求矩阵逆的方法

合集下载

矩阵求逆方法大全

矩阵求逆方法大全

矩阵求逆方法大全
矩阵的逆是一个重要的数学概念,它在很多领域中都得到了广泛的应用,如线性代数、微积分、概率论等。

求解矩阵的逆可以用于解线性方程组、计算行列式、计算特征值和特征向量等。

本文将介绍几种常见的矩阵求逆方法,包括伴随矩阵法、高斯消元法、LU分解法和特征值分解法。

1.伴随矩阵法:
伴随矩阵法是求解逆矩阵最常用的方法之一、首先,计算出矩阵的伴
随矩阵,然后将其除以矩阵的行列式即可得到逆矩阵。

2.高斯消元法:
高斯消元法是一种常用的线性方程组求解方法,也可以用来求解矩阵
的逆。

通过将待求逆矩阵与单位矩阵连接起来,然后进行初等行变换,直
至左边的矩阵变为单位矩阵,右边的矩阵即为所求逆矩阵。

3.LU分解法:
LU分解法将矩阵分解为下三角矩阵L和上三角矩阵U的乘积,然后
通过求解两个三角矩阵的逆矩阵,进而求得原矩阵的逆。

LU分解法是一
种常用的数值计算方法,应用广泛。

4.特征值分解法:
特征值分解法是一种通过矩阵的特征值和特征向量来求解矩阵的逆的
方法。

首先,根据特征值定理求解矩阵的特征值和特征向量,然后利用这
些特征值和特征向量构建一个对角矩阵,最后通过对角矩阵求逆得到原矩
阵的逆。

除了上述方法外,还有其他一些方法可以用来求解矩阵的逆,如迭代法、SVD分解法等。

这些方法在不同的应用场景下有不同的优势。

总之,求解矩阵的逆是一个重要的数学问题,在实际应用中有着广泛的应用。

以上介绍的几种方法是常用的求解逆矩阵的方法,读者可以根据自己的需求选择合适的方法进行求解。

求逆矩阵的四种方法

求逆矩阵的四种方法

求逆矩阵的四种方法逆矩阵是指一个矩阵与其逆矩阵相乘得到单位矩阵,也是线性代数中的重要概念之一。

但是,在实际应用中,需要对矩阵求逆的情况并不多,因为矩阵求逆的时间复杂度很高。

下面介绍四种求逆矩阵的方法:1. 初等变换法:采用列主元消去法(高斯-约旦消元法)进行初等变换,即将一个矩阵通过行变换,转化为一个行阶梯矩阵,其中行阶梯矩阵的左下方的元素均为零。

而这样一个变换后得到的矩阵实际上就是原矩阵的逆矩阵。

2. 伴随矩阵法:如果一个矩阵 A 可逆,则求它的逆矩阵等价于求它的伴随矩阵 AT 的结果除以 A 的行列式。

伴随矩阵的计算式为:adj(A)= COF(A)T,其中 COF(A) 为 A 的代数余子式组成的矩阵,它的每个元素满足 COF(A)ij = (-1)^(i+j) det(Aij),其中 det(Aij) 表示将第 i 行和第 j 列去掉后得到的子矩阵的行列式。

3. LU 分解法:LU 分解法是将矩阵分解为一个下三角矩阵 L 和一个上三角矩阵 U 的乘积,即 A = LU,其中 L 的对角线元素均为 1。

当矩阵 A 可逆时,可用 LU 分解求解其逆矩阵。

假设 L 和 U 都是方阵,则A 的逆矩阵为:A^(-1) = (LU)^(-1) = U^(-1)L^(-1)。

4. 奇异值分解(SVD)方法:当矩阵 A 是非方阵时可以采用奇异值分解法,将矩阵 A 分解为A = UΣV^T,其中 U 为一个m×m 的正交矩阵,V 为一个n×n 的正交矩阵,Σ 为一个m×n 的矩形对角矩阵,若r 是 A 的秩,则Σ左上角的 r 个元素不为 0,其余元素为 0,即Σ有 r 个非零奇异值。

当A 可逆时,Σ 中的非零元素都存在逆元,逆矩阵为:A^(-1) = VΣ^(-1)U^T。

综上所述,求逆矩阵的四种方法各有特点,应根据实际情况选择合适的方法进行求解。

初等变换法适合较小规模的矩阵,伴随矩阵法适用于计算代数余子式较容易的矩阵,LU 分解法适合较大规模的矩阵,而SVD 方法则适用于非方阵或奇异矩阵的情况。

矩阵求逆方法

矩阵求逆方法

矩阵求逆方法一、概念矩阵求逆是指利用矩阵乘法及数学计算手段计算矩阵乘以其逆矩阵所得结果是单位矩阵的方法。

也就是求出一个方阵的逆矩阵。

二、定义设A为n阶方阵,若存在一个n阶方阵B,使得AB=In=BA其中I为n阶单位矩阵,则称矩阵B为矩阵A的逆矩阵,记作A-1。

有时候也表示为A*,即A的共轭矩阵。

三、定义性质性质一: 如果矩阵A是可逆的,则A-1也一定存在。

性质三:设A的逆矩阵为A-1,则(1) AA-1=A-1A =I。

(2) (AB)-1=B-1 A-1;(CD)-1=D-1C-1;(3)(A-1)-1=A;四、求逆的几种方法1. 伴随矩阵求逆伴随矩阵法是求逆最简单最方便的方法,它利用矩阵的线性运算特征来求解。

设A为n阶方阵,则A的伴随矩阵记为adj(A),它满足:adj(A)A=Anadj(A)。

如果A可逆,那么A-1=1/|A| adj(A),|A|是A的行列式值。

2. 高斯-约当消去法高斯-约当消去法采用变换的方式,将一个方阵化简成一个阶数更低,形状更容易求逆的矩阵。

具体来说,其原理如下:(1)将A的第一列和B的第一列相消,A变为A1,B变为B1;(3)按照(1),(2)的步骤,可继续将A2,B2变换直至最后得到一个只有一个元素的矩阵,即Bn=1/An.3. 奇异值分解法如果矩阵不是方阵,有多种秩,则可以利用奇异值分解法,将矩阵分解成大一维度小一维度矩阵乘积的形式,这样减少了矩阵的高维度,提高了求逆的效率。

4. 逐个元素求逆法可将矩阵A分解成n个阶数均为1的矩阵,即将A=A11…A1n,A21…A2n,……,An1…Ann,即每一行整个看作一行。

求逆时,只需求出Ani-1(n=1,2,…,n),A-1=A-1n,…,A-2n,A-11…A-1n。

五、求逆的难点1. 矩阵求逆是一个非常耗时的过程,主要受矩阵阶数和特征值的影响。

如果矩阵阶数比较大,超过1000阶,则算法复杂度会非常大,计算速度会大幅度降低;2. 如果矩阵特征值的值比较接近,例如当某一特征值的值非常的接近0时,可能会出现矩阵A的逆矩阵不存在的情况;3. 矩阵求逆不同于求行列式,如果矩阵的特征数为奇数,则求逆不存在,因此需要事先知道矩阵的特征值,进行判断。

矩阵运算 求逆

矩阵运算 求逆

矩阵求逆是线性代数中的一个重要概念,通常指的是对于一个给定的方阵,找到一个同样大小的矩阵,使得两者相乘得到单位矩阵。

以下是几种常见的求逆矩阵的方法:
1. 高斯消元法:这是一种通过行变换将矩阵转换为行阶梯形矩阵,然后通过回代求解未知数的方法。

如果矩阵可逆,最终可以通过回代得到其逆矩阵。

2. LU分解法:这种方法将矩阵分解为一个下三角矩阵L和一个上三角矩阵U的乘积。

如果这样的分解存在,那么矩阵的逆可以表示为U的逆和L的逆的乘积。

3. SVD分解法:奇异值分解(SVD)是一种将矩阵分解为三个矩阵的乘积的方法。

如果矩阵是可逆的,那么它的逆可以通过对分解得到的矩阵进行相应的逆运算得到。

4. QR分解法:这种方法将矩阵分解为一个正交矩阵Q和一个上三角矩阵R的乘积。

如果矩阵可逆,那么其逆可以表示为R的逆和Q的转置的乘积。

5. 伴随矩阵法:这是通过计算矩阵的伴随矩阵和行列式的倒数来求逆的方法。

适用于小矩阵或者行列式容易计算的情况。

6. 初等变换法:通过对矩阵进行一系列的初等行变换或列变换,将其转换为单位矩阵,同时对单位矩阵进行相同的变换,最终得到的就是原矩阵的逆。

求矩阵逆矩阵的常用方法

求矩阵逆矩阵的常用方法

求矩阵逆矩阵的常用方法
1. 高斯-约旦法 (Gauss-Jordan Method):将原矩阵与单位矩阵拼接起来,利用初等行变换将原矩阵变为单位矩阵,此时拼接后的结果矩阵即为所求逆矩阵。

2. LU分解法 (LU Decomposition):将原矩阵分解为一个下三角矩阵L和一个上三角矩阵U的乘积,并利用矩阵乘法的分配律求得L和U的逆矩阵,再利用逆矩阵的乘法,求得原矩阵的逆矩阵。

3. 求伴随矩阵法 (Adjoint Matrix Method):求得原矩阵的伴随矩阵,再除以原矩阵的行列式即可求得逆矩阵。

4. 初等变换法 (Elementary Transformation Method):将原矩阵通过初等行/列变换变为单位矩阵,同时对单位矩阵进行同样的变换,此时的结果即为所求逆矩阵。

5. SVD分解法 (Singular Value Decomposition):将原矩阵分解为三个矩阵的乘积U、D、V',其中D为对角矩阵,对角线上的元素为原矩阵的奇异值的平方根。

则原矩阵的逆矩阵可以表示为V和UT的乘积,其中UT为U的转置矩阵。

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析矩阵是线性代数的主要内容矩阵是线性代数的主要内容,,很多实际问题用矩阵的思想去解既简单又快捷很多实际问题用矩阵的思想去解既简单又快捷..逆矩阵又是矩阵理论的很重要的内容矩阵又是矩阵理论的很重要的内容, , , 逆矩阵的求法自然也就成为线性代数研究的主逆矩阵的求法自然也就成为线性代数研究的主要内容之一要内容之一..本文将给出几种求逆矩阵的方法本文将给出几种求逆矩阵的方法..1.利用定义求逆矩阵定义定义: : : 设设A 、B B 都是都是都是n n n 阶方阵阶方阵阶方阵, , , 如果存在如果存在如果存在n n n 阶方阵阶方阵阶方阵B B B 使得使得使得AB= BA = E, AB= BA = E, AB= BA = E, 则称则称则称A A 为可逆矩阵可逆矩阵, , , 而称而称而称B B 为A A 的逆矩阵的逆矩阵的逆矩阵..下面举例说明这种方法的应用下面举例说明这种方法的应用. .例1 求证求证: : : 如果方阵如果方阵如果方阵A A A 满足满足满足A k= 0, A k= 0, A k= 0, 那么那么那么EA EA EA是可逆矩阵是可逆矩阵是可逆矩阵, , , 且且(E-A E-A))1-= E + A + A 2+…+A 1-K证明 因为因为E E E 与与A A 可以交换可以交换可以交换, , , 所以所以所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,= 0 ,于是得于是得于是得(E-A)(E-A)((E+A+A 2+…+…+A +A 1-K )=E =E,,同理可得(同理可得(E + A + A E + A + A 2+…+A 1-K )(E-A)=E (E-A)=E,,因此因此E-A E-A E-A是可逆矩阵是可逆矩阵是可逆矩阵,,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明同理可以证明(E+ A)(E+ A)(E+ A)也可逆也可逆也可逆,,且(E+ A)1-= E -A + A 2+…+(+…+(-1-1-1))1-K A 1-K .由此可知由此可知, , , 只要满足只要满足只要满足A A K =0=0,就可以利用此题求出一类矩阵,就可以利用此题求出一类矩阵,就可以利用此题求出一类矩阵E E ±A 的逆矩阵的逆矩阵. .例2 设 A =úúúúûùêêêêëé0000300000200010,求 E-A E-A的逆矩阵的逆矩阵的逆矩阵. .分析 由于由于由于A A 中有许多元素为零中有许多元素为零, , , 考虑考虑考虑A A K 是否为零矩阵是否为零矩阵, , , 若为零矩阵若为零矩阵若为零矩阵, , , 则可以则可以采用例采用例2 2 2 的方法求的方法求的方法求E-A E-A E-A的逆矩阵的逆矩阵的逆矩阵. .解 容易验证容易验证容易验证A 2=úúúúûùêêêêëé0000000060000200, A 3=úúúúûùêêêêëé0000000000006000, A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,)=E,所以所以所以(E-A)1-= E+A+ A 2+ A 3=úúúûùêêêëé1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,求元素为具体数字的矩阵的逆矩阵,常用初等变换法常用初等变换法常用初等变换法..如果如果A A 可逆,则A 可通过初等变换,化为单位矩阵等变换,化为单位矩阵I I ,即存在初等矩阵S P P P ,,21 使(1)s pp p 21A=I A=I,用,用,用A A 1-右乘上式两端,得:右乘上式两端,得: ((2)s p p p 21I= A 1- 比较(比较(11()(22)两式,可以看到当)两式,可以看到当A A 通过初等变换化为单位矩阵的同时,对单位矩阵矩阵I I 作同样的初等变换,就化为作同样的初等变换,就化为A A 的逆矩阵的逆矩阵A A 1-.用矩阵表示(用矩阵表示(A I A I A I))¾¾¾®¾初等行变换为(为(I A I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法它是实际应用中比较简单的一种方法..需要注意的是,在作初等变换时只允许作行初等变换等变换..同样,只用列初等变换也可以求逆矩阵同样,只用列初等变换也可以求逆矩阵. .例1 求矩阵求矩阵A A 的逆矩阵的逆矩阵..已知已知A=A=úúúûùêêêëé521310132.解 [A I]®úúúûùêêêëé100521010310001132®úúúûùêêêëé001132010310100521® úúúûùêêêëé--3/16/16/1100010310100521®úúúûùêêêëé-----3/16/16/110012/32/10103/46/136/1001故 A 1-=úúúûùêêêëé-----3/16/16/112/32/13/46/136/1. 在事先不知道在事先不知道n n 阶矩阵是否可逆的情况下,也可以直接用此方法阶矩阵是否可逆的情况下,也可以直接用此方法..如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着则意味着A A 不可逆,因为此时表明A =0=0,,则A 1-不存在不存在. .例2 求A=úúúûùêêêëé987654321.解 [A E]=úúûùêêëé100987010654001321®úúûùêêëé------1071260014630001321® úúúûùêêêëé----121000014630001321. 由于左端矩阵中有一行元素全为由于左端矩阵中有一行元素全为00,于是它不可逆,因此,于是它不可逆,因此A A 不可逆不可逆. .3.伴随阵法定理 n n阶矩阵阶矩阵阶矩阵A=[a A=[a ij ]为可逆的充分必要条件是为可逆的充分必要条件是A A 非奇异非奇异..且A 1-=A 1úúúúûùêêêêëénn nnn n A A A A A A A A A ............ (212221212111)其中其中A A ij 是A 中元素中元素a a ij 的代数余子式的代数余子式. .矩阵úúúúûùêêêêëénn nn n n A A A A A A A A A (2122212)12111称为矩阵称为矩阵A A 的伴随矩阵,记作的伴随矩阵,记作A A 3,于是有,于是有A A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I =I,,有1-AA =I ,则A 1-A =I ,所以A ¹0,即A 为非奇异为非奇异. .充分性:充分性: 设A 为非奇异,存在矩阵为非奇异,存在矩阵B=A 1úúúúûùêêêêëénn nnn n A A A A A A A A A (21222)1212111, 其中其中AB=úúúûùêêêëénn n n n n a a a a a aa a a ............... (2)12222111211´A 1úúúûùêêêëénn nnn n A A A A A A A A A ............... (212)221212111=A 1úúúúûùêêêêëéA A A A ...00.........0...00...0=úúúúûùêêêêëé1...00...1......0...100 (01)=I同理可证同理可证BA=I. BA=I.由此可知,若由此可知,若A A 可逆,则可逆,则A A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循规律可循..因为二阶可逆矩阵的伴随矩阵,因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,只需要将主对角线元素的位置互换,只需要将主对角线元素的位置互换,次对次对角线的元素变号即可角线的元素变号即可. .若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或个或99个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错出现符号及计算的差错..对于求出的逆矩阵是否正确,一般要通过AA 1-=I =I来检验来检验来检验..一旦发现错误,必须对每一计算逐一排查旦发现错误,必须对每一计算逐一排查. .4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设设A 11、A 22都是非奇异矩阵,且都是非奇异矩阵,且A A 11为n 阶方阵,阶方阵,A A 22为m 阶方阵阶方阵úûùêëé22110A A úûùêëé--12211100AA 证明 因为A =22110A A =11A 22A ¹0, 0, 所以所以所以A A 可逆可逆. . 设A 1-=úûùêëéW ZY X,于是有úûùêëéW ZY X úûùêëé22110A A =úûùêëém nI I 00,其中其中 X A X A 11=I n , Y A 22=0=0,,Z A 11=0=0,,W A 22=I m .又因为又因为A A 11、A 22都可逆,用都可逆,用A A 111-、A 122-分别右乘上面左右两组等式得:分别右乘上面左右两组等式得:X= A 111-,Y=0Y=0,,Z=0Z=0,,W= A 122-故 A 21= úûùêëé--1221110A A把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-úúúúûùêêêêëék A A A =úúúúúûùêêêêêëé---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有都是非奇异矩阵,则有1221211-úûùêëéA A A =úûùêëé-----122122121111110A A A A A证明 因为因为úûùêëé2212110A A A úûùêëé--I A A I 012111=úûùêëé22110A A两边求逆得两边求逆得1121110--úûùêëé-I A A I 12212110-úûùêëéA A A =úûùêëé--12211100A A 所以所以 1221211-úûùêëéA A A =úûùêëé--I A A I 012111úûùêëé--12211100A A=úûùêëé-----122122121111110A A A A A同理可证同理可证12221110-úûùêëéA A A =úûùêëé-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. . . 是特殊方阵求逆的是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E =E,把题目中的逆矩阵化简掉。

逆矩阵公式总结

逆矩阵公式总结

逆矩阵公式总结
逆矩阵公式总结如下:
1. 假设A是一个n阶方阵,若存在一个n阶方阵B,使得AB=BA=I (单位矩阵),则称B是A的逆矩阵,记为A^{-1}。

2. 逆矩阵的存在条件:若A是一个可逆矩阵,则其行列式不为0,即det(A)≠0。

3. 逆矩阵的计算方法:
a. 对于2阶方阵A = [a b; c d],如果ad-bc≠0,则A的逆矩阵为A^{-1} = 1/(ad-bc) * [d -b; -c a]。

b. 对于3阶方阵A = [a b c; d e f; g h i],如果A可逆,则A的逆矩阵为A^{-1} = 1/det(A) * [ei-fh -bi+ch dh-ge; -di+fg ai-cg -ah+bg; -de+fg ae-cf -af+be]。

c. 对于高阶方阵A,可以使用高斯-约当消元法或伴随矩阵法来求解逆矩阵。

4. 逆矩阵的性质:
a. 若A是一个可逆矩阵,则(A^{-1})^{-1} = A。

b. 若A和B是可逆矩阵,则(AB)^{-1} = B^{-1}A^{-1}。

c. 若A是可逆矩阵,则(A^T)^{-1} = (A^{-1})^T。

d. 若A是可逆矩阵,则|A^{-1}| = 1/|A|,其中|A|表示A的行列式。

以上是逆矩阵的公式总结。

根据矩阵的阶数不同,逆矩阵的计算方法也有所不同。

求解逆矩阵的常用三种方法

求解逆矩阵的常用三种方法

求解逆矩阵的常用三种方法
1.待定系数法
矩阵A=
1, 2
-1,-3
假设所求的逆矩阵为
a,b
c,d

从而可以得出方程组
a + 2c = 1
b + 2d = 0
-a - 3c = 0
-b - 3d = 1
解得
a=3; b=2; c= -1; d= -1
2.伴随矩阵求逆矩阵
伴随矩阵是矩阵元素所对应的代数余子式,所构成的矩阵,转置后得到的新矩阵。

我们先求出伴随矩阵A*=
1 , 1
接下来,求出矩阵A的行列式|A|
=1*(-3) - (-1)* 2
= -3 + 2
= -1
从而逆矩阵A⁻¹=A*/|A| = A*/(-1)= -A*=
3, 2
-1,-1
3.初等变换求逆矩阵
(下面我们介绍如何通过初等(行)变换来求逆矩阵)
首先,写出增广矩阵A|E,即矩阵A右侧放置一个同阶的单位矩阵,得到一个新矩阵。

-1 -3 0 1
然后进行初等行变换。

依次进行第1行加到第2行,得到
1 2 1 0
0 -1 1 1
第2行×2加到第1行,得到
1 0 3 2
0 -1 1 1
第2行×(-1),得到
1 0 3 2
0 1 -1 -1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求矩阵逆的方法
方法一,伴随矩阵法。

对于一个n阶矩阵A,如果其行列式不为0,那么A就是可逆的。

我们可以通过求解伴随矩阵来得到A的逆矩阵。

首先,我们计算A的伴随矩阵Adj(A),然后用行列式的倒数乘以伴随矩阵即可得到A的逆矩阵。

方法二,初等变换法。

初等变换法是通过一系列的行变换将原矩阵变换为单位矩阵,然后将单位矩阵变换为A的逆矩阵。

这种方法在计算机求解中比较常见,可以通过高斯消元法来实现。

方法三,分块矩阵法。

对于某些特殊的矩阵,我们可以通过将其分解成若干个子矩阵,从而简化逆矩阵的求解过程。

例如,对角矩阵、上三角矩阵、下三角矩阵等都有相对简单的逆矩阵求解方法。

方法四,特征值分解法。

对于对称正定矩阵,我们可以通过其特征值和特征向量来求解其逆矩阵。

通过特征值分解和特征向量矩阵的转置,我们可以得到原矩阵的逆矩阵。

方法五,数值逼近法。

对于大型矩阵或者特殊结构的矩阵,有时候我们无法通过解析的方法求解其逆矩阵,这时可以通过数值逼近的方法来计算其逆矩阵。

例如,利用迭代法或者矩阵分解等方法来近似求解逆矩阵。

总结:
以上是几种常见的求解矩阵逆的方法,不同的方法适用于不同类型的矩阵。

在实际问题中,我们需要根据具体情况选择合适的方法来求解矩阵的逆,以便更好地解决实际问题。

希望本文能够对您有所帮助,谢谢阅读!。

相关文档
最新文档