矩阵的逆的研究及应用
逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析(很全很经典)矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A为可逆矩阵, 而称B为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA是可逆矩阵, 且这种方法特别适用于线性方程组AX=B比较容易求解的情形,也是很多工程类问题的解决方法.以上各种求逆方法只是我的一些粗浅的认识,也许有很多的不当之处,我希望我的这篇文章能给大家带来帮助,能帮助我们更快更准地解决好繁琐的求逆矩阵问题.同时,它还是我们更好的学习线性代数的必备基础知识,认真掌握它,可供我们以后继续在数学方面深造打下坚实的基础.但我很希望各位老师和同学给于指导.能使我的这篇文章更加完善和实用.参考文献[1] 北京大学数学系几何与代数教研室代数小组. 高等代数[M ]. 北京: 高等教育出版社,2001.[2] 杨明顺. 三角矩阵求逆的一种方法[J ]. 渭南师范学院学报, 2003.[3] 丘维声. 高等代数[M ]. 北京: 高等教育出版社,2001.[4] 杨子胥. 高等代数习题集[M] . 济南:山东科学技术出版社,1984.[5] 赵树原. 线性代数[M] . 北京:中国人民大学出版社,1997.[6] 李宗铎. 求逆矩阵的一个方法[ J ] . 数学通报,1983.[7] 贺福利等. 关于矩阵对角化的几个条件[J ] . 高等函授学报(自然科学版) ,2004 , (1)[8] 张禾瑞.郝炳新.高等代数[M].北京: 高等教育出版社.1999.[9] 王永葆.线性代数[M].长春:东北大学出版社.2001.[10] 同济大学遍.线性代数(第二版).北京: 高等教育出版社,1982.[11] 王萼芳,丘维声编,高等代数讲义. 北京大学出版社,1983.[13] 华东师范大学数学系编.数学分析.人民教育出版社,1980[14] 杜汉玲求逆矩阵的方法与解析高等函授学报(自然科学版)第17卷第4期2004年8月[15] 苏敏逆矩阵求法的进一步研究河南纺织高等专科学校学报,2004 年第16 卷第2 期。
矩阵的逆及其应用

1
即 A· ( A+ 2E) = E,所以,A 可逆,且 A -1 = ( A +
4
4
2E) .
7 结 语
逆矩阵在矩阵中占有重要地位.本文归纳总结了 5 种求
逆矩阵的方法:定义法,伴随矩阵法,分块矩阵法,初等变换
法,恒等变形法,通过分析例题,提高学生分析问题、解决问
题的能力.
【 参考文献】
[1] 北京大学数学系几何与代数教研室代数小组.高等
将给出几种求逆矩阵的方法以及逆矩阵的应用,通过对如
何求解逆矩阵的方法进行总结来帮助学生解决学习逆矩阵
过程中所存在的困惑.
2 可逆矩阵的概念
定义 3.1 设 A 是 n 阶方阵,如果存在 n 阶方阵 B,使
得 AB = BA = E,就称 A 是可逆矩阵或非退化矩阵,简称 A
可逆或非退化,而 B 称为 A 的一个逆矩阵. 否则,就称矩阵
A .
|A|
用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵既
方便,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要
将主对角线元素的位置互换,次对角线的元素变号即可.但
是当矩阵是三阶、四阶及以上时,则慎重选择此方法,因为
计算量会很大.
1 2
例 利用伴随矩阵法求矩阵
的逆矩阵.
3 4
1 2
解 令 Α =
.
B -1 ø
æ2 1
ç3 2
例 若 M =
çç 0 0
è0 0
逆,请求 M 的逆.
-1
ç
-1
( AC B0 ) 可 逆, 且 ( AC B0 )
-1
÷
b. 分 块 下 三 角 矩 阵
=æ
( A0 CB ) 可 逆, 且 ( A0 CB )
逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析矩阵是线性代数的主要内容矩阵是线性代数的主要内容,,很多实际问题用矩阵的思想去解既简单又快捷很多实际问题用矩阵的思想去解既简单又快捷..逆矩阵又是矩阵理论的很重要的内容矩阵又是矩阵理论的很重要的内容, , , 逆矩阵的求法自然也就成为线性代数研究的主逆矩阵的求法自然也就成为线性代数研究的主要内容之一要内容之一..本文将给出几种求逆矩阵的方法本文将给出几种求逆矩阵的方法..1.利用定义求逆矩阵定义定义: : : 设设A 、B B 都是都是都是n n n 阶方阵阶方阵阶方阵, , , 如果存在如果存在如果存在n n n 阶方阵阶方阵阶方阵B B B 使得使得使得AB= BA = E, AB= BA = E, AB= BA = E, 则称则称则称A A 为可逆矩阵可逆矩阵, , , 而称而称而称B B 为A A 的逆矩阵的逆矩阵的逆矩阵..下面举例说明这种方法的应用下面举例说明这种方法的应用. .例1 求证求证: : : 如果方阵如果方阵如果方阵A A A 满足满足满足A k= 0, A k= 0, A k= 0, 那么那么那么EA EA EA是可逆矩阵是可逆矩阵是可逆矩阵, , , 且且(E-A E-A))1-= E + A + A 2+…+A 1-K证明 因为因为E E E 与与A A 可以交换可以交换可以交换, , , 所以所以所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,= 0 ,于是得于是得于是得(E-A)(E-A)((E+A+A 2+…+…+A +A 1-K )=E =E,,同理可得(同理可得(E + A + A E + A + A 2+…+A 1-K )(E-A)=E (E-A)=E,,因此因此E-A E-A E-A是可逆矩阵是可逆矩阵是可逆矩阵,,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明同理可以证明(E+ A)(E+ A)(E+ A)也可逆也可逆也可逆,,且(E+ A)1-= E -A + A 2+…+(+…+(-1-1-1))1-K A 1-K .由此可知由此可知, , , 只要满足只要满足只要满足A A K =0=0,就可以利用此题求出一类矩阵,就可以利用此题求出一类矩阵,就可以利用此题求出一类矩阵E E ±A 的逆矩阵的逆矩阵. .例2 设 A =úúúúûùêêêêëé0000300000200010,求 E-A E-A的逆矩阵的逆矩阵的逆矩阵. .分析 由于由于由于A A 中有许多元素为零中有许多元素为零, , , 考虑考虑考虑A A K 是否为零矩阵是否为零矩阵, , , 若为零矩阵若为零矩阵若为零矩阵, , , 则可以则可以采用例采用例2 2 2 的方法求的方法求的方法求E-A E-A E-A的逆矩阵的逆矩阵的逆矩阵. .解 容易验证容易验证容易验证A 2=úúúúûùêêêêëé0000000060000200, A 3=úúúúûùêêêêëé0000000000006000, A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,)=E,所以所以所以(E-A)1-= E+A+ A 2+ A 3=úúúûùêêêëé1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,求元素为具体数字的矩阵的逆矩阵,常用初等变换法常用初等变换法常用初等变换法..如果如果A A 可逆,则A 可通过初等变换,化为单位矩阵等变换,化为单位矩阵I I ,即存在初等矩阵S P P P ,,21 使(1)s pp p 21A=I A=I,用,用,用A A 1-右乘上式两端,得:右乘上式两端,得: ((2)s p p p 21I= A 1- 比较(比较(11()(22)两式,可以看到当)两式,可以看到当A A 通过初等变换化为单位矩阵的同时,对单位矩阵矩阵I I 作同样的初等变换,就化为作同样的初等变换,就化为A A 的逆矩阵的逆矩阵A A 1-.用矩阵表示(用矩阵表示(A I A I A I))¾¾¾®¾初等行变换为(为(I A I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法它是实际应用中比较简单的一种方法..需要注意的是,在作初等变换时只允许作行初等变换等变换..同样,只用列初等变换也可以求逆矩阵同样,只用列初等变换也可以求逆矩阵. .例1 求矩阵求矩阵A A 的逆矩阵的逆矩阵..已知已知A=A=úúúûùêêêëé521310132.解 [A I]®úúúûùêêêëé100521010310001132®úúúûùêêêëé001132010310100521® úúúûùêêêëé--3/16/16/1100010310100521®úúúûùêêêëé-----3/16/16/110012/32/10103/46/136/1001故 A 1-=úúúûùêêêëé-----3/16/16/112/32/13/46/136/1. 在事先不知道在事先不知道n n 阶矩阵是否可逆的情况下,也可以直接用此方法阶矩阵是否可逆的情况下,也可以直接用此方法..如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着则意味着A A 不可逆,因为此时表明A =0=0,,则A 1-不存在不存在. .例2 求A=úúúûùêêêëé987654321.解 [A E]=úúûùêêëé100987010654001321®úúûùêêëé------1071260014630001321® úúúûùêêêëé----121000014630001321. 由于左端矩阵中有一行元素全为由于左端矩阵中有一行元素全为00,于是它不可逆,因此,于是它不可逆,因此A A 不可逆不可逆. .3.伴随阵法定理 n n阶矩阵阶矩阵阶矩阵A=[a A=[a ij ]为可逆的充分必要条件是为可逆的充分必要条件是A A 非奇异非奇异..且A 1-=A 1úúúúûùêêêêëénn nnn n A A A A A A A A A ............ (212221212111)其中其中A A ij 是A 中元素中元素a a ij 的代数余子式的代数余子式. .矩阵úúúúûùêêêêëénn nn n n A A A A A A A A A (2122212)12111称为矩阵称为矩阵A A 的伴随矩阵,记作的伴随矩阵,记作A A 3,于是有,于是有A A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I =I,,有1-AA =I ,则A 1-A =I ,所以A ¹0,即A 为非奇异为非奇异. .充分性:充分性: 设A 为非奇异,存在矩阵为非奇异,存在矩阵B=A 1úúúúûùêêêêëénn nnn n A A A A A A A A A (21222)1212111, 其中其中AB=úúúûùêêêëénn n n n n a a a a a aa a a ............... (2)12222111211´A 1úúúûùêêêëénn nnn n A A A A A A A A A ............... (212)221212111=A 1úúúúûùêêêêëéA A A A ...00.........0...00...0=úúúúûùêêêêëé1...00...1......0...100 (01)=I同理可证同理可证BA=I. BA=I.由此可知,若由此可知,若A A 可逆,则可逆,则A A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循规律可循..因为二阶可逆矩阵的伴随矩阵,因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,只需要将主对角线元素的位置互换,只需要将主对角线元素的位置互换,次对次对角线的元素变号即可角线的元素变号即可. .若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或个或99个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错出现符号及计算的差错..对于求出的逆矩阵是否正确,一般要通过AA 1-=I =I来检验来检验来检验..一旦发现错误,必须对每一计算逐一排查旦发现错误,必须对每一计算逐一排查. .4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设设A 11、A 22都是非奇异矩阵,且都是非奇异矩阵,且A A 11为n 阶方阵,阶方阵,A A 22为m 阶方阵阶方阵úûùêëé22110A A úûùêëé--12211100AA 证明 因为A =22110A A =11A 22A ¹0, 0, 所以所以所以A A 可逆可逆. . 设A 1-=úûùêëéW ZY X,于是有úûùêëéW ZY X úûùêëé22110A A =úûùêëém nI I 00,其中其中 X A X A 11=I n , Y A 22=0=0,,Z A 11=0=0,,W A 22=I m .又因为又因为A A 11、A 22都可逆,用都可逆,用A A 111-、A 122-分别右乘上面左右两组等式得:分别右乘上面左右两组等式得:X= A 111-,Y=0Y=0,,Z=0Z=0,,W= A 122-故 A 21= úûùêëé--1221110A A把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-úúúúûùêêêêëék A A A =úúúúúûùêêêêêëé---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有都是非奇异矩阵,则有1221211-úûùêëéA A A =úûùêëé-----122122121111110A A A A A证明 因为因为úûùêëé2212110A A A úûùêëé--I A A I 012111=úûùêëé22110A A两边求逆得两边求逆得1121110--úûùêëé-I A A I 12212110-úûùêëéA A A =úûùêëé--12211100A A 所以所以 1221211-úûùêëéA A A =úûùêëé--I A A I 012111úûùêëé--12211100A A=úûùêëé-----122122121111110A A A A A同理可证同理可证12221110-úûùêëéA A A =úûùêëé-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. . . 是特殊方阵求逆的是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E =E,把题目中的逆矩阵化简掉。
矩阵与行列式的逆与逆矩阵的应用

矩阵与行列式的逆与逆矩阵的应用在线性代数中,矩阵与行列式是非常重要的概念,它们在数学和工程学科中有着广泛的应用。
本文将探讨矩阵与行列式的逆以及逆矩阵的应用。
一、矩阵的逆与行列式的逆1.1 矩阵的逆对于一个方阵A,如果存在另一个方阵B,使得AB=BA=I,其中I为单位矩阵,则称A为可逆矩阵,而B即为A的逆矩阵。
矩阵的逆具有以下性质:- 如果A是可逆矩阵,则A的逆矩阵唯一;- 若B是A的逆矩阵,则B也是可逆矩阵,并且其逆矩阵为A;- 如果A和B都是可逆矩阵,则AB也是可逆矩阵,并且$(AB)^{-1}=B^{-1}A^{-1}$。
1.2 行列式的逆对于一个n阶方阵A,如果存在另一个n阶方阵B,使得AB=BA=I,其中I为单位阵,则称A的行列式为可逆行列式,而B即为A的逆行列式。
行列式的逆也具有类似于矩阵逆的性质。
二、逆矩阵的应用逆矩阵在数学和工程学科中有着广泛的应用。
下面以几个常见的应用举例说明:2.1 线性方程组的求解考虑一个线性方程组AX=B,其中A为一个n阶系数矩阵,X和B 分别为n维列向量。
如果A是可逆矩阵,则通过左乘A的逆矩阵,可以得到方程组的解X=A^{-1}B。
这种方法被称为矩阵法求解线性方程组。
2.2 矩阵变换的求逆在一些几何变换中,矩阵的逆可以帮助我们求解变换的逆变换。
例如,对于一个二维平面上的旋转变换矩阵R,其逆矩阵R^{-1}即为逆时针旋转相同角度的变换矩阵,通过左乘R^{-1}可以得到旋转变换的逆变换。
2.3 二次型的化简对于一个n维列向量X,其二次型表达式为X^TAX,其中A为一个对称矩阵。
如果A是可逆矩阵,则通过对矩阵进行相似变换,即乘以逆矩阵A^{-1},可以将二次型化简为标准型,使得矩阵A的主对角线上只有非零元素。
2.4 矩阵的特征值与特征向量对于一个n阶方阵A,如果存在一个非零向量X,使得AX=\lambda X,其中\lambda为标量,则称\lambda为A的特征值,X为A对应于特征值\lambda的特征向量。
浅谈逆矩阵的求法及其应用论文

本科生毕业论文(设计)册论文(设计)题目:浅谈逆矩阵的求法及其应用毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
逆矩阵的求法及逆矩阵的应用

逆矩阵的几种求法及逆矩阵的应用摘要:在现代数学中,矩阵是一个非常有效而且应用广泛的工具,而逆矩阵则是矩阵理论中一个非常重要的概念。
关于逆矩阵的求法及逆矩阵的应用的探讨具有非常重要的意义。
目前,对于逆矩阵的求法及其应用领域的研究已比较成熟。
本文将对逆矩阵的定义、性质、判定方法及求法进行总结,并初步探讨矩阵的逆在编码、解码等方面的应用。
关键词:矩阵逆矩阵逆矩阵的求法逆矩阵的应用The methods for identifying inverse matrix and application of inverse matrix Abstract: In modern mathematics,matrix is an effective tool with extensive application,and inverse matrix is a significant concept in matrix theory. The disduss about the way to evaluating inverse matrix and its application is of an important meaning with mature development at present. This paper will summarize the definition and properties of inverse matrix and disscuss the methods evaluating inverse matrix.We will also talk about the application of inverse matrix, especially its application in encoding and decoding. Keywords: Matrix Inverse matrix The way to evaluating inverse matrix Application of inverse matrix一:引言在现代数学中,矩阵是一个有效而应用广泛的工具。
逆矩阵的性质及在考研中的应用

逆矩阵的性质及在考研中的应用矩阵是线性代数中的基本概念之一,而逆矩阵是矩阵理论中的重要组成部分。
在研究生入学考试中,逆矩阵的出现频率较高,是考生必须掌握的重要内容之一。
本文将介绍逆矩阵的基本性质以及在考研中的应用场景,旨在帮助考生更好地理解和掌握这一部分内容。
逆矩阵是矩阵的一种重要性质,其定义如下:设A是一个可逆矩阵,那么存在一个矩阵B,使得$AB=BA=I$,其中I是单位矩阵。
在这个定义中,矩阵B被称为A的逆矩阵。
$A = \begin{bmatrix} 2 & 3 \ 1 & 2 \end{bmatrix}$计算行列式$det(A)$: $det(A) = |\begin{matrix} 2 & 3 \ 1 & 2 \end{matrix}| = 2 \times 2 - 3 \times 1 = 1$计算A的伴随矩阵A*: $A* = \begin{matrix} & -2 & 3 \ -1 & 2 & \end{matrix}$计算A的逆矩阵A-¹: $A-¹ = \frac{1}{det(A)} \times A* =\frac{1}{1} \times \begin{matrix} & -2 & 3 \ -1 & 2 & \end{matrix} = \begin{matrix} 2 & -3 \ -1 & 2 \end{matrix}$在考研中,逆矩阵的应用主要涉及以下几个方面:解方程:逆矩阵可以用来求解线性方程组。
当方程组的系数矩阵是可逆矩阵时,我们可以通过逆矩阵快速求解方程组。
证明不等式:在证明某些矩阵不等式时,可以通过引入逆矩阵来简化证明过程。
求特征值和特征向量:在计算矩阵的特征值和特征向量时,需要先求出矩阵的逆矩阵。
解决优化问题:在数学优化中,逆矩阵往往作为系数矩阵的逆出现,对于一些约束优化问题,可以通过求解线性方程组来得到优化解。
对称分量法矩阵的逆

对称分量法矩阵的逆对称分量法矩阵的逆在矩阵论中有着重要的应用和意义。
为了探讨这一主题,首先我们需要了解对称矩阵和分量法矩阵的概念,然后深入讨论对称分量法矩阵的逆的计算方法和其在实际问题中的应用。
1. 对称矩阵是指一个矩阵的行列数相等且矩阵的转置等于其本身的矩阵。
简言之,就是矩阵的上三角部分与下三角部分对应元素相同。
2. 分量法矩阵是一种常用的矩阵分解方法,它将一个矩阵分解为对角矩阵和特定矩阵的乘积。
有了对这两个概念的了解,我们现在来讨论对称分量法矩阵的逆的计算方法。
3. 对称分量法矩阵的逆可以通过两步来计算。
我们需要计算原始矩阵的对称分量法分解。
这可以通过将矩阵表示成对角矩阵和特定矩阵的形式来完成。
第二步,我们可以利用分量法矩阵的性质和逆矩阵的性质来计算对称分量法矩阵的逆。
4. 具体计算对称分量法矩阵的逆的方法如下(以3x3的矩阵为例): - 计算原始矩阵的特定矩阵和对角矩阵。
- 计算对角矩阵的逆。
- 利用逆对角矩阵和特定矩阵的逆来计算对称分量法矩阵的逆。
通过以上计算方法,我们可以得到对称分量法矩阵的逆。
那么,对称分量法矩阵的逆在实际问题中有什么应用呢?5. 对称分量法矩阵的逆在信号处理和图像处理中有着广泛的应用。
在图像去噪中,可以通过计算对称分量法矩阵的逆来恢复原始图像。
对称分量法矩阵的逆还可以应用在正交变换、线性系统的稳定性和控制系统等领域中。
总结回顾:通过本文的介绍,我们对对称矩阵和分量法矩阵有了基本的了解,并详细讨论了对称分量法矩阵的逆的计算方法和应用。
对称分量法矩阵的逆在实际问题中具有重要的意义,特别是在信号处理和图像处理中。
要计算对称分量法矩阵的逆,我们需要先计算原始矩阵的对称分量法分解,然后利用逆对角矩阵和特定矩阵的逆来计算对称分量法矩阵的逆。
个人观点和理解:在我看来,对称分量法矩阵的逆是矩阵论中一项重要而有趣的内容。
它不仅帮助我们解决实际问题,还反映了矩阵理论的深度和广度。
通过对对称分量法矩阵的逆进行研究和应用,我们可以更好地理解和掌握矩阵运算的方法和技巧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵的逆的研究及应用摘要本文主要是对高等代数中的矩阵的逆进行研究,更深一步地了解矩阵的逆在数学领域中的重要地位和各方面的应用。
首先总结阐述矩阵的逆的相关定义、定理和性质,并且对其给出相应的证明,然后归纳了矩阵的逆的几种常见求法,最后讲述了矩阵的逆在以下两个方面的应用:解线性方程组和保密通信,而且例举了具体的应用实例。
关键词:矩阵矩阵的逆线性方程组保密通信Research and application of inverse matrixSummary:This paper mainly research on the inverse of the matrix in higher algebra, deeper understanding of the inverse of the matrix in all aspects of the important position in the field of mathematics and application. First summarized in this paper, the related definitions, theorems and properties of the inverse of the matrix, and the corresponding proofs are given, and then sums up several kinds of common method of inverse of the matrix, and finally tells the inverse of the matrix in the application of the following two aspects: solving system of linear equations and secure communications, and illustrates the concrete application examples.Key Words: matrix , inverse of a matrix ,linear system of equaton, securecommunication.一 矩阵的逆的一些背景在以往线性方程组的讨论中我们看到,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的也表现为变换这些矩阵的过程。
除线性方程组之外,还有大量的各种各样的问题也都提出矩阵的概念,并且这些问题的研究常常反映为有关矩阵的某些方面的研究,甚至于有些性质是完全不同的、表面上完全没有联系的问题,归结成矩阵的问题以后却是相同的。
这就使矩阵成为数学中一个极其重要的应用广泛的概念,因而也就使矩阵成为代数特别是线性代数的一个主要研究对象。
而矩阵的逆正是矩阵理论中一个很重要的概念,也是极难理解的一部分,在矩阵理论中占有非常重要的地位,对矩阵的逆的研究自然也就成为高等代数研究的主要内容之一。
然而在很多线性代数教科书中矩阵的逆的应用知识点几乎没有涉及到,以至于很多学生错误的认为所学东西没有多大的用处。
为了矩阵的逆在解决矩阵问题中起着很重要的作用,不能只停留在抽象的概念结论中,而应对所学知识进一步认识,深刻理解,掌握矩阵的逆的本质,本文总结了矩阵的逆相关定义、定理、性质和它的几种常见的求法,进而更进一步提供了实际应用例子,体现出矩阵的逆的重要性和应用性。
二 矩阵的逆的定义、定理及性质2.1 矩阵的逆的定义利用矩阵的乘法和矩阵相等的含义,可以把线性方程组写成矩阵形式。
对于线性方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ (1)令111212122212n n n n nn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 12n x x X x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦12n b b B b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦则方程组可写成AX B =。
方程AX B =是线性方程组的矩阵表达形式,称为矩阵方程。
其中A 称为方程组的系数矩阵,X 称为未知矩阵,B 称为常数项矩阵。
这样,解线性方程组的问题就变成求矩阵方程中未知矩阵X 的问题。
类似于一元一次方程()0ax b a =≠的解可以写成1x a b -=,矩阵方程AX B =的解是否也可以表示为1X A B -=的形式?如果可以,则X 可求出,但1A -的含义和存在的条件是什么呢?下面来讨论这些问题。
定义1 n 级方阵A 称为可逆的,如果有n 级方阵B ,使得AB BA E == (2) 这里E 是n 级单位矩阵。
首先我们指出,由于矩阵的乘法规则,只有方阵才能满足(2);其次,对于任意的矩阵A ,适合等式(2)的矩阵B 是唯一的(如果有的话)。
事实上,假设12,B B 是两个适合(2)的矩阵,就有()()11121222B B E B AB B A B EB B =====定义2 如果矩阵B 适合(2),那么B 就称为A 的逆矩阵,记为1A -。
定义3 设ij A 是矩阵111212122212n n n n nn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦中元素ij a 的代数余子式,矩阵1112121222*12n n n n nn A A A A A A A A A A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦称为A 的伴随矩阵。
由行列式按一行(列)展开的公式立即得出:**0000==00d d AA A A dE d ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦(3) 其中d A =如果0d A =≠,那么由(3)得**11A A A A E d d ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭(4)2.2 矩阵的逆的定理和性质定理1 矩阵A 是可逆的充分必要条件是A 非退化,而()1*10A A d A d-==≠ 证明:当0d A =≠,由(4)可知A 可逆,且 1*1AA d-=(5) 反过来,如果A 可逆,那么有1A -使1AA E -=,两边取行列式,得 11A A E -== (6)因而0A ≠,即A 非退化。
由以上定理,我们可得出逆矩阵的一些性质,如下: 1、11AA-=2、设A 是n 级矩阵,则A 可逆的充要条件是存在n 级矩阵B ,使AB E =3、()11AA --=4、设A 和B 都是n 级矩阵且可逆,则AB 也可逆,且()111AB B A ---=5、若0k ≠,A 可逆,则kA 也可逆,且()111kA A k--=6、如果A 可逆,则T A 也可逆,且()()11TTAA --=7、如果A 可逆,则*A 也可逆,且()1*1A A A-= 定理 2 A 是一个s n ⨯矩阵,如果P 是s s ⨯可逆矩阵,Q 是n n ⨯可逆矩阵,那么()()()=A PA AQ =秩秩秩证明:令B PA =,则()()B A ≤秩秩但是由1A P B -=又有()()A B ≤秩秩所以()()()=A B PA =秩秩秩另一个等式可以同样地证明。
三 矩阵的逆的求法3.1 定义法例1.设方阵A 满足方程23100A A E --=,证明:,4A A E -都可逆,并求它们的逆矩阵。
证明:由23100A A E --=,得到()1310A A E E ⎡⎤-=⎢⎥⎣⎦。
故A 可逆,而且()11310A A E -=-。
又由23100A A E --=,得到()()46A E A E E +-=,即()()146A E A E E +-=。
故4A E -可逆,而且()()1146A E A E --=+。
3.2 公式法定理3 n 阶方阵A 可逆的充分必要条件是A 非奇异矩阵,而且21211122221*1211n n nnnn A A A AA A A A A A A A A -⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦.例2.已知101020305A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,求1A -解:由题可解得40A =≠所以A 可逆,且*1002020602A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦故*152012012032012A A A-⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦经检验1AA E -=3.3 初等变换法定义4 一个矩阵的行(列)初等变换是指矩阵施行的下列变换: (1)交换矩阵的某两行(列);(2)用一个非零的数乘矩阵的某一行(列),即用非零的数乘矩阵的某一行(列)的每一个元素;(3)给矩阵的某一行(列)乘以一个数后加到另一行(列)上,即用某一个数乘矩阵某一行(列)的每一个元素后加到另一行(列)上的对应元素上。
定义5 由单位矩阵E 经过一次初等变换得到的矩阵称为初等矩阵。
(1)初等行变换如果n 阶方阵A 可逆,作一个2n n ⨯的矩阵(),A E ,然后对此矩阵进行初等行变换,使矩阵A 化为单位矩阵E ,则同时E 就化为1A -了,即(),A E 经过初等行变换变为()1,E A -。
例 用初等行变换求矩阵111210110A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的逆矩阵。
解:()111100111100,2100100-12-210110001021-101101-110100013130-12-210010013-2300-33-2101-123-13A E --⎡⎤⎡⎤⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦所以101313=013-23-123-13A -⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。
(2)初等列变换如果n 阶方阵A 可逆,作一个2n n ⨯的矩阵A E ⎛⎫⎪⎝⎭,然后对此矩阵进行初等列变换,使矩阵A 化为单位矩阵E ,则同时E 就化为1A -了,即A E ⎛⎫⎪⎝⎭经过初等行变换变为-1E A ⎛⎫ ⎪⎝⎭。
例 用初等列变换求矩阵111210110A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的逆矩阵。
解:1111012100101103210100120001011000110110110001001001320010012013130110132310112313A E --⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎛⎫=→⎢⎥⎢⎥ ⎪⎝⎭⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥---⎣⎦⎣⎦所以101313=013-23-123-13A -⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦3.4 分块矩阵法分块对角矩阵求逆:对于分块对角(或次对角)矩阵求逆可套用公式11111221S S A A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦11111221S SA A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦其中()1,2,,i A i s = 均为可逆矩阵。