物理一轮复习 专题46 电磁感应中的动力学和能量问题(测)(含解析)
2019年高考物理一轮复习精品学案:专题9.4 电磁感应中的动力学和能量问题(解析版)

1.受力分析与运动分析2.应用牛顿运动定律和运动学规律解答电磁感应问题一、电磁感应与力和运动1.安培力的大小由感应电动势E=Blv、感应电流I=ER和安培力公式F=BIl得F=B2l2vR.2.安培力的方向判断(1)对导体切割磁感线运动,先用右手定则确定感应电流的方向,再用左手定则确定安培力的方向.(2)根据安培力防碍导体和磁场的相对运动判断.3.电磁感应中的力和运动电磁感应与力学问题的综合,涉及两大研究对象:电学对象与力学对象.联系两大研究对象的桥梁是磁场对感应电流的安培力,其大小与方向的变化,直接导致两大研究对象的状态改变.二、电磁感应与能量守恒1.能量转化导体切割磁感线或磁通量发生变化,在回路中产生感应电流,这个过程中机械能或其他形式的能转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或内能.所以,电磁感应过程中总是伴随着能量的转化.2.电磁感应过程的实质是不同形式的能量转化的过程,而能量的转化是通过安培力做功的形式实现的,安培力做功的过程,是电能转化为其他形式能的过程,外力克服安培力做功,则是其他形式的能转化为电能的过程.高频考点一电磁感应与力和运动1.受力分析与运动分析对电磁感应现象中的力学问题,除了要作好受力情况和运动情况的动态分析外,还需要注意导体受到的安培力随运动速度变化的特点,速度变化,弹力及相对应的摩擦力也随之而变,导致物体的运动状态发生变化.2.应用牛顿运动定律和运动学规律解答电磁感应问题的基本思路(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.(2)求回路中的电流.(3)分析研究导体的受力情况(包含安培力,用左手定则确定其方向).(4)根据牛顿第二定律和运动学规律或平衡条件列方程求解.例1、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L,长为3d,导轨平面与水平面的夹角为θ,在导轨的中部刷有一段长为d的薄绝缘涂层.匀强磁场的磁感应强度大小为B,方向与导轨平面垂直.质量为m的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端.导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为R,其他部分的电阻均不计,重力加速度为g.求:(1)导体棒与涂层间的动摩擦因数μ;(2)导体棒匀速运动的速度大小v;(3)整个运动过程中,电阻产生的焦耳热Q.【方法归纳】解决电磁感应中的动力学问题的一般思路是“先电后力”,具体思路如下:(1)先作“源”的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E和r;(2)再实行“路”的分析——分析电路结构,弄清串、并联关系,求出相对应部分的电流大小,以便求解安培力;(3)然后是“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力;(4)最后实行“运动”状态的分析——根据力和运动的关系,判断准确的运动模型.【变式探究】如图,矩形闭合导体线框在匀强磁场上方,由不同高度静止释放,用t1、t2分别表示线框ab边和cd边刚进入磁场的时刻.线框下落过程形状不变,ab边始终保持与磁场水平边界线OO′平行,线框平面与磁场方向垂直.设OO′下方磁场区域充足大,不计空气影响,则下列哪一个图象不可能反映线框下落过程中速度v随时间t变化的规律( )【答案】A.【举一反三】(多选)如图甲所示,MN左侧有一垂直纸面向里的匀强磁场,现将一边长为L、质量为m、电阻为R的正方形金属线框置于该磁场中,使线框平面与磁场方向垂直,且bc边与磁场边界MN重合.当t=0时,对线框施加一水平拉力F,使线框由静止开始向右做匀加速直线运动;当t=t0时,线框的ad边与磁场边界MN重合.图乙为拉力F随时间t变化的图线.由以上条件可知,磁场的磁感应强度B的大小及t0时刻线框的速率v为( )A .B =1LmR t 0 B .B =1L2mRt 0C .v =F 0t 0mD .v =2F 0t 0m【答案】BC高频考点二 电磁感应与能量守恒 1.电磁感应中的几个功能关系(1)导体克服安培力做的功等于产生的电能W 安=E 电;(2)若电路为纯电阻电路,则电磁感应中产生的电能又完全转化为电路的焦耳热Q =E 电; (3)导体克服安培力做的功等于消耗的机械能W 安=E 机械能;(4)综合起来能够看出“电路的焦耳热”等于“电磁感应中产生的电能”等于“机械能的减小”,即Q =E 电=E 机械能.这里还要特别明确“能量转化的层次性”,即E 机械能→E 电→Q ,其中第一次转化是通过克服安培力做功W 安来实现,第二次转化是通过感应电流流经电阻转化为焦耳热来实现. 2.用能量方法解决电磁感应问题的一般步骤(1)用法拉第电磁感应定律和楞次定律确定电动势的大小和方向. (2)画出等效电路,求出回路中电阻消耗电功率的表达式.(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的关系式.例2、半径分别为r 和2r 的同心圆形导轨固定在同一水平面内,一长为r 、质量为m 且质量分布均匀的直导体棒AB 置于圆导轨上面.BA 的延长线通过圆导轨中心O ,装置的俯视图如图所示.整个装置位于一匀强磁场中,磁感应强度的大小为B ,方向竖直向下.在内圆导轨的C 点和外圆导轨的D 点之间接有一阻值为R 的电阻(图中未画出).直导体棒在水平外力作用下以角速度ω绕O 逆时针匀速转动,在转动过程中始终与导轨保持良好接触.设导体棒与导轨之间的动摩擦因数为μ,导体棒和导轨的电阻均可忽略.重力加速度大小为g ,求:(1)通过电阻R 的感应电流的方向和大小; (2)外力的功率.(2)在竖直方向上有mg -2F N =0⑤式中,因为质量分布均匀,内、外圆导轨对导体棒的正压力大小相等,其值为F N .两导轨对运行的导体棒的滑动摩擦力均为F f =μF N⑥在Δt 时间内,导体棒在内、外圆导轨上扫过的弧长分别为 l 1=rωΔt ⑦ l 2=2rωΔt⑧克服摩擦力做的总功为W f =F f (l 1+l 2)⑨在Δt 时间内,消耗在电阻R 上的功为W R =I 2R Δt⑩根据能量转化和守恒定律知,外力在Δt 时间内做的功为W =W f +W R ⑪外力的功率为P =WΔt⑫由④至⑫式得P =32μmgωr +9ω2B 2r 44R ⑬ 【答案】(1)3ωBr 22R 方向由C 端到D 端(2)32μmg ωr +9ω2B 2r 44R【归纳总结】(1)电磁感应中通过导体横截面的电荷量q =n ΔΦR ,式中ΔΦ为闭合电路中磁通量的变化量,n 为线圈匝数,R 为闭合电路的总电阻.不论电流恒定还是变化,上述公式都适用. (2)电能在电路中的作用:一般电路中并不储存电能,在绝大部分情况下,虽然持续有能量转化为电能,但这些电能立即通过电流做功转化为焦耳热,所以电能往往仅仅一种“过渡”能量. 【变式探究】(多选)如图所示,固定在同一水平面上的两平行金属导轨AB 、CD ,两端接有阻值相同的两个定值电阻.质量为m 的导体棒垂直放在导轨上,轻弹簧左端固定,右端连接导体棒,整个装置处于竖直向下的匀强磁场中.当导体棒静止在OO ′位置时,弹簧处于原长状态.此时给导体棒一个水平向右的初速度v 0,它能向右运动的最远距离为d ,且能再次经过OO ′位置.已知导体棒所受的摩擦力大小恒为f ,导体棒向右运动过程中左侧电阻产生的热量为Q ,不计导轨和导体棒的电阻.则( )A .弹簧的弹性势能最大为12mv 20-Q -fdB .弹簧的弹性势能最大为12mv 20-2Q -fdC .导体棒再次回到OO ′位置时的动能等于12mv 20-4Q -2fdD .导体棒再次回到OO ′位置时的动能大于12mv 20-4Q -2fd【答案】BD【举一反三】如图甲所示,在虚线mn 的上方存有垂直纸面向里的匀强磁场,mn 的下方存有竖直向下的匀强磁场,mn 上下两侧磁场的磁感应强度大小相等.将两根充足长的直导轨平行放置在磁场中,且贯穿虚线的上下两侧.取两根等长的金属棒a 、b ,两端分别套上金属环,然后将两金属棒套在长直导轨上,其中a 棒置于虚线上侧,b 棒置于虚线下侧.从t =0时刻开始在a 棒上加一竖直向上的外力F ,使a 棒由静止开始向上做匀加速直线运动,外力随时间的变化规律如图乙所示,同时b 棒在t =0时刻由静止释放.已知两导轨的间距为L =1.5 m ,a 、b 棒的质量分别为m 1=1 kg 、m 2=0.27 kg ,两金属棒的总电阻为R =1.8 Ω,忽略导轨的电阻,b 棒与导轨的动摩擦因数为μ=0.75,不计a 棒与导轨之间的摩擦,取g =10 m/s 2.甲 乙(1)求虚线上下两侧的磁感应强度大小以及a 棒匀加速运动的加速度大小;(2)如果在0~2 s 的时间内外力F 对a 棒做功为40 J ,则该过程中整个电路产生的焦耳热为多少?(3)经过多长时间b 棒的速度最大?(2)在2 s 末金属棒a 的速率v t =at ′=2 m/s ,所发生的位移x =12at ′2=2 m 由动能定理得W F -m 1gx -W 安=12m 1v 2t ,又Q =W 安 解得Q =18 J.(3)b 棒先做加速度逐渐减小的加速运动,当b 棒所受重力与滑动摩擦力相等时,速度达到最大;后做加速度逐渐增大的减速运动,最后停止运动.假设经t 0时间金属棒b 的速度达到最大,当b 棒速度达到最大时,有m 2g =μF N 又F N =F 安=BI 1L ,I 1=E 1R =BLv 1R ,v 1=at 0 联立解得t 0=2 s.【答案】(1)1.2 T 1 m/s 2 (2)18 J (3)2 s 高频考点三、微元法在电磁学中的应用微元法是将研究对象无限细分,从中抽取出微小单元实行研究,找出被研究对象变化规律,因为这些微元遵循的规律相同,再将这些微元实行必要的数学运算(累计求和),从而顺利解决问题.用该方法能够将一些复杂的物理过程,用我们熟悉的规律加以解决,是物理学中常用的思想方法之一.例3、如图所示,两条平行导轨所在平面与水平地面的夹角为θ,间距为L .导轨上端接有一平行板电容器,电容为C .导轨处于匀强磁场中,磁感应强度大小为B ,方向垂直于导轨平面向下.在导轨上放置一质量为m 的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g .忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求:(1)电容器极板上积累的电荷量与金属棒速度大小的关系; (2)金属棒的速度大小随时间变化的关系.【解析】(1)设金属棒下滑的速度大小为v ,则感应电动势为E =BLv ①平行板电容器两极板之间的电势差为U =E②设此时电容器极板上积累的电荷量为Q ,按定义有C =Q U③联立①②③式得Q =CBLv④【答案】(1)Q =CBLv (2)v =mθ-μcos θm +B 2L 2Cgt【方法技巧】1.本题用微元法可判断金属杆沿导轨匀加速下滑,从而得出速度随时间均匀变化的关系,这与常见的导体棒在恒力作用下运动是不同的.2.对于电容器的充电过程,因为金属杆的速度均匀增加,感应电动势也均匀变大,所以金属棒一直给电容器充电,且充电的电流恒定,认为电容器是断路,没有电流是错误的.1.【2019·全国卷Ⅰ】如图1-,两固定的绝缘斜面倾角均为θ,上沿相连.两细金属棒ab (仅标出a 端)和cd (仅标出c 端)长度均为L ,质量分别为2m 和m ;用两根不可伸长的柔软轻导线将它们连成闭合回路abdca ,并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,使两金属棒水平.右斜面上存有匀强磁场,磁感应强度大小为B ,方向垂直于斜面向上,已知两根导线刚好不在磁场中,回路电阻为R ,两金属棒与斜面间的动摩擦因数均为μ,重力加速度大小为g ,已知金属棒ab 匀速下滑.求:( ) (1)作用在金属棒ab 上的安培力的大小; (2)金属棒运动速度的大小.图1-【答案】(1)mg (sin θ-3μcos θ) (2)(sin θ-3μcos θ)mgRB 2L 2(2)由安培力公式得 F =BIL ⑥这里I 是回路abdca 中的感应电流,ab 棒上的感应电动势为 ε=BLv ⑦式中,v 是ab 棒下滑速度的大小,由欧姆定律得 I =εR ⑧联立⑤⑥⑦⑧式得v =(sin θ-3μcos θ)mgRB 2L 2 ⑨2.【2019·全国卷Ⅱ】如图1-所示,水平面(纸面)内间距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上.t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.t 0时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求: (1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.图1-【答案】(1)Blt 0⎝⎛⎭⎫F m -μg (2)B 2l 2t 0m(2)设金属杆在磁场区域中匀速运动时,金属杆中的电流为I ,根据欧姆定律 I =ER ⑤式中R 为电阻的阻值.金属杆所受的安培力为 f =BIl ⑥因金属杆做匀速运动,由牛顿运动定律得 F -μmg -f =0 ⑦ 联立④⑤⑥⑦式得 R =B 2l 2t 0m ⑧3.【2019·四川卷】如图1-所示,电阻不计、间距为l 的光滑平行金属导轨水平放置于磁感应强度为B 、方向竖直向下的匀强磁场中,导轨左端接一定值电阻R .质量为m 、电阻为r 的金属棒MN 置于导轨上,受到垂直于金属棒的水平外力F 的作用由静止开始运动,外力F 与金属棒速度v 的关系是F =F 0+kv (F 0、k 是常量),金属棒与导轨始终垂直且接触良好.金属棒中感应电流为i ,受到的安培力大小为F A ,电阻R 两端的电压为U R ,感应电流的功率为P ,它们随时间t 变化图像可能准确的有( )图1-图1-分析金属棒运动情况,由牛顿第二定律可得F 合=F -F A =F 0+kv -B 2l 2R +r v =F 0+⎝⎛⎭⎫k -B 2l 2R +r v ,而加速度a =F 合m .因为金属棒从静止出发,所以F 0>0,且F 合>0,即a >0,加速度方向水平向右. (1)若k =B 2l 2R +r ,F 合=F 0,即a =F 0m ,金属棒水平向右做匀加速直线运动,有v =at ,说明v ∝t ,即I ∝t ,F A ∝t ,U R ∝t ,P ∝t 2,所以在此情况下没有选项符合;(2)若k >B 2l 2R +r ,F 合随v 增大而增大,即a 随v 增大而增大,说明金属棒在做加速度增大的加速运动,根据四个物理量与速度的关系可知B 选项符合;(3)若k <B 2l 2R +r ,F 合随v 增大而减小,即a 随v 增大而减小,说明金属棒在做加速度减小的加速运动,直到加速度减小为0后金属棒做匀速直线运动,根据四个物理量与速度关系可知C 选项符合;综上所述,B 、C 选项符合题意.4.【2019·浙江卷】小明设计的电磁健身器的简化装置如图1-10所示,两根平行金属导轨相距l =0.50 m ,倾角θ=53°,导轨上端串接一个R =0.05 Ω的电阻.在导轨间长d =0.56 m 的区域内,存有方向垂直导轨平面向下的匀强磁场,磁感应强度B =2.0 T .质量m =4.0 kg 的金属棒CD 水平置于导轨上,用绝缘绳索通过定滑轮与拉杆GH 相连.CD 棒的初始位置与磁场区域的下边界相距s =0.24 m .一位健身者用恒力F =80 N 拉动GH 杆,CD 棒由静止开始运动,上升过程中CD 棒始终保持与导轨垂直.当CD 棒到达磁场上边界时健身者松手,触发恢复装置使CD 棒回到初始位置(重力加速度g 取10 m/s 2,sin 53°=0.8,不计其他电阻、摩擦力以及拉杆和绳索的质量).求:(1)CD 棒进入磁场时速度v 的大小;(2)CD 棒进入磁场时所受的安培力F A 的大小;(3)在拉升CD 棒的过程中,健身者所做的功W 和电阻产生的焦耳热Q .图1-10【答案】(1)2.4 m/s (2)48 N (3)64 J 26.88 J代入得F A =(Bl )2vR =48 N ⑥ (3)健身者做功W =F (s +d )=64 J ⑦ 由牛顿定律F -mg sin θ-F A =0 ⑧ CD 棒在磁场区做匀速运动 在磁场中运动时间t =dv ⑨ 焦耳热Q =I 2Rt =26.88 J ⑩5.【2019·全国卷Ⅲ】如图1-所示,两条相距l 的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R 的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S 的区域,区域中存有垂直于纸面向里的均匀磁场,磁感应强度大小B 1随时间t 的变化关系为B 1=kt ,式中k 为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN (虚线)与导轨垂直,磁场的磁感应强度大小为B 0,方向也垂直于纸面向里.某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t 0时刻恰好以速度v 0越过MN ,此后向右做匀速运动.金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计.求: (1)在t =0到t =t 0时间间隔内,流过电阻的电荷量的绝对值;(2)在时刻t (t >t 0)穿过回路的总磁通量和金属棒所受外加水平恒力的大小.图1-【答案】(1)kt 0S R (2)B 0lv 0(t -t 0)+kSt (B 0lv 0+kS )B 0lR由⑤式得,在t =0到t =t 0的时间间隔内,流过电阻R 的电荷量q 的绝对值为 |q |=kt 0S R ⑥(2)当t >t 0时,金属棒已越过MN .因为金属棒在MN 右侧做匀速运动,有f =F ⑦式中,f 是外加水平恒力,F 是匀强磁场施加的安培力.设此时回路中的电流为I ,F 的大小为 F =B 0Il ⑧此时金属棒与MN 之间的距离为s =v 0(t -t 0) ⑨ 匀强磁场穿过回路的磁通量为Φ′=B 0ls ⑩ 回路的总磁通量为Φt =Φ+Φ′1.(2019·浙江理综·24)小明同学设计了一个“电磁天平”,如图5所示,等臂天平的左臂为挂盘,右臂挂有矩形线圈,两臂平衡.线圈的水平边长L =0.1 m ,竖直边长H =0.3 m ,匝数为N 1.线圈的下边处于匀强磁场内,磁感应强度B 0=1.0 T ,方向垂直线圈平面向里.线圈中通有可在0~2.0 A 范围内调节的电流I .挂盘放上待测物体后,调节线圈中电流使天平平衡,测出电流即可测得物体的质量.(重力加速度取g =10 m/s 2)图5 图6(1)为使电磁天平的量程达到0.5 kg ,线圈的匝数N 1至少为多少?(2)进一步探究电磁感应现象,另选N 2=100匝、形状相同的线圈,总电阻R =10 Ω.不接外电流,两臂平衡.如图6所示,保持B 0不变,在线圈上部另加垂直纸面向外的匀强磁场,且磁感应强度B 随时间均匀变大,磁场区域宽度d =0.1 m .当挂盘中放质量为0.01 kg 的物体时,天平平衡,求此时磁感应强度的变化率ΔB Δt . 答案 (1)25匝 (2)0.1 T/s2.(2019·天津理综·11)如图9所示,“凸”字形硬质金属线框质量为m ,相邻各边互相垂直,且处于同一竖直平面内,ab 边长为l ,cd 边长为2l ,ab 与cd 平行,间距为2l .匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面.开始时,cd 边到磁场上边界的距离为2l ,线框由静止释放,从cd 边进入磁场直到ef 、pq 边进入磁场前,线框做匀速运动,在ef 、pq 边离开磁场后,ab 边离开磁场之前,线框又做匀速运动.线框完全穿过磁场过程中产生的热量为Q .线框在下落过程中始终处于原竖直平面内,且ab 、cd 边保持水平,重力加速度为g .求:图9(1)线框ab 边将要离开磁场时做匀速运动的速度大小是cd 边刚进入磁场时的几倍; (2)磁场上、下边界间的距离H . 答案 (1)4倍 (2)Qmg +28l解析 (1)设磁场的磁感应强度大小为B ,cd 边刚进入磁场时,线框做匀速运动的速度为v 1,cd 边上的感应电动势为E 1,由法拉第电磁感应定律,有E 1=2Blv 1①设线框总电阻为R ,此时线框中电流为I 1,由闭合电路欧姆定律,有I 1=E 1R ② 设此时线框所受安培力为F 1,有F 1=2I 1lB ③3.(2019·江苏单科·13)如图8所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L ,长为3d ,导轨平面与水平面的夹角为θ,在导轨的中部刷有一段长为d 的薄绝缘涂层.匀强磁场的磁感应强度大小为B ,方向与导轨平面垂直.质量为m 的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端.导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为R ,其他部分的电阻均不计,重力加速度为g .求:图8(1)导体棒与涂层间的动摩擦因数μ; (2)导体棒匀速运动的速度大小v ; (3)整个运动过程中,电阻产生的焦耳热Q . 答案 (1)tan θ (2)mgR sin θB 2L 2 (3)2mgd sin θ-m 3g 2R 2sin 2θ2B 4L 4 解析 (1)在绝缘涂层上导体棒受力平衡mg sin θ=μmg cos θ 解得导体棒与涂层间的动摩擦因数μ=tan θ (2)在光滑导轨上感应电动势:E =BLv 感应电流:I =ER 安培力:F 安=BIL受力平衡的条件是:F 安=mg sin θ 解得导体棒匀速运动的速度v =mgR sin θB 2L 24.(2019·新课标全国Ⅱ·25)半径分别为r 和2r 的同心圆形导轨固定在同一水平面内,一长为r 、质量为m 且质量分布均匀的直导体棒AB 置于圆导轨上面,BA 的延长线通过圆导轨中心O ,装置的俯视图如图15所示.整个装置位于一匀强磁场中,磁感应强度的大小为B ,方向竖直向下.在内圆导轨的C 点和外圆导轨的D 点之间接有一阻值为R 的电阻(图中未画出).直导体棒在水平外力作用下以角速度ω绕O 逆时针匀速转动,在转动过程中始终与导轨保持良好接触.设导体棒与导轨之间的动摩擦因数为μ,导体棒和导轨的电阻均可忽略.重力加速度大小为g .求:图15(1)通过电阻R 的感应电流的方向和大小; (2)外力的功率.答案 (1)方向为C →D 3Bωr 22R (2)9B 2ω2r 44R +3μmgωr 2解析 (1)根据右手定则,得导体棒AB 上的电流方向为B →A ,故电阻R 上的电流方向为C →D . 设导体棒AB 中点的速度为v ,则v =v A +v B2 而v A =ωr ,v B =2ωr根据法拉第电磁感应定律,导体棒AB 上产生的感应电动势E =Brv根据闭合电路欧姆定律得I =E R ,联立以上各式解得通过电阻R 的感应电流的大小为I =3Bωr 22R .(2)根据能量守恒定律,外力的功率P 等于安培力与摩擦力的功率之和,即P =BIrv +fv ,而f =μmg解得P =9B 2ω2r 44R +3μmgωr2.5.(2019·天津理综·3)如图2所示,纸面内有一矩形导体闭合线框abcd ,ab 边长大于bc 边长,置于垂直纸面向里、边界为MN 的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN .第一次ab 边平行MN 进入磁场,线框上产生的热量为Q 1,通过线框导体横截面的电荷量为q 1;第二次bc 边平行MN 进入磁场,线框上产生的热量为Q 2,通过线框导体横截面的电荷量为q 2,则( )图2A .Q 1>Q 2,q 1=q 2B .Q 1>Q 2,q 1>q 2C .Q 1=Q 2,q 1=q 2D .Q 1=Q 2,q 1>q 2答案 A1.(多选)如图5所示,在光滑的水平面上方,有两个磁感应强度大小均为B ,方向相反的水平匀强磁场,PQ 为两个磁场的边界,磁场范围充足大.一个边长为a 、质量为m 、电阻为R 的金属正方形线框,以速度v 垂直磁场方向从如图实线位置(Ⅰ)开始向右运动,当线框运动到分别有一半面积在两个磁场中的位置(Ⅱ)时,线框的速度为v2.下列说法准确的是( )图5A .在位置(Ⅱ)时线框中的电功率为B 2a 2v 2R B .此过程中回路产生的电能为38mv 2 C .在位置(Ⅱ)时线框的加速度为B 2a 2v2mR D .此过程中通过导线横截面的电荷量为2Ba 2R 答案 AB2.(多选)如图6所示,间距l =0.4 m 的光滑平行金属导轨与水平面夹角θ=30°,正方形区域abcd 内匀强磁场的磁感应强度B =0.2 T ,方向垂直于斜面.甲、乙两金属杆的电阻R 相同、质量均为m =0.02 kg ,垂直于导轨放置.起初,甲金属杆处在磁场的上边界ab 上,乙在甲上方距甲也为l 处.现将两金属杆同时由静止释放,并同时在甲金属杆上施加一个沿着导轨的拉力F ,使甲金属杆始终以a =5 m/s 2的加速度沿导轨匀加速运动,已知乙金属杆刚进入磁场时做匀速运动,取g =10 m/s 2,则( )图6A .每根金属杆的电阻R =0.016 ΩB .甲金属杆在磁场中运动的时间是0.4 sC .甲金属杆在磁场中运动过程中F 的功率逐渐增大D .乙金属杆在磁场运动过程中安培力的功率是0.1 W答案 BC解析 乙金属杆在进入磁场前,甲、乙两金属杆加速度大小相等,当乙刚进入磁场时,甲刚好出磁场.由v 2=2al 解得乙进、甲出磁场时的速度大小均为v =2 m/s ,由v =at 解得甲金属杆在磁场中的运动时间为t =0.4 s ,选项B 准确;乙金属杆进入磁场后有mg sin 30°=BIl ,又Blv =I ·2R ,联立解得R =0.064 Ω,选项A 错误;甲金属杆在磁场中运动过程中力F 和杆的速度都逐渐增大,则其功率也逐渐增大,选项C 准确;乙金属杆在磁场运动过程中安培力的功率是P =BIlv =0.2 W ,选项D 错误.故本题答案为B 、C.3.(多选)如图7所示,在倾角为θ的斜面上固定两根充足长的光滑平行金属导轨PQ 、MN ,相距为L ,导轨处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下.有两根质量均为m 的金属棒a 、b ,先将a 棒垂直导轨放置,用跨过光滑定滑轮的细线与物块c 连接,连接a 棒的细线平行于导轨,由静止释放c ,此后某时刻,将b 也垂直导轨放置,a 、c 此刻起做匀速运动,b 棒刚好能静止在导轨上.a 棒在运动过程中始终与导轨垂直,两棒与导轨接触良好,导轨电阻不计.则( )图7A .物块c 的质量是2m sin θB .b 棒放上导轨前,物块c 减少的重力势能等于a 、c 增加的动能C .b 棒放上导轨后,物块c 减少的重力势能等于回路消耗的电能D .b 棒放上导轨后,a 棒中电流大小是mg sin θBL答案 AD。
高考物理一轮复习 专题46 电磁感应中的动力学和能量问题(讲)(含解析)-人教版高三全册物理试题

专题46 电磁感应中的动力学和能量问题1.会分析计算电磁感应中有安培力参与的导体的运动与平衡问题.2.会分析计算电磁感应中能量的转化与转移.考点一 电磁感应中的动力学问题分析 1.安培力的大小由感应电动势E =BLv ,感应电流rR EI +=和安培力公式F =BIL 得r R v L B F +=222.安培力的方向判断3.导体两种状态与处理方法(1)导体的平衡态——静止状态或匀速直线运动状态. 处理方法:根据平衡条件(合外力等于零)列式分析. (2)导体的非平衡态——加速度不为零.处理方法:根据牛顿第二定律进展动态分析或结合功能关系分析. ★重点归纳★1.电磁感应中的动力学问题中两大研究对象与其关系电磁感应中导体棒既可看作电学对象(因为它相当于电源),又可看作力学对象(因为感应电流产生安培力),而感应电流I 和导体棒的速度v 如此是联系这两大对象的纽带:2.电磁感应中的动力学问题分析思路 解决电磁感应中的动力学问题的一般思路是:“先电后力〞,即:先做“源〞的分析——别离出电路中由电磁感应所产生的电源,求出电源参数E 和r ;再进展“路〞的分析——分析电路结构,弄清串、并联关系,求出相应局部的电流大小,以便求解安培力;然后是“力〞的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力;最后进展“运动〞状态的分析——根据力和运动的关系,判断出正确的运动模型. (1)电路分析:导体棒相当于电源,感应电动势相当于电源的电动势,导体棒的电阻相当于电源的内阻,感应电流rR BLvr R E I +=+=. (2)受力分析:导体棒受到安培力与其他力,安培力F 安=BIl 或rR vL B F +=22,根据牛顿第二定律列动力学方程:F 合=ma . (3)过程分析:由于安培力是变力,导体棒做变加速或变减速运动,当加速度为零时,达到稳定状态,最后做匀速直线运动,根据共点力平衡条件列平衡方程:F 合=0.★典型案例★如图甲所示,一对足够长的平行粗糙导轨固定在与水平面夹角为370的斜面上,两导轨间距为l=1m,下端接有R=3Ω的电阻,导轨的电阻忽略不计;一根质量m=0.5kg、电阻r=1Ω(导轨间局部)的导体杆垂直静置与两导轨上,并与两导轨接触良好;整个装置处于磁感应强度大小B=2T、垂直于导轨平面向上的匀强磁场中;现用平行于斜面向上的拉力F 拉导体杆,拉力F与时间t的关系如图乙所示,导体杆恰好做匀加速直线运动;重力加速度g=10m/s2,sin370=0.6,cos370=0.8;求导体杆的加速度大小和导体杆与导轨间的动摩擦因数μ。
2022-2023年高考物理一轮复习 电磁感应中的动力学及能量问题

二、电磁感应中的能量问题
1.电磁感应中能量的转化 (1)转化方式
(2)涉及到的常见功能关系 ①有滑动摩擦力做功,必有内能产生; ②有重力做功,重力势能必然发生变化; ③克服安培力做多少功,就有多少其他形式的能转化为电能.
2.焦耳热的计算 (1)电流恒定时,根据焦耳定律求解,即Q=I2Rt. (2)感应电流变化,可用以下方法分析: ①利用动能定理,求出克服安培力做的功W安,即Q=W安. ②利用能量守恒定律,焦耳热等于其他形式能量的减少量.
例1 如图1所示,空间存在B=0.5 T、方向竖直向下的匀强磁场,MN、PQ是水平放 置的平行长直导轨,其间距L=0.2 m,电阻R=0.3 Ω接在导轨一端,ab是跨接在导轨上 质量m=0.1 kg、接入电路的电阻r=0.1 Ω的导体棒,已知导体棒和导轨间的动摩擦 因数为0.2.从零时刻开始,对ab棒施加一个大小为F=0.45 N、方向水平向左的恒定 拉力,使其从静止开始沿导轨滑动,过程中棒始终保持与导轨垂直且接触良好,求:(g =10 m/s2)
此时电路中的电流 I=RE=BRLv
ab 杆受到安培力 F 安=BIL=B2RL2v 根据牛顿第二定律,有 mgsin θ-F 安=mgsin θ-B2RL2v=ma
则 a=gsin θ-Bm2LR2v.
(3)求在下滑过程中,ab杆可以达到的速度最大值.
答案 解析
mgRsin θ B2L2
当 a=0 时,ab 杆有最大速度 vm,即 mgsin θ=B2LR2vm,
解得
vm=mgBR2sLi2n
θ .
提示 1.受力分析时,要把立体图转换为平面图,同时标明电流方向及磁场的方 向,以便准确地画出安培力的方向. 2.要特别注意安培力的大小和方向都有可能变化.
高考一轮复习 课时检测-电磁感应中的能量问题

电磁感应中的能量问题1.(多选)如图所示,竖直放置的两根平行光滑金属导轨之间接有定值电阻R ,质量不能忽略的金属棒与两导轨始终保持垂直并接触良好,金属棒与导轨的电阻均不计,整个装置处于匀强磁场中,磁场方向与导轨平面垂直,金属棒在竖直向上的恒力F 作用下匀速上升,以下说法正确的是( )A .作用在金属棒上各力的合力做功为零B .重力做的功等于系统产生的电能C .金属棒克服安培力做的功等于电阻R 上产生的焦耳热D .恒力F 做的功等于电阻R 上产生的焦耳热解析:选AC 因为金属棒匀速上升,所以其所受合力为零,合力做的功为零,故A 对;重力做的功等于重力势能变化量的负值,恒力F 做的功等于重力势能的变化量与产生的电能之和,而克服安培力做的功等于电阻R 上产生的焦耳热,故B 、D 错,C 对。
2.有一边长为L 的正方形导线框,质量为m ,由高H 处自由下落,如图所示,其边ab 进入匀强磁场区域后,线框开始做减速运动,直到其边cd 刚好穿出磁场时,速度减为ab 边刚进入磁场时速度的一半,此匀强磁场的宽度也是L ,线框在穿越匀强磁场过程中产生的电热是( )A .2mgLB .2mgL +mgHC .2mgL +34mgHD .2mgL +14mgH解析:选C 设线框进入磁场的速度为v 1,离开磁场的速度为v 2,以磁场的下边界为零势能面,线框从开始下落到离开磁场的过程中能量守恒,则mg(H +2L)=Q +12mv 22,线框从开始下落到ab 边进入磁场过程中应用动能定理mgH =12mv 12,由题意知v 1=2v 2,解得Q =2mgL +34mgH ,故C 项正确。
3.如图所示,足够长的光滑金属导轨MN 、PQ 平行放置且固定,导轨平面与水平方向的夹角为θ。
在导轨的最上端M 、P 之间接有电阻R ,不计其他电阻。
导体棒ab 从导轨的最底端以初速度v 0冲上导轨,当没有磁场时,ab 棒上升的最大高度为H ;若存在垂直导轨平面的匀强磁场时,ab 棒上升的最大高度为h 。
2019届一轮复习人教A版 电磁感应中的动力学和能量问题 课件 (46张)

二、电磁感应中的能量问题 1.电磁感应中的能量转化
2.求解焦耳热Q的三种方法
议
1.一对光滑的平行金属导轨固定在同
一水平面内,导轨间距l=0.5 m,左端接 有阻值R=0.3 Ω的电阻。一质量m=0.1 kg,电阻r=0.1 Ω
的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强
磁场中,磁场的磁感应强度B=0.4 T。棒在水平向右的外力 作用下,由静止开始以a=2 m/s2的加速度做匀加速运动。
专题二
电磁感应中的动力学和能量问题
导
1.会分析计算电磁感应中的安培力参与的导体的 运动及平衡问题. 2.会分析计算电磁感应中能量的转化与转移.
电磁感应现象中的动力学问题
1.两种状态及处理方法
思
处理方法
状态
特征
平衡态 加速度为零
根据平衡条件列式分析
非平衡 加速度不为 根据牛顿第二定律进行动态分析
态
4.电磁感应中的动力学临界问题 (1)解决这类问题的关键是通过运动状态的分析, 寻找过程中的临界状态,如速度、加速度求最大值或
最小值的条件。
(2)两种常见类型 类型 示意图 “电—动—电”型 “动—电—动”型
棒ab长l、质量m、
棒ab长l、质量m、
已知量
电阻R,导轨光滑水 电阻R,导轨光滑, 平,电阻不计 电阻不计
运动学公式得 v2=2ax⑥ 设棒在撤去外力后的运动过程中安培力做功为 W,由动能 1 定理得 W=0-2mv2⑦ 撤去外力后回路中产生的焦耳热 Q2=-W⑧ 联立⑥⑦⑧式,代入数据得 Q2=1.8 J⑨
(3)由题意知, 撤去外力前后回路中产生的焦耳热之比 Q1∶Q2=2∶1,可得 Q1=3.6 J⑩ 在棒运动的整个过程中,由功能关系可知,WF=Q1 + Q2 , ⑪ 由⑨⑩⑪式得 WF=3.6 J+1.8 J=5.4 J⑫
高考物理一轮复习 专题46 电磁感应中的动力学和能量问题(测)(含解析)

专题46 电磁感应中的动力学和能量问题【满分:110分时间:90分钟】一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中. 1~8题只有一项符合题目要求; 9~12题有多项符合题目要求。
全部选对的得5分,选对但不全的得3分,有选错的得0分。
)1.如图,固定在水平桌面上的光滑金属导轨cd、eg处于方向竖直向下的匀强磁场中,金属杆ab与导轨接触良好,在两根导轨的端点d、e之间连接一电阻,其他部分电阻忽略不计,现用一水平向右的恒力F作用在金属杆ab上,使金属杆由静止开始向右沿导轨滑动,滑动中杆ab始终垂直于导轨,金属杆受到的安培力用F安表示,则下列说法正确的是:()A.金属杆ab做匀加速直线运动B.金属杆ab运动过程回路中有顺时针方向的电流C.金属杆ab所受到的F安先不断增大,后保持不变D.金属杆ab克服安培力做功的功率与时间的平方成正比【答案】C2.如图所示,两条电阻不计的平行导轨与水平面成θ角,导轨的一端连接定值电阻R1,匀强磁场垂直穿过导轨平面.一根质量为m、电阻为R2的导体棒ab,垂直导轨放置,导体棒与导轨之间的动摩擦因数为μ,且R2=nR1.如果导体棒以速度v匀速下滑,导体棒此时受到的安培力大小为F,则以下判断正确的是:()A. 电阻R消耗的电功率为Fv/nB. 重力做功的功率为mgv cosθC. 运动过程中减少的机械能全部转化为电能D. R2上消耗的功率为nFv/(n+l)【答案】D【名师点睛】导体棒以速度 v 匀速下滑,受到的安培力大小为 F,根据法拉第电磁感应定律和焦耳定律,联立解得P;根据能量转化情况,分析整个装置减小的机械功率转化为电能和内能。
R2和R1串联,电流相等,根据可知R2消耗的功率和R1消耗的功率的关系。
3.如图所示,PQ、MN是放置在水平面内的光滑导轨,GH是长度为L、电阻为r的导体棒,其中点与一端固定的轻弹簧连接,轻弹簧的劲度系数为k.导体棒处在方向向下、磁感应强度为B的匀强磁场中.图中E是电动势为E,内阻不计的直流电源,电容器的电容为C.闭合开关,待电路稳定后,下列选项正确的是:()A.导体棒中电流为 B.轻弹簧的长度增加C.轻弹簧的长度减少 D.电容器带电量为CR【答案】C【名师点睛】本题属于含容电路问题,在电路的连接中,电容所在支路为断路,电容两端电压等于与之并联的导体两端的电压,利用闭合电路的欧姆定律即可得出电路中的电流及电容器的带电量;导体棒在磁场中通电后受安培力作用,当安培力与弹簧的弹力相等时导体棒处于稳定状态,由胡克定律和平衡条件即可求出弹簧的形变量。
高三总复习物理检测题 电磁感应中的动力学、能量和动量问题

电磁感应中的动力学、能量和动量问题1.如图所示,在一匀强磁场中有一U 形导线框abcd ,线框处于水平面内,磁场与线框平面垂直,R 为一电阻。
ef 为垂直于ab 的一根导体杆,它可在ab 、cd 上无摩擦地滑动。
ef 及线框中导线的电阻不计。
开始时,给ef 一个向右的初速度,则( )A .ef 将减速向右运动,但不是匀减速运动B .ef 将匀减速向右运动,最后停止C .ef 将匀速向右运动D .ef 将往返运动解析:A ef 向右运动切割磁感线,产生感应电动势和感应电流,根据右手定则和左手定则可知,ef 受到向左的安培力而做减速运动,直到停止,由F =BIl =B 2l 2v R=ma ,知ef 做的是加速度减小的减速运动,故A 正确。
2.(多选)如图所示,足够长的光滑导轨倾斜放置,导轨宽度为L ,其下端与电阻R 连接;导体棒ab 电阻为r ,导轨和导线电阻不计,匀强磁场方向竖直向上。
若导体棒ab 以一定初速度v 下滑,则关于ab 棒下列说法中正确的为( )A .所受安培力方向水平向右B .可能以速度v 匀速下滑C .刚下滑的瞬间ab 棒产生的电动势为BL vD .减少的重力势能等于电阻R 上产生的内能解析:AB ab 棒以一定初速度v 下滑,切割磁感线产生感应电动势和感应电流,由右手定则可判断出电流方向为从b 到a ,由左手定则可判断出ab 棒所受安培力方向水平向右,选项A 正确。
当mg sin θ=BIL cos θ时,沿导轨方向合外力为零,导体棒可能以速度v 匀速下滑,选项B 正确。
由于速度方向与磁场方向夹角为(90°+θ),刚下滑的瞬间ab 棒产生的电动势为E =BL v cos θ,选项C 错误。
由能量守恒定律,可知ab 棒减少的重力势能一定大于电阻R 上产生的内能,选项D 错误。
3.如图,一足够长通电直导线固定在光滑水平面上,质量是0.04 kg 的硬质金属环在该平面上运动,初速度大小为v 0=2 m/s 、方向与导线的夹角为60°,则该金属环最终( )A .做曲线运动,环中最多能产生0.08 J 的电能B .静止在平面上,环中最多能产生0.04 J 的电能C .做匀加速直线运动,环中最多能产生0.02 J 的电能D .做匀速直线运动,环中最多能产生0.06 J 的电能解析:D 金属环在向右上方运动过程中,通过金属环的磁通量减少,根据楞次定律可知金属环受到的安培力会阻碍金属环的运动,直到金属环磁通量不发生变化,即沿着导线的方向运动时,金属环不再受到安培力的作用,此时金属环将沿导线方向做匀速直线运动,金属环只具有竖直方向的速度,根据速度合成与分解规律可知金属环最终做匀速直线运动的速度为v =v 0cos 60°=12v 0=1 m/s ,根据能量守恒定律可得,金属环中产生的电能为E =12m v 02-12m v 2=12×0.04×22 J -12×0.04×12 J =0.06 J ,所以D 正确。
电磁感应中的动力学问题和能量问题

析清楚电磁感应过程中能量转化的关系,是解决电磁
感应问题的重要途径之一.
编辑课件
题型探究
题型1 电磁感应中的动力学问题
【例1】 如图2所示,光滑斜面的倾角
=30°,在斜面上放置一矩形线框
abcd,ab边的边长l1=1 m,bc边的边长
l2=0.6 m,线框的质量m=1 kg,电阻
R=0.1 Ω,线框通过细线与重物相
s-l2=v t3+12 at32
解得t3=1.2 s
因此ab边由静止开始运动到gh线所用的时间
t=t1+t2+t3=1.2 s+0.1 s+1.2 s=2.5 s
答案 (1)6 m/s
(2)2.5 s
编辑课件
规律总结 此类问题中力现象和电磁现象相互联系,相互制
约,解决问题首先要建立“动→电→动”的思维顺 序,可概括为 (1)找准主动运动者,用法拉第电磁感应定律和 楞次定律求解电动势大小和方向. (2)根据等效电路图,求解回路中电流的大小及 方向. (3)分析导体棒的受力情况及导体棒运动后对电 路中电学参量的“反作用”,即分析由于导体棒 受到安培力,对导体棒运动速度、加速度的影响, 从而推理得出对电路中的电流有什么影响,最后定 性分析出导体棒的最终运动情况. (4)列出牛顿第二定律或编平辑衡课件方程求解.
到最大这一关键.
编辑课件
特别提示 1.对电学对象要画好必要的等效电路图. 2.对力学对象要画好必要的受力分析图和过程示 意图. 热点二 电路中的能量转化分析 从能量的观点着手,运用动能定理或能量守恒定律. 基本方法是: 受力分析→弄清哪些力做功,做正功还是负功→明确 有哪些形式的能参与转化,哪些增哪些减→由动能定 理或能量守恒定律列方程求解.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题46 电磁感应中的动力学和能量问题【满分:110分时间:90分钟】一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中。
1~8题只有一项符合题目要求; 9~12题有多项符合题目要求。
全部选对的得5分,选对但不全的得3分,有选错的得0分。
)1.如图,固定在水平桌面上的光滑金属导轨cd、eg处于方向竖直向下的匀强磁场中,金属杆ab与导轨接触良好,在两根导轨的端点d、e之间连接一电阻,其他部分电阻忽略不计,现用一水平向右的恒力F作用在金属杆ab上,使金属杆由静止开始向右沿导轨滑动,滑动中杆ab始终垂直于导轨,金属杆受到的安培力用F安表示,则下列说法正确的是: ( )A.金属杆ab做匀加速直线运动B.金属杆ab运动过程回路中有顺时针方向的电流C.金属杆ab所受到的F安先不断增大,后保持不变D.金属杆ab克服安培力做功的功率与时间的平方成正比【答案】C2.如图所示,两条电阻不计的平行导轨与水平面成θ角,导轨的一端连接定值电阻R1,匀强磁场垂直穿过导轨平面.一根质量为m、电阻为R2的导体棒ab,垂直导轨放置,导体棒与导轨之间的动摩擦因数为μ,且R2=nR1.如果导体棒以速度v匀速下滑,导体棒此时受到的安培力大小为F,则以下判断正确的是 : ()A. 电阻R消耗的电功率为Fv/nB。
重力做功的功率为mgv cosθC。
运动过程中减少的机械能全部转化为电能D. R2上消耗的功率为nFv/(n+l)【答案】D【名师点睛】导体棒以速度 v 匀速下滑,受到的安培力大小为 F,根据法拉第电磁感应定律和焦耳定律,联立解得P;根据能量转化情况,分析整个装置减小的机械功率转化为电能和内能。
R2和R1串联,电流相等,根据P=I2R可知R2消耗的功率和R1消耗的功率的关系。
3.如图所示,PQ、MN是放置在水平面内的光滑导轨,GH是长度为L、电阻为r的导体棒,其中点与一端固定的轻弹簧连接,轻弹簧的劲度系数为k.导体棒处在方向向下、磁感应强度为B的匀强磁场中.图中E是电动势为E,内阻不计的直流电源,电容器的电容为C.闭合开关,待电路稳定后,下列选项正确的是:()A.导体棒中电流为 B.轻弹簧的长度增加C.轻弹簧的长度减少 D.电容器带电量为CR【答案】C【名师点睛】本题属于含容电路问题,在电路的连接中,电容所在支路为断路,电容两端电压等于与之并联的导体两端的电压,利用闭合电路的欧姆定律即可得出电路中的电流及电容器的带电量;导体棒在磁场中通电后受安培力作用,当安培力与弹簧的弹力相等时导体棒处于稳定状态,由胡克定律和平衡条件即可求出弹簧的形变量。
4.如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感应强度为B,方向垂直导线所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻.一根与导轨接触良好、有效阻值为r的金属导线ab垂直导轨放置,并在水平外力F的作用下以速度v向右匀速运动,则(不计导轨电阻:()A.通过电阻R的电流方向为P→R→M B.ab两点间的电压为BLvC.a端电势比b端高 D.外力F做的功等于电阻R上发出的焦耳热【答案】C【解析】根据右手定则可知:ab中产生的感应电流方向为b→a,则通过电阻R的电流方向为M→P→R.故A错误;金属导线ab相当于电源,ab两点间的电压是路端电压,即是R两端的电压.根据闭合电路欧姆定律得知,ab两点间的电压为ER BLvRUR r R r==++.故B错误.金属导线ab相当于电源,a端相当于电源的正极,电势较高,故C正确.ab棒向右做匀速直线运动,根据能量守恒得知:外力F做的功等于电路中产生的焦耳热,大于电阻R上发出的焦耳热,故D错误.故选C。
【名师点睛】本题比较简单考查了电磁感应与电路的结合,解决这类问题的关键是正确分析外电路的结构,然后根据有关电学知识求解;根据楞次定律或右手定则可判断出通过电阻R的电流方向和a、b电势高低.金属导线ab相当于电源,外电路为电阻R,由闭合电路欧姆定律求解ab两点间的电压;根据能量守恒得外界的能量转化成整个电路产生的焦耳热.5.如右图所示,边长为L的正方形导线框质量为m,由距磁场H高处自由下落,其下边ab进入匀强磁场后,线圈开始做减速运动,直到其上边cd刚刚穿出磁场时,速度减为ab边进入磁场时的一半,磁场的宽度也为L。
则线框穿越匀强磁场过程中产生的焦耳热为: ( )A.2mgL B。
2mgL+mgH C.2mgL+34mgH D.2mgL+14mgH【答案】C【名师点睛】本题是运用能量守恒定律处理电磁感应中能量问题,关键要正确分析能量是如何转化的。
6.如图,间距l=0。
4m的光滑平行金属导轨电阻不计,与水平面夹角θ=30°.正方形区域abcd内匀强磁场的磁感应强度B=0。
2T,方向垂直于斜面.甲、乙两金属杆电阻R相同、质量均为m=0。
02kg,垂直于导轨放置.起初,甲金属杆处在磁场的上边界ab上,乙在甲上方距甲也为l处.现将两金属杆同时由静止释放,并同时在甲金属杆上施加一个沿着导轨的拉力F,使甲金属杆始终以a=5m/s2的加速度沿导轨匀加速运动,已知乙金属杆刚进入磁场时做匀速运动,取g=10 m/s2: ( )A.甲金属杆在磁场中运动的时间是0。
4 sB.每根金属杆的电阻R=0.12 ΩC.乙金属杆在磁场运动过程中回路的电流为2。
5AD.乙金属杆在磁场运动过程中安培力功率是0.1 W【答案】A【名师点睛】本题关键要抓住乙金属杆进入磁场前,两棒的加速度相同,运动情况相同,再根据牛顿第二定律、运动学公式和功能关系求解。
7.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则:( )A.cd始终做减速运动,ab始终做加速运动,并将追上cdB.cd始终做减速运动,ab始终做加速运动,但追不上cdC.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动D.磁场力对两金属杆做功的大小相等【答案】C【解析】让cd杆以初速度v向右开始运动,cd杆切割磁感线,产生感应电流,两杆受安培力作用,安培力对cd向左,对ab 向右,所以ab从零开始加速,cd从v0开始减速.那么整个电路的感应电动势减小,所以cd杆将做加速度减小的减速运动,ab杆做加速度减小的加速运动,当两杆速度相等时,回路磁通量不再变化,回路中电流为零,两杆不再受安培力作用,将以相同的速度向右匀速运动.故C正确,AB错误.两导线中的电流始终相等,但由于通过的距离不相等,故磁场对两金属杆做功大小不相等;故D错误;故选C.【名师点睛】本题是牛顿第二定律在电磁感应现象中的应用问题.解答本题能搞清楚物体的受力情况和运动情况,突然让cd杆以初速度v向右开始运动,cd杆切割磁感线,产生感应电流,两杆受安培力作用,根据牛顿第二定律判断两杆的运动情况。
8.如图所示,在水平界面EF、 GH、JK间,分布着两个匀强磁场,两磁场方向水平且相反大小均为B,两磁场高均为L宽度圆限。
一个框面与磁场方向垂直、质量为m电阻为R、边长也为上的正方形金属框abcd,从某一高度由静止释放,当ab边刚进入第一个磁场时,金属框恰好做匀速点线运动,当ab边下落到GH和JK之间的某位置时,又恰好开始做匀速直线运动.整个过程中空气阻力不计.则: ( )A .金属框穿过匀强磁场过程中,所受的安培力保持不变B .金属框从ab 边始进入第一个磁场至ab 边刚到达第二个磁场下边界JK 过程中产生的热量为2mgLC .金属框开始下落时ab 边距EF 边界的距离2442m gRh B L =D .当ab 边下落到GH 和JK 之间做匀速运动的速度2444mgRv B L= 【答案】D错误.当ab 边刚进入第一个磁场时,金属框恰好做匀速直线运动,由平衡条件得:22B L v mg R =,解得:22mgRv B L =,从线框开始下落到刚进入磁场过程,由机械能守恒定律得:mgh=12mv 2,解得:2442m gR h B L =,故C 错误.当ab 边下落到GH 和JK 之间做匀速运动时,线框受到的安培力:22222422BLv B L v F BIL BL R R ===,由平衡条件得:2224B L v mg R =,解得:2444mgRv B L=,故D 正确.故选D 。
9.如图所示是某同学自制的电流表原理图,质量为m 的均匀金属杆MN 与一竖直悬挂的绝缘轻弹簧相连,弹簧劲度系数为k,在边长为1ab L =,2bc L =的矩形区域abcd 内均有匀强磁场,磁感应强度大小为B ,方向垂直纸面向外。
MN 的右端连接一绝缘轻指针,可指示出标尺上的刻度,MN 的长度大于ab ,当MN 中没有电流通过且处于静止时,MN与ab 边重合,且指针指在标尺的零刻度;当MN 中有电流时,指针示数可表示电流大小,MN 始终在纸面内且保持水平,重力加速度为g,则: ( )A .要使电流表正常工作,金属杆中电流方向应从N 至MB .当该电流表的示数为零时,弹簧的伸长量不为零C .该电流表的量程是21m k B L I L D .该电流表的刻度在0m I 范围内是均匀的【答案】BCD10.如图甲所示,在竖直方向上有四条间距相等的水平虚线L 1、L 2、L 3、L 4,在L 1L 2之间和L 3L 4之间存在匀强磁场,磁感应强度B 大小均为1T ,方向垂直于虚线所在的平面;现有一矩形线圈abcd ,宽度cd=L=0。
5m,质量为0.1kg,电阻为2Ω,将其从图示位置由静止释放(cd 边与L1重合),速度随时间的变化关系如图乙所示,t 1时刻cd 边与 L 2重合,t 2时刻ab 边与L 3重合,t 3时刻ab 边与L 4重合,已知t 1-t 2的时间间隔为0。
6s,整个运动过程中线圈平面始终处于竖直方向,重力加速度g 取10m/s 2.则: ( )A .在0—t 1时间内,通过线圈的电荷量为0.25CB .线圈匀速运动的速度大小为2m/sC .线圈的长度为1mD .0-t 3时间内,线圈产生的热量为1.8J 【答案】AD11.如图甲所示,在倾角为θ的光滑斜面内分布着垂直于斜面的匀强磁场,其磁感应强度B 随时间变化的规律如图乙所示。
质量为m 的矩形金属框从t=0时刻静止释放,t 3时刻的速度为v ,移动的距离为L ,重力加速度为g 。
在金属框下滑的过程中,下列说法正确的是: ( )A .t 1~t 3时间内金属框中的电流方向不变B .0~t 3时间内金属框做匀加速直线运动C .0~t 3时间内金属框做加速度逐渐减小的直线运动D .0~t 3时间内金属框中产生的焦耳热为21sin 2mgL mv θ- 【答案】AB12.如图所示,两根足够长光滑平行金属导轨间距l =0.9m ,与水平面夹角θ=30°,正方形区域abcd 内有匀强磁场,磁感应强度B =2T,方向垂直于斜面向上.甲、乙是两根质量相同、电阻均为R=4。