面积法甲内容提要1. 因为面积公式是用线段的代数式表示的,所以面积与线段可以互相转换。
运用面积公式及有关面积性质定理解答几何题是常用的方法,简称面积法。
2. 面积公式(略)3. 两个三角形的面积比定理① 等高(底)的两个三角形的面积比,等于它们对应的底(高)的比② 有一个角相等或互补的两个三角形面积的比等于夹这个角两边的乘积的比③ 相似三角形面积的比等于它们的相似比的平方④ 有公共边的两个三角形面积的比等于它们的第三顶点连线被公共边分成的两条线段的比(内分比或外分比)。
如图△ABC 和△ADC 有公共边AC , M 内分BD 第三顶点连线BD 被公共边AC内分或外分于点M ,则MDBMS ADC ABC =△△S M 外分BD定理④是以公共边为底,面积的比等于它们的对应高的比换成对应线段的比乙例题例1. 求证有一个30度角的菱形,边长是两条对角线的比例中项已知:菱形ABCD 中,∠DAC =30求证:AB 2=AC ×BD证明:作高DE ,∵∠DAE =30∴DE =21AD =21AB S 菱形ABCD =AB ×DE =21AB 2 S 菱形ABCD =AC ×BD ,∴AB 2=AC ×BDA BCDMAB CDMA B C D M AB C D MABCDE例2. 求证:等边三角形内任一点到各边的距离的和是一个定值已知:△ABC 中,AB =BC =AC ,D 是形内任一点,DE ⊥BC ,DF ⊥AC ,DG ⊥AB ,E ,F ,G 是垂足求证:DE +DF +DG 是一个定值证明:连结DA ,DB ,DC ,设边长为a, S △ABC =S △DBC +S △DCA +S △DAB21ah a =21a (DE +DF +DG )∴DE +DF +DG =h a∵等边三角形的高h a 是一个定值,∴DE +DF +DG 是一个定值本题可推广到任意正n 边形,其定值是边心距的n 倍例3.已知:△ABC 中,31===CA CF BC BE AB AD 求:ABCDEFS △△S 的值解:∵△ADF 和△ABC 有公共角A∴ABCADF S △△S =AC AB AF AD ??=ACAB AC32AB 31??=92,同理92S ABC BED =△△S ,ABC CFE S S △△=92,∴ABC DEF S △△S =31 (本题可推广到:当m AB AD 1=,n BC BE 1=,=CACFp 1时,ABC DEF S △△S =mnpnpmp mn p n m mnp ---+++)例4.如图Rt △ABC 被斜边上的高CD 和直角平分线CE 分成3个三角形,已知其中两个面积的值标在图中,求第三个三角形的面积x 。
奥数-初中数学竞赛辅导资料及参考答案(初二下部分,共)-37

初中数学竞赛辅导资料(37)不等关系甲内容提要1. 不等式三个基本性质:① 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
② 不等式两边都乘(或除以)同一个正数,不等号的方向不变。
③ 不等式两边都乘(或除以)同一个负数,不等号的方向改变。
2. 一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集。
设a>b,不等式组⎩⎨⎧>>bx a x 的解集是x>a ⎩⎨⎧<<b x a x 的解集是x<b ⎩⎨⎧<>a x b x 的解集是 b<x<a ⎩⎨⎧<>bx a x 的解集是空集 3. 几何中证明线段或角的不等关系常用以下定理① 三角形任意边两边的和大于第三边,任意两边的差小于第三边。
② 三角形的一个外角等于和它不相邻的两个内角和。
③ 在一个三角形中,大边对大角,大角对大边。
直角三角形中,斜边大于任一直角边。
④ 有两组边对应相等的两个三角形中如果这两边的夹角大,那么第三边也大;如果第三边大,那么它所对的角也大。
⑤任意多边形的每一边都小于其他各边的和乙例题例1. 已知:x ≤2,求下列代数式的取值范围:①7-3x, ②x x 1+ 解:①∵x ≤2,∴两边乘以-3,得 -3x ≥-6两边加上7, 得 7-3x ≥7-6∴7-3x ≥1 ②设xx 1+=y, x+1=xy, (y -1)x=1 x=11-y ≤2,在两边乘以y -1时,根据不等式基本性质2和3,得不等式组:⎩⎨⎧-≤>-)1(2101y y 或⎩⎨⎧-≥<-)1(2101y y ⎪⎩⎪⎨⎧≥>231y y 或⎪⎩⎪⎨⎧≤<231y y ∴y ≥1.5 或y<1 即x x 1+≥1.5或xx 1+<1 例2.设实数a,b 满足不等式)(b a a +-<b a a +-,试决定a,b 的符号。
初中数学竞赛培训(3)(含答案)

初中数学竞赛培训(初二)(3)一、填空题(每小题10分)1. 请用计算器计算下列各式:3×4,33×34,333×334,3333×3334.根据各式中的规律,直接写出333333×333334的结果是 .2.如果将字母a ,b ,c ,d ,e 按“aababcabcdabcdeaababcabcdabcde …”这样的方式进行排列,那么第2004个字母应该是 .3.已知,11x x -=(x >0),则441x x-= . 4.据有关资料统计,两个城市之间每天的电话通话次数T 与这两个城市的人口数m 、n (单位:万人)以及两城市间的距离d (单位:km )有2d k m n T =的关系(k 为常数) . 现测得A 、B 、C 三个城市的人口及它们之间的距离如图所示,且已知A 、B 两个城市间每天的电话通话次数为t ,那么B 、C 两个城市间每天的电话通话次数为 次(用t 表示).5.已知:如图,在△ABC 中,BC 边的长为12,且这边上的高AD 的长为3,则△ABC 的周长的最小值为 . 6.实数x 、y 、z 满足x+y +z =5,xy +yz +zx =3,则z 的最大值 是 .二、解答题(共2题,每小题20分)7.一列客车始终作匀速运动,它通过长为450米的桥时,从车头上桥到车尾下桥共用33秒;它穿过长760米的隧道时,整个车身都在隧道里的时间为22秒. 从客车的对面开来一列长度为a 米,速度为每秒v 米的货车,两车交错,从车头相遇到车尾相离共用t 秒.(1)写出用a 、v 表示t 的函数解析式;(2)若货车的速度不低于每秒12米,且不到每秒15米,其长度为324米,求两车交错所用时间的取值范围.AB8.通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持平稳的状态,随后开始分散. 学生注意力指标数y 随时间x (分钟)变化的函数图象如图所示(y 越大表示学生注意力越集中). 当100≤≤x 时,图象是抛物线的一部分,当2010≤≤x 和4020≤≤x 时,图象是线段.(1)当100≤≤x 时,求注意力指标数y 与时间x 的函数关系式;(2)一道数学竞赛题需要讲解24分钟. 问老师能否经过适当安排,使学生在听这道题时,注意力的指标数都不低于36.初中数学竞赛培训(3)答 案1. 333333×333334=111111222222.2. C3.4. 2t 5.12+注:这是原题目给的答案,马老师做的答案是:12+613,不知道哪一个正确,你们的答案是什么6. 313 7.解:(1)设客车的速度为每秒x 米,客车的长度为y 米. 依题意知 ⎩⎨⎧=-=+.22760,33450x y x y ……………(5分)解出⎩⎨⎧==.276,22y x 所以,)0,0(22276>>++=a v v a t . ………………………(10分) (2)当324=a ,1512<≤v 时, 由(1)得22600+=v t . ………………………………(15分) 又因为372234<+≤v , 所以,173002260037600≤+<v . 故t 的取值范围为173002260037600≤+<v . ………………………………(20分) 8.解:(1)当100≤≤x 时,设抛物线的函数关系式为c bx ax y ++=2,由于它的图象经过点(0,20),(5,39),(10,48),所以⎪⎩⎪⎨⎧=++=++=.4810100,39525,20c b a c b a c ………………(5分) 解得,51-=a ,524=b ,20=c . 所以 20524512++-=x x y ,100≤≤x . …………………(10分) (2)当4020≤≤x 时,7657+-=x y . 所以,当100≤≤x 时,令y =36,得2052451362++-=x x , 解得x =4,20=x (舍去);当4020≤≤x 时,令 y =36,得765736+-=x ,解得 74287200==x . ……………………(15分) 因为24742447428>=-,所以,老师可以经过适当的安排,在学生注意力指标数不低于36时,讲授完这道竞赛题. ……………………(20分)。
奥数-初中数学竞赛辅导资料及参考答案(初三上部分,共)-46

初中数学竞赛辅导资料为(46)完全平方数和完全平方式甲内容提要一定义1. 如果一个数恰好是某个有理数的平方,那么这个数叫做完全平方数.例如0,1,0.36,254,121都是完全平方数. 在整数集合里,完全平方数,都是整数的平方.2. 如果一个整式是另一个整式的平方,那么这个整式叫做完全平方式.如果没有特别说明,完全平方式是在实数范围内研究的.例如:在有理数范围 m 2, (a+b -2)2, 4x 2-12x+9, 144都是完全平方式.在实数范围 (a+3)2, x 2+22x+2, 3也都是完全平方式.二. 整数集合里,完全平方数的性质和判定1. 整数的平方的末位数字只能是0,1,4,5,6,9.所以凡是末位数字为2,3,7,8的整数必不是平方数.2. 若n 是完全平方数,且能被质数p 整除, 则它也能被p 2整除..若整数m 能被q 整除,但不能被q 2整除, 则m 不是完全平方数.例如:3402能被2整除,但不能被4整除,所以3402不是完全平方数.又如:444能被3整除,但不能被9整除,所以444不是完全平方数.三. 完全平方式的性质和判定在实数范围内如果 ax 2+bx+c (a ≠0)是完全平方式,则b 2-4ac=0且a>0;如果 b 2-4ac=0且a>0;则ax 2+bx+c (a ≠0)是完全平方式.在有理数范围内当b 2-4ac=0且a 是有理数的平方时,ax 2+bx+c 是完全平方式.四. 完全平方式和完全平方数的关系1. 完全平方式(ax+b )2 中当a, b 都是有理数时, x 取任何有理数,其值都是完全平方数;当a, b 中有一个无理数时,则x 只有一些特殊值能使其值为完全平方数.2. 某些代数式虽不是完全平方式,但当字母取特殊值时,其值可能是完全平方数. 例如: n 2+9, 当n=4时,其值是完全平方数.所以,完全平方式和完全平方数,既有联系又有区别.五. 完全平方数与一元二次方程的有理数根的关系1. 在整系数方程ax 2+bx+c=0(a ≠0)中① 若b 2-4ac 是完全平方数,则方程有有理数根;② 若方程有有理数根,则b 2-4ac 是完全平方数.2. 在整系数方程x 2+px+q=0中① 若p 2-4q 是整数的平方,则方程有两个整数根;② 若方程有两个整数根,则p 2-4q 是整数的平方.乙例题例1. 求证:五个连续整数的平方和不是完全平方数.证明:设五个连续整数为m -2, m -1, m, m+1, m+2. 其平方和为S.那么S =(m -2)2+(m -1)2+m 2+(m+1)2+(m+2)2=5(m 2+2).∵m 2的个位数只能是0,1,4,5,6,9∴m 2+2的个位数只能是2,3,6,7,8,1∴m 2+2不能被5整除.而5(m 2+2)能被5整除,即S 能被5整除,但不能被25整除.∴五个连续整数的平方和不是完全平方数.例2 m 取什么实数时,(m -1)x 2+2mx+3m -2 是完全平方式?解:根据在实数范围内完全平方式的判定,得当且仅当⎩⎨⎧>-010m △=时,(m -1)x 2+2mx+3m -2 是完全平方式 △=0,即(2m )2-4(m -1)(3m -2)=0.解这个方程, 得 m 1=0.5, m 2=2.解不等式 m -1>0 , 得m>1.即⎩⎨⎧>==125.0m m m 或 它们的公共解是 m=2.答:当m=2时,(m -1)x 2+2mx+3m -2 是完全平方式.例3. 已知: (x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式.求证: a=b=c.证明:把已知代数式整理成关于x 的二次三项式,得原式=3x 2+2(a+b+c)x+ab+ac+bc∵它是完全平方式,∴△=0.即 4(a+b+c)2-12(ab+ac+bc)=0.∴ 2a 2+2b 2+2c 2-2ab -2bc -2ca=0,(a -b)2+(b -c)2+(c -a)2=0.要使等式成立,必须且只需:⎪⎩⎪⎨⎧=-=-=-000a c c b b a解这个方程组,得a=b=c.例4. 已知方程x 2-5x+k=0有两个整数解,求k 的非负整数解.解:根据整系数简化的一元二次方程有两个整数根时,△是完全平方数.可设△= m 2 (m 为整数),即(-5)2-4k=m 2 (m 为整数),解得,k=4252m -. ∵ k 是非负整数,∴ ⎪⎩⎪⎨⎧-≥-的倍数是42502522m m 由25-m 2≥0, 得 5≤m , 即-5≤m ≤5;由25-m 2是4的倍数,得 m=±1, ±3, ±5.以 m 的公共解±1, ±3, ±5,分别代入k=4252m -. 求得k= 6, 4, 0.答:当k=6, 4, 0时,方程x 2-5x+k=0有两个整数解例5. 求证:当k 为整数时,方程4x 2+8kx+(k 2+1)=0没有有理数根.证明: (用反证法)设方程有有理数根,那么△是整数的平方.∵△=(8k )2-16(k 2+1)=16(3k 2-1).设3k 2-1=m 2 (m 是整数).由3k 2-m 2=1,可知k 和m 是一奇一偶,下面按奇偶性讨论3k 2=m 2+1能否成立.当k 为偶数,m 为奇数时,左边k 2是4的倍数,3k 2也是4的倍数;右边m 2除以4余1,m 2+1除以4余2.∴等式不能成立.; 当k 为奇数,m 为偶数时,左边k 2除以4余1,3k 2除以4余3右边m 2是4的倍数,m 2+1除以4余1∴等式也不能成立.综上所述,不论k, m 取何整数,3k 2=m 2+1都不能成立.∴3k 2-1不是整数的平方, 16(3k 2-1)也不是整数的平方.∴当k 为整数时,方程4x 2+8kx+(k 2+1)=0没有有理数根丙练习461. 如果m 是整数,那么m 2+1的个位数只能是____.2. 如果n 是奇数,那么n 2-1除以4余数是__,n 2+2除以8余数是___,3n 2除以4的余数是__.3. 如果k 不是3的倍数,那么k 2-1 除以3余数是_____.4. 一个整数其中三个数字是1,其余的都是0,问这个数是平方数吗?为什么?5. 一串连续正整数的平方12,22,32,………,1234567892的和的个位数是__.(1990年全国初中数学联赛题)6. m 取什么值时,代数式x 2-2m(x -4)-15是完全平方式?7. m 取什么正整数时,方程x 2-7x+m=0的两个根都是整数?8. a, b, c 满足什么条件时,代数式(c -b)x 2+2(b -a)x+a -b 是一个完全平方式?9. 判断下列计算的结果,是不是一个完全平方数:① 四个连续整数的积; ②两个奇数的平方和.10. 一个四位数加上38或减去138都是平方数,试求这个四位数.11. 已知四位数aabb 是平方数,试求a, b.12. 已知:n 是自然数且n>1. 求证:2n -1不是完全平方数.13. 已知:整系数的多项式4x 4+ax 3+13x 2+bx+1 是完全平方数,求整数a 和b 的值.14. 已知:a, b 是自然数且互质,试求方程x 2-abx+21(a+b)=0的自然数解. (1990年泉州市初二数学双基赛题)15.恰有35个连续自然数的算术平方根的整数部分相同,那么这个整数是( )(A) 17 (B) 18 (C) 35 (D) 36(1990年全国初中数学联赛题)。
数学竞赛初中试题及答案

数学竞赛初中试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的值:(3x^2 - 2x + 1) + (x^2 + 4x - 3) = ?A. 4x^2 + 2x - 2B. 4x^2 + 2x + 2C. 5x^2 + 2x - 2D. 5x^2 + 2x + 2答案:D3. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:C4. 如果一个数的平方是36,那么这个数是?A. 6B. ±6C. 36D. ±36答案:B5. 以下哪个分数是最简分数?A. 6/8B. 9/12C. 5/10D. 7/14答案:B6. 一个等差数列的第一项是2,公差是3,那么第5项是多少?A. 17B. 14C. 11D. 8答案:A7. 下列哪个图形的面积是最大的?A. 边长为4的正方形B. 半径为2的圆C. 长为5,宽为3的矩形D. 底为6,高为2的三角形答案:B8. 一个正方体的体积是27立方厘米,那么它的表面积是多少?A. 54平方厘米B. 63平方厘米C. 81平方厘米D. 108平方厘米答案:A9. 一个数的立方根是2,那么这个数是?A. 6B. 8C. 2D. 4答案:D10. 下列哪个方程的解是x=2?A. x^2 - 4x + 4 = 0B. x^2 - 3x + 2 = 0C. x^2 - 5x + 6 = 0D. x^2 - 6x + 9 = 0答案:A二、填空题(每题4分,共20分)11. 一个数的相反数是-5,那么这个数是________。
答案:512. 一个等腰三角形的底边长是6厘米,两腰长分别是8厘米,那么这个三角形的周长是________厘米。
答案:2213. 如果一个数除以3余1,除以5余2,那么这个数最小是________。
初中数学竞赛辅导资料及参考答案(初二下部分,共3份)-5

初二下部分参考答案(1)练习29(返回目录)4.③三边相等和两边相等的三角形统称等腰三角形6. ①a ≤0.5 ②3 ③4,1④1,7⑤6 ⑥±1⑦-7,-53 ⑨-1,2177+ ⑩ ⎩⎨⎧<-≥-312012x x 或⎩⎨⎧<--<-3)12(012x x ∴21<x<2;x ≥211或x ≤-29 7. (C )∵当x<0, -x =ax+1, x=11+-a <0, a>-1 当x>0时,x=ax+1, x=a -11>0, a<1 ∵方程有负根,∴a>-1条件成立,而方程没有正根,a<1,不能成立 即a>-1且a ≮1,它们的交集是a ≥1练习30(返回目录)2. ax=b 解的分类⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧=≠==≠有无数多个解无解且,0,00,0b b a a b x a 3. ②方程⎩⎨⎧非整式方程整式方程 ⑤四边形⎩⎨⎧非平行四边形平行四边形 4.①有理数⎪⎩⎪⎨⎧负有理数零正有理数 ②垂直是相交的一种5. ①-1,3 ②当x ≥2时,x-2>1-2x ……当x<2时-(x-2)>1-2x …6. ①⎩⎨⎧<≤-+-=-<-=)01(2)1(3x x x x x x ②⎪⎪⎩⎪⎪⎨⎧≠--=)1(11)1(21a a a a 7. 30,30,120;75,75,30。
8. -1,09.当m=1时,调3人;m=2, 调2人;m=3,调1人10. x<0或x>3,11. 把n 按奇数、偶数分类讨论,证明a 1a 2a 3… a n 中至少有2个偶数12. a,b 中若有一个是3的倍数,则ab 能被3整除;若除3有同余数则a-b 能被3整除;若除3余数分别为1和2,则a+b 能被3整除.13. a ≥1 (见练习29第7题)14. 按奇数、偶数分类讨论① 当n 为奇数时,设n=2k+1,k>2的整数,n=k+(k+1), k 和k+1互质; ② 当n 为偶数时,设n=4k 或4k+2, k>1的整数若n=4k=(2k+1)+(2k-1), 而2k+1和2k-1是互质的若n=4k+2=(2k-1)+(2k+3), 易知2k-1和2k+3也是互质的,如果它们有公因子d(d ≥2 ), 可设2k-1=md 2k+3=pd, (m,p 是正整数), 则(m-p )d=4,则4d ,这是不可能的。
初中数学竞赛辅导资料及参考答案(初二上部分,共12份)-8

初中数学竞赛辅导资料(27)识图甲内容提要1.几何学是研究物体形状、大小、位置的学科。
2.几何图形就是点,线,面,体的集合。
点是组成几何图形的基本元素。
《平面几何学》只研究在同一平面内的图形的形状、大小和相互位置。
3.几何里的点、线、面、体实际上是不能脱离物体而单独存在的。
因此单独研究点、线、面、体,要靠正确的想像点:只表示位置,没有大小,不可再分。
线:只有长短,没有粗细。
线是由无数多点组成的,即“点动成线”。
面:只有长、宽,没有厚薄。
面是由无数多线组成的,“线动成面”。
4.因为任何复杂的图形,都是由若干基本图形组合而成的,所以识别图形的组合关系是学好几何的重要基础。
识别图形包括静止状态的数一数,量一量,比一比,算一算;运动状态中的位置、数量的变化,图形的旋转,摺叠,割补,并合,比较等。
还要注意一般图形和特殊图形的差别。
乙例题例1.数一数甲图中有几个角(小于平角)?乙图中有几个等腰三角形?丙图中有几全等三角形?丁图中有几对等边三角形?E解:甲图中有10个角:∠AOB, ∠AOC,∠BOC,∠BOD,∠COD,∠COE,∠DOE,∠DOA,∠EOA,∠EOB.如果OA和OC成一直线,则少一个∠AOC,余类推。
乙图中有5个等腰三角形:△ABC,△ABD,△BDC,△BDE,△DEC 丙图中有全等三角形4对:(设AC和DB相交于O)△AOB≌△COD,△AOD≌△BOC,△ABC≌△CDA,△BCD≌△DAB。
丁图中共有等边三角形48个:边长1个单位:顶点在上▲的个数有 1+2+3+4+5=15顶点在下▼的个数有 1+2+3+4=10边长2个单位:顶点在上▲的个数有 1+2+3+4=10顶点在下▼的个数有 1+2=3边长3个单位:顶点在上▲的个数有 1+2+3=6边长4个单位:顶点在上▲的个数有 1+2=3边长5个单位:顶点在上▲的个数有 1以上要注意数一数的规律例2.设平面内有6个点A 1,A 2,A 3,A 4,A 5,A 6,其中任意3个点都不在同一直线上,如果每两点都连成一条线,那么共有线段几条?如果要使图形不出现有4个点的两两连线,那么最多可连成几条线段?试画出图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛辅导练习题1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( ) (A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)cb c a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( ) (A)2(B)4(C)3(D)53、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )(A)12(B)14(C)16(D)184、已知0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过第( )象限 (A)一、二(B)二、三(C)三、四(D)一、四5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个6、计算的值是( )。
(A )1(B )-1(C )2(D )-2。
7、△ABC 的周长是24,M 是AB 的中点,MC =MA =5,则△ABC 的面积是( )。
(A )12;(B )16;(C )24;(D )30。
8、设,将一次函数与的图象画在同一平面直角坐标系内,则有一组的取值,使得下列4个图中的一个为正确的是( )。
9、如图,在等腰梯形ABCD 中,AB∥DC,AB =998,DC =1001,AD =1999,点P 在线段AD 上,则满足条件∠BPC=90°的点P 的个数为( )。
(A )0;(B )1;(C )2;(D )不小于3的整数。
(A )0;(B )1;(C )2;(D )3。
二、填空题:6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。
9、已知方程()015132832222=+-+--a a x a a x a (其中a 是非负整数),至少有一个整数根,那么a =___________。
10、B 船在A 船的西偏北450处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是___________km 。
1.设15+=m ,那么mm 1+的整数部分是 . 2.在直角三角形ABC 中,两条直角边AB,AC 的长分别为1厘米,2厘米,那么直角的角平分线的长度等于 厘米.3.已知013=--x x ,那么代数式123+-x x 的值是 .4.已知m ,n 是有理数,并且方程02=++n mx x 有一个根是25-,那么n m +的值是 .5. 如图,ABCD 为正方形,A,E,F ,G 在同一条直线上,并且AE=5厘米,EF =3厘米,那么FG = 厘米.6.满足19982+2m =19972+2n )19980(<<<n m 的 整数对),(n m ,共有 个.7.设平方数2y 是11 个相继整数的平方和,则y 的最小值是 .8.直角三角形ABC 中,直角边AB 上有一点M ,斜边BC 上有一点P , 已知BMP BC MP ∆⊥,的面积等于四边形MPCA 的面积的一半, BP =2厘米, PC =3厘米,那么直角三角形ABC 的面积是__________平方厘米. 9.已知正方形ABCD 的面积35平方厘米,E ,F 分别为边AB , BC 上的点, AF , CE 相交于 点G ,并且ABF ∆的面积为5平方厘米,BCE ∆的 面积为14平方厘米,那么四边形BEGF 的面积 是____________平方厘米.10、已知且,则=________。
11、已知为整数,且满足,则=________。
12、在正方形ABCD 中,N 是DC 的中点,M 是AD 上异于D 的点,且∠NMB=∠MBC,则tg∠ABM=________。
三、解答题1、如图,在等腰三角形ABC 中,AB=1,∠A=900, 点E 为腰AC 中点,点F 在底边BC 上,且FE ⊥BE , 求△CEF 的面积。
2、某班参加一次智力竞赛,共三题,每题或者得满分或者得0分。
其中题满分20分,题、题满分分别为25分。
竞赛结果,每个学生至少答对了一题,三题全答对的有1人,答对其中两道题的有15人,答对题的人数与答对题的人数之和为29,答对题的人数与答对题的人数之和为25,答对题的人数与答对题的人数之和为20,问这个班的平均成绩是多少分?数学竞赛辅导练习题答案1.根据不等式性质,选B .AB CEF2.由△=p2-4>0及p>2,设x1,x2为方程两根,那么有x1+x2=-p,x1x2=1.又由(x1-x2)2=(x1+x2)2-4x1x2,3.如图3-271,连ED ,则又因为DE是△ABC 两边中点连线,所以故选C.4.由条件得三式相加得2(a+b+c)=p(a+b+c),所以有p=2或a+b+c=0.当p=2时,y=2x+2,则直线通过第一、二、三象限.y=-x-1,则直线通过第二、三、四象限.综合上述两种情况,直线一定通过第二、三象限.故选B.,的可以区间,如图3-272.+1,3×8+2,3×8+3,……3×8+8,共8个,9×8=72(个).故选C.6、原式=。
7、解:∵MA=MB=MC=5,∴∠ACB=90°,已知周长是24,则AC+BC=14,AC2+BC2=102。
∴2AC×BC=(AC+BC)2-(AC2+BC2)=142-102=4×24。
∴。
8、解:由方程组的解知两直线的交点为,而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1,故图C不对;图D中交点纵坐标是大于,小于的数,不等于,故图D不对;故选B。
9、解:AD的中点M对BC张成90°角,又在AD上取点N使AN=998,则ND=1001。
由△ABN和△DCN都为等腰三角形推知∠BNC=90°,注意到以BC为直径的圆与AD至多有两个交点,可知所求点的个数为2。
二、填空题6.如图3-273,过A作AG⊥BD于G.因为等腰三角形底边上的任意一点到两腰距离的和等于腰上的高,所以PE+PF=AG.因为AD=12,AB=5,所以BD=13,所9.因为a≠0,解得故a可取1,3或5.10.如图3-276,设经过t小时后,A船、B船分别航行到A1,A1C=|10-x|,B1C=|10-2x|,所以1.3 15+=m,4151511-=+=m,∴435451+=+mm,31=⎥⎦⎤⎢⎣⎡+mm.2.322如图,AD为直角A的平分线,过B作DABE//交CA的延长线于点E.=∠EBA︒=∠45BAD,1==ABAE,2=EB,又CDA∆∽CBE∆,32==CEACEBAD,∴32232==EBAD.3.22)1()(122233+--+--=+-xxxxxxx22)1()1(22=+--+--=xxxxx.4.3因为m、n为有理数,方程一根为25-,那么另一个根为25--,由韦达定理.得4=m,1-=n,∴3=+nm.5.316由原图AEFGEFAEEGEDBEEFAE+===,∴EFEFAEFG-=23163352=-=(厘米).6.16 47175399522⨯⨯==-mn, 47175))((⨯⨯=+-mnmn.显然,对3995的任意整数分拆均可得到(m,n),故满足条件的整数对(m,n)共162222=⨯⨯⨯(个).7.11 11个相继整数的平方和为22222)5()4()4()5(+++++++-+-x x x x x 22)10(11y x =+=, 则y 最小时,从而12=x ,∴11=y .8.39∵ MBP ∆∽CBA ∆, 3:1:=∆∆CBA MBP S S , 3:1:=BA BP , ∴ 32=BA ,13=AC . 39133221=⋅⋅=∆ABC S . 9.27204∵ 72==∆∆ABC ABF S S BC BF ,同理54=BA BE , 由原图,连BG . 记a S AGE =∆,b S EGB =∆,c S BGF =∆,d S EGc =∆. 又由已知 5=++c b a ,14=++d c b ,解之得 2728=b , 27100=c . ∴ )(2720427128平方厘米==+=c b S BEGF . 10、解:,即,,,,,。
11、解:左边=,即,,而为整数,且不相等,只可能取值或。
不妨设,则,或,∵(2)无整数解,由(1)得,。
12、解:延长MN 交BC 的延长线于T ,设MB 的中点为O ,连TO ,则△BAM ∽△TOB ,∴,即。
令DN =1,CT =MD =,则AM =,BM =,BT =,代入(1)式得,注意到,解得。
三、解答题1、解法1如图3-277,过C作CD⊥CE与EF的延长线交于D.因为∠ABE+∠AEB=90°,∠CED+∠AEB=90°,所以∠ABE=∠CED.于是Rt△ABE∽Rt△CED,所以又∠ECF=∠DCF=45°,所以CF是∠DCE的平分线,点F到CE和CD的距离相等,所以所以解法2 如图3-278,作FH⊥CE于H,设FH=h.因为∠ABE+∠AEB=90°,∠FEH+∠AEB=90°,所以∠ABE=∠FEH,于是Rt△EHF∽Rt△BAE.因为所以2、解:设分别表示答对题、题、题的人数,则有,,,∴答对一题的人数为37-1×3-2×15=4,全班人数为1+4+15=20,∴平均成绩为。
答:班平均成绩为42分。