高中数学竞赛专题精讲30组合数学选讲(含答案)
高考数学真题专题十 计数原理第三十讲 排列与组合答案

专题十 计数原理第三十讲 排列与组合答案部分1.C 【解析】不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中随机选取两个不同的数有210C 种不同的取法,这10个数中两个不同的数的和等于30的有3对,所以所求概率21031C 15==P ,故选C . 2.D 【解析】由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有24C 种方法,然后进行全排列,由乘法原理,不同的安排方式共有2343C A 36⨯=种. 故选D .3.C 【解析】不放回的抽取2次有1198C C 9872=⨯=,如图 21,3,4,5,6,7,8,923,4,5,6,7,8,91可知(1,2)与(2,1)是不同,所以抽到的2张卡片上的数奇偶性不同有11542C C =40,所求概率为405728=. 4.B 【解析】由题意可知E F →有6种走法,F G →有3种走法,由乘法计数原理知,共有6318⨯= 种走法,故选B .5.D 【解析】由题意,要组成没有重复的五位奇数,则个位数应该为1、3、5中任选一个,有13A 种方法,其他数位上的数可以从剩下的4个数字中任选,进行全排列,有44A 种方法,所以其中奇数的个数为1434A A 72=,故选D . 6.B 【解析】据题意,万位上只能排4、5.若万位上排4,则有342A ⨯个;若万位上排5,则有343A ⨯个.所以共有342A ⨯343524120A +⨯=⨯=个,选B . 7.D 【解析】4422728P -==. 8.D 【解析】易知12345||||||||||x x x x x ++++=1或2或3,下面分三种情况讨论.其一:12345||||||||||x x x x x ++++=1,此时,从12345,,,,x x x x x 中任取一个让其等于1或-1,其余等于0,于是有115210C C =种情况;其二:12345||||||||||x x x x x ++++=2,此时,从12345,,,,x x x x x 中任取两个让其都等于1或都等于-1或一个等于1、另一个等于-1,其余等于0,于是有221552240C C C +=种情况;其三:12345||||||||||x x x x x ++++=3,此时,从12345,,,,x x x x x 中任取三个让其都等于1或都等于-1或两个等于1、另一个等于-1或两个等于-1、另一个等于1,其余等于0,于是有3313255353280C C C C C ++=种情况.由于104080130++=.9.C 【解析】直接法:如图,在上底面中选11B D ,四个侧面中的面对角线都与它成60︒,共8对,同样11A C 对应的也有8对,下底面也有16对,这共有32对;左右侧面与前后侧面中共有16对,所以全部共有48对.间接法:正方体的12条面对角线中,任意两条垂直、平行或成角为60︒,所以成角为60︒的共有21212648C --=. 10.A 【解析】分三步:第一步,5个无区别的红球可能取出0个,1个,…,5个,则有2345(1)a a a a a +++++种不同的取法;第二步,5个无区别的篮球都取出或都不取出,则有5(1)b +种不同的取法;第三步,5个有区别的黑球看作5个不同色,从5个不同色的黑球任取0个,1个,…,5个,有5(1)c +种不同的取法,所以所求的取法种数为2345(1)a a a a a +++++5(1)b +5(1)c +.11.B 【解析】能够组成三位数的个数是9×10×10=900,能够组成无重复数字的三位数的个数是9×9×8 =648.故能够组成有重复数字的三位数的个数为900648252-=.12.A 【解析】先安排1名教师和2名学生到甲地,再将剩下的1名教师和2名学生安排到乙地,共有122412C C =种. 13.D 【解析】和为偶数,则4个数都是偶数,都是奇数或者两个奇数两个偶数,则有44224545156066C C C C ++⋅=++=种取法.14.C 【解析】若没有红色卡片,则需从黄、蓝、绿三色卡片中选3张,若都不同色则有14C ⨯14C ⨯14C =64,若2张同色,则有21213244144C C C C ⨯⨯⨯=,若红色1张,其余21张不同色,则有12114344192C C C C ⨯⨯⨯=,其余2张同色则有11243472C C C ⨯⨯=,所以共有64+144+192+72=472.另解1:472885607216614151641122434316=-=--⨯⨯=--C C C C ,答案应选C . 另解2:472122642202111241261011123212143431204=-+=⨯⨯+-⨯⨯=+-C C C C C . 15.B 【解析】B ,D ,E ,F 用四种颜色,则有441124A ⨯⨯=种涂色方法;B ,D ,E ,F 用三种颜色,则有334422212192A A ⨯⨯+⨯⨯⨯=种涂色方法;B ,D ,E ,F 用两种颜色,则有242248A ⨯⨯=种涂色方法;所以共有24+192+48=264种不同的涂色方法.16.B 【解析】分两类:一类为甲排在第一位共有4424A =种,另一类甲排在第二位共有133318A A =种,故编排方案共有241842+=种,故选B . 17.C .【解析】共有5!=120个不同的闪烁,每个闪烁要完成5次闪亮需用时间为5秒,共5⨯120=600秒;每两个闪烁之间的间隔为5秒,共5⨯(120—1)=595秒。
(第30讲)高中数学复习专题讲座-排列、组合的应用问题

题目 高中数学复习专题讲座排列、组合的应用问题高考要求排列、组合是每年高考必定考查的内容之一,纵观全国高考数学题,每年都有1~2道排列组合题,考查排列组合的基础知识、思维能力重难点归纳1 排列与组合的应用题,是高考常见题型,其中主要考查有附加条件的应用问题 解决这类问题通常有三种途径 (1)以元素为主,应先满足特殊元素的要求,再考虑其他元素(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置 (3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数 前两种方式叫直接解法,后一种方式叫间接(剔除)解法2 在求解排列与组合应用问题时,应注意(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答3 解排列与组合应用题常用的方法有 直接计算法与间接(剔除)计算法;分类法与分4 典型题例示范讲解例1在∠AOB 的OA O 点外),连同O 点共m +n +1 ) 12121211211C C C C C.C C C C A.C m m n n m m n n m +++++命题意图知识依托法一分成三类方法;法二,间接法,去掉三点共线的组合 中含有构不成三角形的组合,如1+m n O 、B i 、B j ;C 11+n C 2m 中,A q ,B i 、B j 分别表示OA 、OB 边上不同于O 的点;B 漏掉△A i OB j ;D 1m C 21+n 中有△A i OB j ,C 21+m C 1n 中也有△A i OB j分类讨论思想及间接法第一类办法 从OA 边上(不包括O )中任取一点与从OB 边上(不包括O )中任取两点,可构造一个三角形,有C 1m C 2n 个;第二类办法 从OA 边上(不包括O )中任取两点与OB 边上(不包括O )中任取一点,与O 点可构造一个三角形,有C 2m C 1n 个;第三类办法 从OA 边上(不包括O )任取一点与OB 边上(不包括O )中任取一点,与O 点可构造一个三角形,有C 1m C 1n 个 由加法原理共有N =C 1m C 2n +C 2m C 1n +C 1m C 1n 个三角形解法二 从m +n +1中任取三点共有C 31++n m 个,其中三点均在射线OA (包括O 点),有C 31+m 个,三点均在射线OB (包括O 点),有C 31+n 个 所以,个数为N =C 31++n m -C 31+m -C 31+n 个 答案 C例2四名优等生保送到三所学校去,每所学校至少得一名,则不同的保送方案的总数是_________ 命题意图 本题主要考查排列、组合、乘法原理概念,以及灵活应用上述概念处理数学问题的能力 知识依托排列、组合、乘法原理的概念 错解分析 根据题目要求每所学校至少接纳一位优等生,常采用先安排每学校一人,而后将剩的一人送到一所学校,故有3A 34种 忽略此种办法是 将同在一所学校的两名学生按进入学校的前后顺序,分为两种方案,而实际题目中对进入同一所学校的两名学生是无顺序要求的 技巧与方法 解法一,采用处理分堆问题的方法 解法二,分两次安排优等生,但是进入同一所学校的两名优等生是不考虑顺序的 解法一 分两步 33A =36(种)解法二 分两步 A 34种;而后,值得注意的是 同在一所学校种) 答案 36 例36与7,8与9,将其C 35·23·A 33(个),其中0在百位),这是不合题意的,故共有不同三位数 C 35·23·A 33-C 24 解法二 (直接法 第一类 0与1卡片放首位,可以组成不同三位数有22242248C A = (个); 第二类 0与1卡片不放首位,可以组成不同三位数有1222442(2)(2)848384C C A =⨯= (个)故共有不同三位数 48+384=432(个)学生巩固练习1 从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax +By +C =0中的A、B、C,所得的经过坐标原点的直线有_________条(用数值表示)2圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为_________3某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A,有5次出牌机会,每次只能出一种点数的牌但张数不限,此人有多少种不同的出牌方法?4二次函数y=ax2+bx+c的系数a、b、c,在集合{-3,-2,-1,0,1,2,3,4}中选取3个不同的值,则可确定坐标原点在抛物线内部的抛物线多少条?5有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数(1)全体排成一行,其中甲只能在中间或者两边位置(2)全体排成一行,其中甲不在最左边,乙不在最右边(3)全体排成一行,其中男生必须排在一起(4)全体排成一行,男、女各不相邻(5)全体排成一行,男生不能排在一起(6)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变(7)排成前后二排,前排3人,后排4人(8)全体排成一行,甲、乙两人中间必须有3人6207涂色,每部8甲、乙、若甲不值周参考答案解析2个作为A、Bn条直径,从中任选一条直径共有C1n种方法;再从以下的C122-n种方法,根据乘法原理直角三角形的个数为个答案2n(n-1)3解出牌的方法可分为以下几类(1)5张牌全部分开出,有A55种方法;(2)2张2一起出,3张A一起出,有A25种方法;(3)2张2一起出,3张A一起出,有A45种方法;(4)2张2一起出,3张A 分两次出,有C 23A 35种方法;(5)2张2分开出,3张A 一起出,有A 35种方法;(6)2张2分开出,3张A 分两次出,有C 23A 45种方法因此,共有不同的出牌方法A 55+A 25+A 45+A 23A 35+A 35+C 23A 45=860种 4 解 由图形特征分析,a >0,开口向上,坐标原点在内部⇔f (0)=c <0;a <0,开口向下,原点在内部⇔f (0)=c >0,所以对于抛物线y =ax 2+bx +c则确定抛物线时,可先定一正一负的a 和c ,再确定b ,C 13C 14A 22A 16=144条5 解 (1)选择 有A 13种,其余6人全排列,有A 66种由乘法原理得A 13A 66(2)位置分析法 A 66种,但-A 15A 55=3720种 (3)捆绑法共有A 33A 55=720种 (4)插空法 A 33A 44=144种(5)插空法 种 N ,第二步,对A 77=N ×A 33,∴N =3377A A = 840种 A 77=5040种(8)从除甲、乙以外的5人中选3人排在甲、乙中间的排法有A 35种,甲、乙和其余2人排成一排且甲、乙相邻的排法有A 23A 33 最后再把选出的3人的排列插入到甲、乙之间即可 共有A 35×A 22×A 33=720种6 解 首先按每个盒子的编号放入1个、2个、3个小球,然后将剩余的14个小球排成一排,如图,|O|O|O|O|O|O|O|O|O|O|O|O|O|O|,有15个空档,其中“O ”表示小球,“|”表示空档 将求小球装入盒中的方案数,可转化为将三个小盒插入15个空档的排列数 对应关系是 以插入两个空档的小盒之间的“O ”个数,表示右侧空档上的小盒所装有小球数 最左侧的空档可以同时插入两个小盒 而其余空档只可插入一个小盒,最右侧空档必插入小盒,于是,若有两个小盒插入最左侧空档,有C 23种;若恰有一个小盒插入最左侧空档,有1313C C 种;若没有小盒插入最左侧空档,有C 213种 由加法原理,有N =2131131323C C C C ++=120种排列方案,即有120种放法 7 解 按排列中相邻问题处理 (1)(4)或(2)(4) 可以涂相同的颜色 分类 若(1)(4)同色,有A 35种,若(2)(4)同色,有A 35种,若(1)(2)(3)(4)共有N =2A 35+A 45=240种 8 解 每人随意值两天,共有C 26C 24C 22个;甲必值周一,有六,有C 15C 24C 22个;甲必值周一且乙必值周六,有C 14C 13C 22个C 14C 13C 22=90-2×5×。
高中组合数计算试题及答案

高中组合数计算试题及答案试题一:某班级有40名学生,需要从中选出5名学生参加数学竞赛。
求:1. 总共有多少种不同的选法?2. 如果班级中有5名女生和35名男生,选出的5名学生中有至少1名女生的选法有多少种?试题二:在一个有10个不同颜色的球的袋子里,需要取出3个球。
求:1. 取出3个球的所有可能组合有多少种?2. 如果取出的3个球中必须包含至少一个红色球,有多少种不同的取法?试题三:在一个有8个不同元素的集合中,需要选择3个元素组成一个小组。
求:1. 这个小组的所有可能组合有多少种?2. 如果小组中必须包含特定的一个元素,有多少种不同的组合方式?试题四:某学校有5个不同的社团,每个学生可以选择加入1个或多个社团。
求:1. 学生可以选择的所有不同社团组合有多少种?2. 如果规定每个学生至少需要加入1个社团,那么有多少种不同的选择方式?试题五:在一个有7个不同数字的序列中,需要选择5个数字形成一个子序列。
求:1. 这个子序列的所有可能组合有多少种?2. 如果子序列中必须包含特定的一个数字,有多少种不同的组合方式?答案:试题一:1. 组合数公式为C(n, k) = n! / [k! * (n-k)!],其中n为总数,k为选择的数量。
所以C(40, 5) = 40! / (5! * 35!) = 658008种选法。
2. 首先计算没有限制的选法,C(40, 5) = 658008种。
然后计算只选男生的选法,C(35, 5) = 324632种。
所以至少有1名女生的选法为658008 - 324632 = 333376种。
试题二:1. 组合数公式同样适用,C(10, 3) = 10! / (3! * 7!) = 120种组合。
2. 首先计算不包含红色球的组合数,C(9, 3) = 84种。
然后从总组合数中减去这部分,120 - 84 = 36种。
试题三:1. 使用组合数公式,C(8, 3) = 8! / (3! * 5!) = 56种组合。
高中数学奥林匹克竞赛讲座:30分类与讨论

竞赛讲座30-分类与讨论1. 分类讨论的规则解题总是在一定的范围(论域)进行的.解题中有时要将题目条件包含的全体对象分成若干类,然后逐类讨论,才能得出正确的解答.因此,分类讨论是数学解题中的一个重要内容.(1) 分类的规则 分类时首先要明确分类的对象和分类的标准.有时还要对第一次分出的各类进行再分类,这就是第二级分类,类似地有第三级分类、第四级分类、……,这种进行多次分类的现象叫做连续分类.合理的分类不但是正确解题的基础,而且是简捷解题的出发点.分类的原则是:不重不漏,即每一个题设包含的对象都必须在而且只在所分的一类中.为此,分类时必须做到:① 一次分类只按一个标准进行;② 连续分类按层次逐级进行.(2)枚举和讨论 解决需要讨论的问题的方法是枚举,枚举的基础是正确分类.例1 求出所有的自然数n,使三个整数n,n+8,n+16都为质数.解 现将所有自然数n按模为3的剩余类分成三类:n=3k,3k+1,3k+2.当n=3k时,只有k=1时,三个整数(3,11,19)都是质数;当n=3k+1时,n+8=3k+1+8=3(k+3)不是质数;当n=3k+2时,n+16=3k+2+16=3(k+6)不是质数.所以满足题设的自然数只有一个3.2.分类讨论举例下面我们用分类讨论的思想方法来解决一些国内外数学竞赛问题.例2 (第4届加拿大中学生竞赛题)设a和n是相异的实数,证明存在整数m和n使得am+bn<0,bm+an>0.证明 既然a,b为相异实数,那么必有a-b<0或a-b>0.当a-b<0时,就取m=1,n=-1,验证和满足所给不等式;当a-b>0时,就取m=-1,n=1,显然也满足所给不等式.例3 (1956年上海市竞赛题)从1到100这一百个自然数中,每次取2个,要它们的和大于100,有多少种取法?解 因为每次所取的两数不等,所以可以按较大(或较小)的数的取值来分类考虑:较大的数取100时,另一数有99种取法;较大的数取99时,另一数有97种取法;……较大的数取51时,另一数有一种取法;而50以下的任何两数都不能组成符合条件的数对,故共有1+3+5…+97+99=2500种取法.按照某个确定的自然数为模的剩余类分类是数学竞赛中经常出现的问题之一.例4 求证:从任意n个整数a1,a2,…,a n中,一定可以找到若干个数,使它们的和可被n整除.证明 考察如下的n个和,a1,a1+a2,a1+a2+a3,…,a1+a2+…+a n.若其中至少有一个能被n的整除,则结论成立;若其中没有一个能被n整除;则将他们按模n的剩余类至多可分为余数为1,余数为2,…,余数为n-1的n-1个类.因此,这几个整数中至少有两个整数a1+a2+…+ak和a1+a2+a3+a k+…+a l(l>k)对模n有相同的余数.这时和数a k+1+…+a l=(a1+a2+…+a k+…+a1)-(a1+a2+…+a k)显然可被n 整除,即结论成立.说明:本例通过分类制造“抽屉”,体现了分类思想有“抽屉原则”的完美结合.在给定的几何条件下,由于图形的形状或位置不同含有不同的结果或需用不同的方法处理,这就引出了几何中的分类讨论问题.例5 (1989年武汉、广州等五市初中数学联赛题)△ABC中,∠C=,BM是中线,AC=2a,若沿BM将三角形对折起来,那个两个小三角形ABM 和BCM重叠部分的面积恰好等于△ABC面积的四分之一.试求△ABC的面积.解①若原三角形中,∠ABM>∠CBM,则对折后如图28-1,其中是对折后C点所落位置,△BMD是重叠部分.依题意得∴即D为AM的中点.又∴D是BC的中点.由∠ADB=∠MD知,△ABD≌△MD,∴AB=M=CM=.而∠ACB=,∴∠ABC=.由AC=2a,可得AB=a,BC=∴(2)若原三角形中∠ABM<∠CBM,对折后如图28-2.如上证明,可得D 为AB,M的中点.∴于是BC=B=a.过B作△ABC的高BE.∵∠ACB=,∴∴(3)显然,∠ABM=∠CBM不合题意.列6 设一条曲线的两端在单位正方形的周界上;并且这条曲线将正方形分成面积相等的两部分.证明这条曲线的长度不小于1.证明 (如图28-3)设曲线PQ分正方形ABCD为面积相等的两部分S1,S2.又M、N、E、F分别为正方形的边的中点.因的面积,故曲线PQ与线段MN、EF、AC、BD必各至少有一个公共点.现按P、Q的位置来分类讨论.不失一般性,不妨设P在AB上,这时,① Q在对边CD上(图28-4).如上所述,曲线PQ与MN至少有一公共点(设为R),则PQ=PR+RQ≥PR+RQ≥MR+RN=MN=1,此时结论正确.② Q在AB上(图28-5).设曲线PQ与线段EF的一个公共点为R.以EF 为对称轴作出PR的对称图形,则曲线PQ与曲线等长.由①知≥1,故PQ≥1,此时结论也正确.③ Q在邻边BC或AD之一上(图28-6).令曲线PQ与AC的一个公共点为R,以AC为对称轴作出RQ的对称图形,则曲线PQ与等长.由①知,此时结论亦成立.综上述,对符合条件的任意位置的P、Q均有所述结论.练习二十八1. 选择题(1)如果a、b为不超过10的自然数,那么能使方程ax=b的解大于而小于的a、b有( ).(A) 五组 (B)四组 (C)三组 (D)两组(2)(1984年重庆初中竞赛题)如果α、β、γ是三角形三内角,x=α+β,y=β+γ,z=γ+α,那么x,y,z中锐角个数的错误判断应是( ).(A) 可能没有锐角 (B)可能有一个锐角(C)可能有两个锐角 (D)最多有一个锐角(3)(1978年重庆竞赛题)a、b、c是三角形三边,由a-b<c可导出( ).(A)<c2(B)a2-b2>c2(C)a2-b2=c2(D)以上结论都不对2.(1989年吉林初中预选赛试题)已知n(n≥2)个相异自然数的和与积相等,求此n的值及n个自然数.3.(第4届加拿大中学生竞赛试题)证明方程x3+113=y3没有x 和y的正整数解.4.(1983年上海初中竞赛题)已知△ABC中∠B为锐角.从顶点A向边BC 或它的延长线引垂线,交BC于H,又从顶点C向边AB或它的延长线引垂线交AB于K点.试问当2BH:BC、2BK:BA是整数时,△ABC是怎样三角形?证明你的结论.5.(1984年西安初中竞赛题)求证n5-n可被30整除(n∈整数). 6.(1978年重庆竞赛题)设△ABC中,AB=AC,P为该三角形内一点,且∠APB>∠APC.用间接证法证明:∠BAP<∠CAP.7.(1957年上海竞赛题)设自然数62αβ427为99的倍数,求α、β. 8.(莫斯科比赛大会预习题)求多项式x2+βx+q的使它在区间[-1,1]上的绝对值为极大值的最小值.9.证明内接平行四边形的三角形的面积不可能大于这个平行四边形面积的一半.10.(第7届加拿大中学竞赛题)对每个实数γ,[γ]表示小于或等于γ的最大整数,例如[6]=6,[π]=3,[-1.5]=-2.在(x,y)平面上指出满足[x]2+[y]2=4的一切点(x,y).。
高中数学竞赛校本教材[全套共30讲].pdf
![高中数学竞赛校本教材[全套共30讲].pdf](https://img.taocdn.com/s3/m/cd48785bf78a6529657d5306.png)
高中数学竞赛校本教材目录§1数学方法选讲(1) (1)§2数学方法选讲(2) (11)§3集合 (22)§4函数的性质 (30)§5二次函数(1) (41)§6二次函数(2) (55)§7指、对数函数,幂函数 (63)§8函数方程 (73)§9三角恒等式与三角不等式 (76)§10向量与向量方法 (85)§11数列 (95)§12递推数列 (102)§13数学归纳法 (105)§14不等式的证明 (111)§15不等式的应用 (122)§16排列,组合 (130)§17二项式定理与多项式 (134)§18直线和圆,圆锥曲线 (143)§19立体图形,空间向量 (161)§20平面几何证明 (173)§21平面几何名定理 (180)§22几何变换 (186)§23抽屉原理 (194)§24容斥原理 (205)§25奇数偶数 (214)§26整除 (222)§27同余 (230)§28高斯函数 (238)§29覆盖 (245)§29涂色问题 (256)§30组合数学选讲 (265)§1数学方法选讲(1) 同学们在阅读课外读物的时候,或在听老师讲课的时候,书上的例题或老师讲解的例题他都能听懂,但一遇到没有见过面的问题就不知从何处入手。
看来,要提高解决问题的能力,要能在竞赛中有所作为,首先得提高分析问题的能力,这就需要学习一些重要的数学思想方法。
例题讲解一、从简单情况考虑 华罗庚先生曾经指出:善于“退”,足够的“退”,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。
从简单情况考虑,就是一种以退为进的一种解题策略。
高中数学竞赛校本教材 (全套 共30讲 有详解)

高中数学竞赛校本教材(共30讲,含详细答案)目录§1数学方法选讲(1) (1)§2数学方法选讲(2) (11)§3集合 (22)§4函数的性质 (30)§5二次函数(1) (41)§6二次函数(2) (55)§7指、对数函数,幂函数 (63)§8函数方程 (73)§9三角恒等式与三角不等式 (76)§10向量与向量方法 (85)§11数列 (95)§12递推数列 (102)§13数学归纳法 (105)§14不等式的证明 (111)§15不等式的应用 (122)§16排列,组合 (130)§17二项式定理与多项式 (134)§18直线和圆,圆锥曲线 (143)§19立体图形,空间向量 (161)§20平面几何证明 (173)§21平面几何名定理 (180)§22几何变换 (186)§23抽屉原理 (194)§24容斥原理 (205)§25奇数偶数 (214)§26整除 (222)§27同余 (230)§28高斯函数 (238)§29覆盖 (245)§29涂色问题 (256)§30组合数学选讲 (265)§1数学方法选讲(1)同学们在阅读课外读物的时候,或在听老师讲课的时候,书上的例题或老师讲解的例题他都能听懂,但一遇到没有见过面的问题就不知从何处入手。
看来,要提高解决问题的能力,要能在竞赛中有所作为,首先得提高分析问题的能力,这就需要学习一些重要的数学思想方法。
例题讲解一、从简单情况考虑华罗庚先生曾经指出:善于“退”,足够的“退”,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。
高中数学竞赛教案讲义(18)组合

第十八章 组合一、方法与例题1.抽屉原理。
例1 设整数n ≥4,a 1,a 2,…,a n 是区间(0,2n)内n 个不同的整数,证明:存在集合{a 1,a 2,…,a n }的一个子集,它的所有元素之和能被2n 整除。
[证明] (1)若n ∉{a 1,a 2,…,a n },则n 个不同的数属于n-1个集合{1,2n-1},{2,2n-2},…,{n-1,n+1}。
由抽屉原理知其中必存在两个数a i ,a j (i ≠j)属于同一集合,从而a i +a j =2n 被2n 整除;(2)若n ∈{a 1,a 2,…,a n },不妨设a n =n ,从a 1,a 2,…,a n-1(n-1≥3)中任意取3个数a i , a j , a k (a i ,<a j < a k ),则a j -a i 与a k -a i 中至少有一个不被n 整除,否则a k -a i =(a k -a j )+(a j -a i )≥2n ,这与a k ∈(0,2n)矛盾,故a 1,a 2,…,a n-1中必有两个数之差不被n 整除;不妨设a 1与a 2之差(a 2-a 1>0)不被n 整除,考虑n 个数a 1,a 2,a 1+a 2,a 1+a 2+a 3,…,a 1+a 2+…+a n-1。
ⅰ)若这n 个数中有一个被n 整除,设此数等于k n ,若k 为偶数,则结论成立;若k 为奇数,则加上a n =n 知结论成立。
ⅱ)若这n 个数中没有一个被n 整除,则它们除以n 的余数只能取1,2,…,n-1这n-1个值,由抽屉原理知其中必有两个数除以n 的余数相同,它们之差被n 整除,而a 2-a 1不被n 整除,故这个差必为a i , a j , a k-1中若干个数之和,同ⅰ)可知结论成立。
2 极端原理。
例2 在n ×n 的方格表的每个小方格内写有一个非负整数,并且在某一行和某一列的交叉点处如果写有0,那么该行与该列所填的所有数之和不小于n 。
高三数学竞赛讲义教案及练习 §30组合数学选讲

§30组合数学选讲组合数学是中学数学竞赛的“重头戏”,具有形式多样,内容广泛的特点.本讲主要围绕组合计数,组合恒等式及组合最值展开例题讲解1.圆周上有800个点,依顺时针方向标号为1,2,…,800它们将圆周分成800个间隙.今选定某一点染成红色,然后按如下规则,逐次染红其余的一些点:若第k 号点染成了红色,则可依顺时针方向转过k 个间隙,将所到达的点染成红色,试求圆周上最多可以得到多少个红点?2.集合X 的覆盖是指X 的一族互不相同的非空子集A 1、A 2、…、A k ,它们的并集A 1∪A 2∪…∪A k =X ,现有集合X={1,2,…,n},若不考虑A 1, A 2,…, A k 的顺序,试求X 的覆盖有多少个?3.已知集合X={1,2,…,n},映射f :X →X ,满足对所有的x ∈X ,均有f(f(x))=x ,求这样的映射f 的个数.4.S 为{1,2,…,n}的一些子集族,且S 中任意两个集合互不包含,求证:S 的元素个数的最大值为(Sperner 定理)5.设M={ 1,2,3,…,2m n} (m,n ∈N *)是连续2m n 个正整数组成的集合,求最小的正整数k ,使得Mn n 2⎛⎫ ⎪⎡⎤ ⎪ ⎪⎢⎥⎣⎦⎝⎭的任何k 元子集中都存在m+1个数,a 1,a 2,…a m+1,满足a i |a i+1 (i=1,2,…,m).6.计算.7.证明: (范德蒙公式)8.在平面上有n(≥3)个点,设其中任意两点的距离的最大值为d ,我们称距离为d 的两点间的线段为该点集的直径,证明:直径的数目至多有n 条.9.已知:两个非负整数组成的不同集合和.求证:集合与集合相同的充要条件是n 是2的幂次,这里允许集合内,相同的元素重复出现.课后练习n2k 1n k k =⎛⎫⎪⎝⎭∑qk 0n m m n k q k q =+⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭∑},,,{1n a a a a },,,{21n b b b }1{n j i a a j i ≤<≤+}1{n j i b b j i ≤<≤+1. 空间n 条直线,最多能把空间分成多少块空间区域?2. 证明:.3. 证明:.4. 证明:在边长为1的等边三角形内有五个点,则这五个点中一定有距离小于的两点.例题答案:2nk 0n 2n k n =⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑nk k 0n 111(1)1k 2k n=⎛⎫⎛⎫-+++=- ⎪⎪⎝⎭⎝⎭∑121.解:易见,第k 号点能被染红的充要条件是∃j ∈N *⋃{0},使得a 02j ≡k (mod800),1≤k ≤800 ①这里a 0是最初染的点的号码,为求最大值,不妨令a 0=1.即2j ≡k (mod25×52).当j=0,1,2,3,4时,k 分别为1,2,4,8,16,又由于2模25的阶,因此,当j ≥5时 2j+20-2j =2j (220-1)≡0(mod 800),而对∀k<20,k ∈N *,及j ≥5,j ∈N *,由于25+(2k -1),所以2j+k -2j =2j (2k -1)不为800的倍数. 所以,共存在5+20=25个k ,满足①式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组合数学选讲组合数学是中学数学竞赛的“重头戏”,具有形式多样,内容广泛的特点.本讲主要围绕组合计数,组合恒等式及组合最值展开例题讲解1.圆周上有800个点,依顺时针方向标号为1,2,…,800它们将圆周分成800个间隙.今选定某一点染成红色,然后按如下规则,逐次染红其余的一些点:若第k 号点染成了红色,则可依顺时针方向转过k 个间隙,将所到达的点染成红色,试求圆周上最多可以得到多少个红点?2.集合X 的覆盖是指X 的一族互不相同的非空子集A 1、A 2、…、A k ,它们的并集A 1∪A 2∪…∪A k =X ,现有集合X={1,2,…,n},若不考虑A 1, A 2,…, A k 的顺序,试求X 的覆盖有多少个?3.已知集合X={1,2,…,n},映射f :X →X ,满足对所有的x ∈X ,均有f(f(x))=x ,求这样的映射f 的个数.4.S 为{1,2,…,n}的一些子集族,且S 中任意两个集合互不包含,求证:S 的元素个数的最大值为(Sperner 定理)n n 2⎛⎫ ⎪⎡⎤ ⎪ ⎪⎢⎥⎣⎦⎝⎭5.设M={ 1,2,3,…,2m n} (m,n ∈N *)是连续2m n 个正整数组成的集合,求最小的正整数k ,使得M 的任何k 元子集中都存在m+1个数,a 1,a 2,…a m+1,满足a i |a i+1 (i=1,2,…,m). 6.计算.7.证明: (范德蒙公式)8.在平面上有n(≥3)个点,设其中任意两点的距离的最大值为d ,我们称距离为d 的两点间的线段为该点集的直径,证明:直径的数目至多有n 条.9.已知:两个非负整数组成的不同集合和.求证:集合与集合相同的充要条件是n 是2的幂次,这里允许集合内,相同的元素重复出现.课后练习n2k 1n k k =⎛⎫ ⎪⎝⎭∑qk 0n m m n k q k q =+⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭∑},,,{1n a a a a },,,{21n b b b }1{n j i a a j i ≤<≤+}1{n j i b b j i ≤<≤+1. 空间n 条直线,最多能把空间分成多少块空间区域?2. 证明:.3. 证明:.4. 证明:在边长为1的等边三角形内有五个点,则这五个点中一定有距离小于的两点.例题答案:2nk 0n 2n k n =⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑nk k 0n 111(1)1k 2k n=⎛⎫⎛⎫-+++=- ⎪⎪⎝⎭⎝⎭∑121.解:易见,第k 号点能被染红的充要条件是∃j ∈N *⋃{0},使得a 02j ≡k (mod800),1≤k ≤800 ①这里a 0是最初染的点的号码,为求最大值,不妨令a 0=1.即2j ≡k (mod25×52). 当j=0,1,2,3,4时,k 分别为1,2,4,8,16,又由于2模25的阶,因此,当j ≥5时2j+20-2j =2j (220-1)≡0(mod 800),而对∀k<20,k ∈N *,及j ≥5,j ∈N *,由于25+(2k -1),所以2j+k -2j =2j (2k -1)不为800的倍数. 所以,共存在5+20=25个k ,满足①式。
注:本题解法不止一种,但利用些同余理论,可使解法简洁许多. 2.解:首先,X 的非空子集共有2n -1个,它们共组成了-1个非空子集族.其次,这些子集族中,不合某一元素i 的非空子集组成的非空子集族有个;不含两个元素的子集组成的族有个;依次类推,则由容斥原理,X 的覆盖共有=个.注:有些组合计数问题直接计数较难,但从反面考虑简洁明了.3.解:设n 元中有j 个对x 、y 满足f(x)=y 且f(y)=x ,其余的满足f(x)=x ,则 当j=0时,仅一种映射,即恒等映射.当j>0时,每次取两个作为一对,共取j 对有种取法.则不考虑j 对的顺序,有 .因此,映射f 的个数为 . 注:这些计数问题,以多次在国际竞赛中出现,但对于一般地情况(f (n)(x)=x)下的映射计数,尚无较好的结论.4.解:考虑n 个元素1,2,…,n 的全排列,显然为n!种,另一方面,全排列中前k 个元素恰好组成S 中的某个集S i 的,有k!(n -k)!个,由于S 中任意子集互不包含,所以,这种“头”在S 中的全排列互不同.⨯20)2(25=δn212-()n 12121---()n 22121---()() --+--------)12()12()12(1221211221n n n n n ())12()1(1201---=-∑n n jnj j n n 2n 2j 2222--+⎛⎫⎛⎫⎛⎫⎪⎪⎪⎝⎭⎝⎭⎝⎭n n 2n 2j 2n 1!(2j 1)!!2222j j --+⎛⎫⎛⎫⎛⎫⎛⎫=⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭n 2j 1n 1(2j 1)!!2j ⎡⎤⎢⎥⎣⎦=⎛⎫+⋅- ⎪⎝⎭∑设S 中有f k 个A i ,满足|A i |=k (k=1,2,…,n),则,又然知在时最大,因此 当S 是由{1,2,…,n}中全部元子集组成时,等号成立.注:Sperner 定理是1928年发现,证明的方法不止一种.5.解:记A={1,2,…,n},任何一个以i 为首项(1≤i ≤n),2为公比的等比数列与A 的交集记为A.一方面,由于M 中的2m n -n 个元的子集{n+1,n+2,…,2m n}中,若存在满足要求的m+1个数:n+1≤a 1<a 2<…<a m+1≤2m n ,使得a i |a i+1 (1≤i ≤m),则a i+1≥2a i ,从而a m+1≥2a m ≥…≥2m a 1≥2m (n+1)>2m n ,矛盾,故不存在满足要求的m+1个数,因此所求的k ≥2m n -n+1.另一方面,若k=2m n -n+1时,可证明M 中的任何k 元子集T 中,此有m+1个数a 1,a 2,…a m+1满足a i |a i+1 (i ≤1≤m).反证:假设这样的m+1个数不存在,考虑2i+1为首项,2为公比的等比数列,它与集合M 的交的元素个数为|A 2i+1|+m ,由假设知,它至少有|A 2i+1|个元素不在T 中,再注意到当i ≠j 时,A 2i+1⋂A 2j+1=φ,可知M 中至少有个元素不在T 中,注意到所以 ,从而 |T|≤|M|-n ≤2m n -n ,这与|T|=2m n -n+1矛盾.故假设不成立.综上所述满足要求的最小正整数值k 为2m n -n+1. 注:这种先确定单边界限再证明最值是经常采用的.6.解:,作指标变换,令=k -1,则,因此,,=,=.nk k 1f k!(n k)!n!=⋅-≤∑n k ⎛⎫ ⎪⎝⎭n k 2⎡⎤=⎢⎥⎣⎦n 2⎡⎤⎢⎥⎣⎦n 1i 2-⎛⎫≤⎪⎝⎭2i n-11i 2|A +1|≤≤∑2i 1n 11i 2A A +-≤≤=2i n 11i 2|M \S |A +1|A |n -≤≤≥==nn n22k 1k 1k 1n n 1n 1n k k n k k k 1k 1k ===--⎛⎫⎛⎫⎛⎫=⋅= ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭∑∑∑l 11-→n nl k ()()()11101111)1(--=-=---=∑∑∑+==n ln l n l n ln k n k l k k ()()∑∑-=--=+1111n l n ln lnk k l ()1112--=+∑n n lnk l再次用,所以,=,=.作指标变换,令-1=S ,则,所以=.所以. 注:用利基本的组合恒等式及指标变换,是证明组合恒等式的重要方法之一.7.证明:因为的母函数分别为 (1+x)n 和(1+x)m而是这两个母函数(1+x)m (1+x)n =(1+x)m+n 中x q 项的系数,又由于(1+x)m+n 中x q 的系数为,因此命题成立. 注:构造母函数法,是证明组合问题重要方法之一,但如何找到母函数,是需要长时间的体验的.8.证明:[引理]:平面上n(n ≥3)个点所组成的点集S 中,或者存一点至多能引出一条直径,或者任一点至多能引出两条直径.[引理的证明]:若每一点都至少能引出两条直径,又有一点A 能引出三条直径AB 、AC 、AD ,则不妨设AD 在AB 与AC 之间,且必须∠BAC ≤60o ,因此⊙A(d)、⊙B(d)、⊙C(d)的公共部分覆盖了整个点集S ,显然与D 能引出两条直径,矛盾!引理得证(如图).下用归纳法证明原体:显然,当n=3时,命题成立, 假设命题对k 个点成立,则当n=k+1时,n n 1n k k 1k -⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭()()∑∑-=------=+⋅-⋅=+1121111212n l n n l n n ln l ln l l()111212)1(--=--+-∑n n l n l n ()111212)1(--=--+-∑n n l n l n l 2011--→n n s l ()111212)1(--=--+-∑n n l n l n ()12022)1(--=-+-∑n n s n s n n 2n 1(n 1)22--=-+n2n 2n 1n 2k 1n k n(n 1)2n 2n(n 1)2k ---=⎛⎫=-+⋅=+ ⎪⎝⎭∑n m ,k k ⎧⎫⎧⎫⎛⎫⎛⎫⎨⎬⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭⎩⎭qk 0n m k q k =⎛⎫⎛⎫ ⎪⎪-⎝⎭⎝⎭∑m n q +⎛⎫⎪⎝⎭A · C·B·D如有一点A 至多能引出一条直径,去掉A 点后,至多还有k 条直径,故S 最多有k+1条直径,否则任一点至多能 引出两条直径,故S 最多有条直径,从而命题成立. 注:组合几何在研究点集的组合性质时,对一般的图形也可定义直径、半径等.本问题还可推广至三维空间.9.证明:必要性: 构造母函数,.所以 ,所以 ,即. 因为 ,所以.所以 存在,使得 , 所以 ,所以 ,所以 .令x=1,则,所以,,即n 为2的幂次.充分性:直接构造如下中取个,其中 ,中取个 ,其中,则这两个集合满足要求.注:运用母函数处理集合问题,是常见的方法,尤其注意这种集合中出现在指数上而不是系数上的母函数方法.2(k 1)k 12+=+n a a a x x xx f +++= 21)(n b b b x x x x g +++= 21)(∑≤<≤+=-nj i a a ji xx f x f 1222)()(∑≤<≤+=-nj i b b ji xx g x g 1222)()()()()()(2222x g x g x f x f -=-)()()()(2222x g x f x g x f -=-0)1()1(=-g f )()(1x g x f x --*∈N h 0)(),()()()1(≠-=-x P x g x f x P x h)()1()()(2222x P x x f x f h-=-)()1()()1)](()([22x P x x P x x g x f hh-=-+)()()1()()(2x P x P x x g x f h +=+h n 22=12-=h n },,,{1n a a a a ()12+k l l 2]21[,,1,0+=k l },,,{21n b b b ()112++k l 12+l ]2[,,1,0kl =。