2016年贵州省高考数学模拟试卷(文科)含答案解析
高中高考数学3月模拟试卷 文(含解析)-人教版高三全册数学试题

2015年某某省黄冈市浠水县实验高中高考数学模拟试卷(文科)(3月)一、选择题015•浠水县校级模拟)已知集合A={x|x2=1},B={x|ax=1},若B⊆A,则a的取值组成的集合为()A.ΦB. {0} C. {﹣1,0,1} D. {﹣1,1}015•浠水县校级模拟)已知复数z与(z+2)2﹣8i是纯虚数,则z=()A.﹣2i B. 2i C.﹣i或i D. 2i或﹣2i015•浠水县校级模拟)a>1是函数y=log a(ax)(a>0,a≠1)在(0,+∞)上单调递增的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件015•某某模拟)已知变量x,y满足条件,则目标函数z=2x+y()A.有最小值3,最大值9 B.有最小值9,无最大值C.有最小值8,无最大值D.有最小值3,最大值8015•浠水县校级模拟)已知=﹣<α<0,则cosα=()A.B.C.D.015•浠水县校级模拟)已知=,与不共线,任意点M关于点A的对称点S,点S关于点B的对称点为N,则=()A.B.C.D.015•浠水县校级模拟)曲线y=在处的切线斜率为()A.B.﹣C.D.﹣008•某某)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为()A.B.C.D.015•浠水县校级模拟)过抛物线y2=2px的焦点F作直线交抛物线于A、B两点,再过A、B 分别作抛物线的切线l1,l2,设l1与l2的交点为P(x0,y0),则x0的值()A. 0 B.﹣p C.﹣D.不确定1015•浠水县校级模拟)已知a∈R,若f(x)=﹣|x﹣2a|有三个或四个零点,则g(x)=ax2+4x+1的零点个数为()A. 2 B. 1或2 C. 0或2 D. 0或1二、填空题1015•浠水县校级模拟)已知一个样本容量为100的样本数据的频率分布直方图如图所示,那么样本数据落在[40,60)内的样本的频数为;估计总体的众数为.1015•浠水县校级模拟)数据a1,a2,…,a n的方差为S2,平均数为μ,则数据ka1+b,ka2+b,…,ka n+b(k,b≠0)的标准差为;平均数为.1015•某某模拟)执行如下程序框图,输出的i=.1015•浠水县校级模拟)观察等式:=,=1,=,照此规律,对于一般的角α,β,有等式.1015•浠水县校级模拟)一条光线从A(﹣2,3)射出,经过x轴反射后与圆C:(x﹣3)2+(y﹣2)2=1相切,则反射后光线所在直线方程的斜率为.1015•某某模拟)某几何体是直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为.1015•浠水县校级模拟)设矩形ABCD(AB>AD)的周长为24,把△ABC沿AC向ADC折叠,AB折过去后交DC于P,设AB=x,则△ADP的最大面积为;相应的x=.三、解答题1015•某某二模)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.(Ⅰ)求角C的大小;(Ⅱ)当cosA+cosB取得最大值时,试判断△ABC的形状.1015•浠水县校级模拟)已知数列{a n}中,a1=5,a2=2,a n=2a n﹣1+3a n﹣2(n≥3),设b n=a n+1+a n,=a n+1﹣3a n.(1)证明{b n},{}为等比数列;(2)求{a n}的通项公式.2015•某某二模)如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AD=2,AB=1,AC=.(Ⅰ)证明:MN∥平面PCD;(Ⅱ)求直线MN与平面PAD所成角的正切值.2015•某某模拟)已知函数f(x)=xlnx,(1)求函数f(x)的单调区间和最小值.(2)若函数F(x)=在[1,e]上的最小值为,求a的值.2015•某某模拟)已知点A,B的坐标分别为(﹣2,0),(2,0).直线AT,BT交于点T,且它们的斜率之积为常数﹣λ(λ>0,λ≠1),点T的轨迹以及A,B两点构成曲线C.(1)求曲线C的方程,并求其焦点坐标;(2)若0<λ<1,且曲线C上的点到其焦点的最小距离为1.设直线l:x=my+1交曲线C 于M,N,直线AM,BN交于点P.(ⅰ)当m=0时,求点P的坐标;(ⅱ)求证:当m变化时,P总在直线x=4上.2015年某某省黄冈市浠水县实验高中高考数学模拟试卷(文科)(3)参考答案与试题解析一、选择题015•浠水县校级模拟)已知集合A={x|x2=1},B={x|ax=1},若B⊆A,则a的取值组成的集合为()A.ΦB. {0} C. {﹣1,0,1} D. {﹣1,1}考点:集合的包含关系判断及应用.专题:集合.分析:先求出集合A={﹣1,1},讨论a:a=0,显然满足B⊆A;a≠0时,便有B={x|x=},从而由B⊆A便可求出a=1,或﹣1,最后即可得到a的取值组成的集合.解答:解:A={﹣1,1};①若a=0,则B=∅,满足B⊆A;②若a≠0,则B={x|x=};∵B⊆A;∴,或;∴a=﹣1,或1;综上得a的取值组成的集合为{﹣1,0,1}.故选C.点评:考查描述法表示集合,列举法表示集合,以及空集和其它集合的关系,子集的概念,不要漏了a=0的情况.015•浠水县校级模拟)已知复数z与(z+2)2﹣8i是纯虚数,则z=()A.﹣2i B. 2i C.﹣i或i D. 2i或﹣2i考点:复数的基本概念.专题:数系的扩充和复数.分析:由两个复数都是纯虚数,可设z=ai,(a∈R,a≠0),化简(z+2)2﹣8i,可求出z.解答:解:设z=ai,(a∈R,a≠0),则(z+2)2﹣8i=(ai+2)2﹣8i=4+4ai﹣a2﹣8i=(4﹣a2)+(4a﹣8)i,∵复数z与(z+2)2﹣8i是纯虚数,∴4﹣a2=0,4a﹣8≠0.解得:a=﹣2.∴z=﹣2i.故选:A.点评:本题考查了复数的分类以及复数的运算,考查了复数的基本概念,是基础题.015•浠水县校级模拟)a>1是函数y=log a(ax)(a>0,a≠1)在(0,+∞)上单调递增的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据对数函数以及复合函数的单调性求出a的X围,结合充分必要条件的定义判断即可.解答:解:若函数y=log a(ax)(a>0,a≠1)在(0,+∞)上单调递增,则f(x)=ax是增函数,y=log a[f(x)]是增函数,∴a>1,故a>1是函数y=log a(ax)(a>0,a≠1)在(0,+∞)上单调递增的充分必要条件,故选:A.点评:本题考查了充分必要条件,考查对数函数的性质,是一道基础题.015•某某模拟)已知变量x,y满足条件,则目标函数z=2x+y()A.有最小值3,最大值9 B.有最小值9,无最大值C.有最小值8,无最大值D.有最小值3,最大值8考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最值.解答:解:作出不等式对应的平面区域(阴影部分),由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最小,此时z最小.无最大值.由,解得,即A(2,4).此时z的最小值为z=2×2+4=8,故选:C点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.015•浠水县校级模拟)已知=﹣<α<0,则cosα=()A.B.C.D.考点:两角和与差的余弦函数.专题:三角函数的求值.分析:由已知式子化简可得sin(α+)=﹣,进而由同角三角函数基本关系可得cos (α+)=,代入cosα=cos(α+)+sin(α+)计算可得.解答:解:∵=﹣<α<0,∴sinα+cosα+sinα=﹣,∴sinα+cosα=﹣,∴sinα+cosα=﹣,∴sin(α+)=﹣,∴cos(α+)=,∴cosα=cos[(α+)﹣]=cos(α+)+sin(α+)=+=故选:B点评:本题考查两角和与差的三角函数公式,涉及同角三角函数的基本关系,属基础题.015•浠水县校级模拟)已知=,与不共线,任意点M关于点A的对称点S,点S关于点B的对称点为N,则=()A.B.C.D.考点:平行向量与共线向量.专题:平面向量及应用.分析:根据点的对称关系,结合向量中点公式进行化简即可得到结论.解答:解:∵M关于点A的对称点S,点S关于点B的对称点为N,∴,.即+=2=2,+=2=2,两式相减得﹣=2﹣2即=﹣=2﹣2=,故选:A.点评:本题考查了向量的运算和三角形法则,根据对称关系得到向量的中点公式是解决本题的关键.015•浠水县校级模拟)曲线y=在处的切线斜率为()A.B.﹣C.D.﹣考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:求出曲线方程的导函数,把切点的横坐标代入导函数求出的函数值即为切线方程的斜率.解答:解:由y=,得到y′=,把x=代入得:y′|x===﹣,则曲线在处的切线斜率为﹣.故选D.点评:此题考查学生会利用导数求曲线上过某点切线方程的斜率,是一道基础题.008•某某)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为()A.B.C.D.考点:等可能事件的概率.专题:计算题;压轴题.分析:本题是一个古典概型,解题时要看清试验发生时的总事件数和一天中任一时刻的四个数字之和为23事件数,前者可以根据生活经验推出,后者需要列举得到事件数.解答:解:一天显示的时间总共有24×60=1440种,和为23有09:59,19:58,18:59,19:49总共有4种,故所求概率为P==.故选C点评:本题考查的是古典概型,如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数是解题的关键.015•浠水县校级模拟)过抛物线y2=2px的焦点F作直线交抛物线于A、B两点,再过A、B 分别作抛物线的切线l1,l2,设l1与l2的交点为P(x0,y0),则x0的值()A. 0 B.﹣p C.﹣D.不确定考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由抛物线方程求出抛物线的焦点坐标,由斜截式写出过焦点的直线方程,和抛物线方程联立求出A,B两点横坐标的积,再利用导数写出过A,B两点的切线方程,然后整体运算可求得两切线的交点的横坐标为定值﹣.解答:解:由抛物线y2=2px得其焦点坐标为F(,0).设A(y12,y1),B(y22,y2),直线l:x=my+,联立,得:y2﹣2pmy﹣p2=0.∴y1y2=﹣p2…①.又抛物线方程为:y2=2px,即x=y2,求导得x′=,∴抛物线过点A切线方程为x﹣y12=(y﹣y1)…②抛物线过点B的切线方程为x﹣y22=(y﹣y2)…③由①②③得:x=﹣.∴l1与l2的交点P的横坐标x0=﹣,故选:C点评:本题考查了轨迹方程,训练了利用导数研究曲线上某点处的切线方程,考查了整体运算思想方法,是中档题1015•浠水县校级模拟)已知a∈R,若f(x)=﹣|x﹣2a|有三个或四个零点,则g(x)=ax2+4x+1的零点个数为()A. 2 B. 1或2 C. 0或2 D. 0或1考点:函数零点的判定定理.专题:函数的性质及应用.分析:函数f(x)=x2﹣|x﹣2a|有三个或者四个零点可化为函数m(x)=x2与函数h(x)=|x﹣2a|有三个或者四个不同的交点,作图象确定a的取值X围,从而确定函数g(x)=ax2+4x+1的零点个数.解答:解:∵函数f(x)=x2﹣|x﹣2a|有三个或者四个零点,∴函数m(x)=x2与函数h(x)=|x﹣2a|有三个或者四个不同的交点,作函数m(x)=x2与函数h(x)=|x﹣2a|的图象如下,,结合图象可知,﹣0.5≤2a≤0.5,故﹣≤a≤,当a=0时,函数g(x)=ax2+4x+1有一个零点,当a≠0时,△=16﹣4a>0,故函数g(x)=ax2+4x+1有两个零点,故g(x)=ax2+4x+1的零点个数为1或2,故选:B点评:本题考查了数形结合的思想应用及函数的零点与方程的根的关系应用,属于基础题.二、填空题1015•浠水县校级模拟)已知一个样本容量为100的样本数据的频率分布直方图如图所示,那么样本数据落在[40,60)内的样本的频数为15 ;估计总体的众数为75 .考点:频率分布直方图.专题:概率与统计.分析:频率分布直方图中,频率=矩形的高×组距,先求出[40,60)内的样本频率,再乘以样本容量就可求出频数.再由众数为频率最高一组的组中得到众数.解答:解:[40,60)内的样本频数:100×(0.005+0.01)×10=15;总体的众数为频率最高一组的组中,即[70,80)的组中75,故答案为:15,75点评:本题考查频数,频率及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和运用意识.1015•浠水县校级模拟)数据a1,a2,…,a n的方差为S2,平均数为μ,则数据ka1+b,ka2+b,…,ka n+b(k,b≠0)的标准差为kS ;平均数为kμ+b.考点:极差、方差与标准差.专题:计算题;概率与统计.分析:根据数据的平均数与方差、标准差的公式,进行计算即可.解答:解:根据题意,得;=(a1+a2+…+a n)=μ,∴a1+a2+…+a n=nμ,∴ka1+b,ka2+b,ka3+b,…,ka n+b的平均数为=[(ka1+b)+(ka2+b)+(ka3+b)+…+(ka n+b)]=k•[a1+a2+…+a n]+b=kμ+b;∵数据a1,a2,a3,…,a n的标准差为S2,∴S2=[(a1﹣μ)2+(a2﹣μ)2+…+(a n﹣μ)2],∴数据ka1+b,ka2+b,ka3+b,…,ka n+b方差为S′2=[(ka1+b﹣kμ﹣b)2+(ka2+b﹣kμ﹣b)2+…+(ka n+b﹣kμ﹣b)2]=k2•[(a1﹣μ)2+(a2﹣μ)2+…+(a n﹣μ)2]=k2•S2,∴数据ka1+b,ka2+b,…,ka n+b(k,b≠0)的标准差为kS.故答案为:kS,kμ+b.点评:本题考查了数据的平均数与方差、标准差的计算问题,是基础题目.1015•某某模拟)执行如下程序框图,输出的i= 6 .考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的s,i的值,当s=57时,不满足条件s <30,退出循环,输出i的值为6.解答:解:模拟执行程序框图,可得s=0,i=1,s=1,i=2满足条件s<30,s=4,i=3满足条件s<30,s=11,i=4满足条件s<30,s=26,i=5满足条件s<30,s=57,i=6不满足条件s<30,退出循环,输出i的值为6.故答案为:6.点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的s,i的值是解题的关键,属于基础题.1015•浠水县校级模拟)观察等式:=,=1,=,照此规律,对于一般的角α,β,有等式..考点:归纳推理.专题:推理和证明.分析:观察等式:==tan60°=tan(),=1=tan45°=tan(),==tan30°=tan (),据此,判断出对于一般的角α,β,有什么规律即可.解答:解:∵==tan60°=tan(),=1=tan45°=tan(),==tan30°=tan(),…∴对于一般的角α,β,有等式:.故答案为:.点评:本题主要考查了归纳推理的灵活运用,解答此题的关键是仔细观察已给等式,并从中找出规律.1015•浠水县校级模拟)一条光线从A(﹣2,3)射出,经过x轴反射后与圆C:(x﹣3)2+(y﹣2)2=1相切,则反射后光线所在直线方程的斜率为或.考点:与直线关于点、直线对称的直线方程.专题:直线与圆.分析:由题意可得,A(﹣2,3)关于x轴的对称点A′(﹣2,﹣3)在反射后光线所在直线上,设反射后光线所在直线的斜率为k,用点斜式求得反射后光线所在直线方程.再根据圆心(3,2)到反射光线所在直线的距离等于半径求得k的值,可得结论.解答:解:由题意可得,A(﹣2,3)关于x轴的对称点A′(﹣2,﹣3)在反射后光线所在直线上,设反射后光线所在直线的斜率为k,则反射后光线所在直线方程为y+3=k(x+2),即 kx﹣y+2k ﹣3=0.再根据圆心(3,2)到反射光线所在直线的距离等于半径1,即=1,求得k=,或k=,故答案为:或.点评:本题主要考查反射定理,直线和圆相切的性质,点到直线的距离公式的应用,属于基础题.1015•某某模拟)某几何体是直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据三视图的性质得到俯视图中椭圆的短轴长和长周长,再根据椭圆的性质a2﹣b2=c2,和离心率公式,计算即可.解答:解:设正视图正方形的边长为m,根据正视图与俯视图的长相等,得到俯视图中椭圆的短轴长2b=m,俯视图的宽就是圆锥底面圆的直径m,得到俯视图中椭圆的长轴长2a=m,则椭圆的焦距=m,根据离心率公式得,e==故答案为:.点评:本题主要考查了椭圆的离心率公式,以及三视图的问题,属于基础题.1015•浠水县校级模拟)设矩形ABCD(AB>AD)的周长为24,把△ABC沿AC向ADC折叠,AB折过去后交DC于P,设AB=x,则△ADP的最大面积为108﹣72;相应的x= 6.考点:解三角形.专题:解三角形.分析:设AB=x,则AD=12﹣x,利用勾股定理得打PD,再根据三角形的面积公式个基本不等式的性质,即可求出解答:解∵设AB=x,则AD=12﹣x,又DP=PB′,AP=AB′﹣PB′=AB﹣DP,即AP=x﹣DP,∴(12﹣x)2+PD2=(x﹣PD)2,得PD=12﹣,∵AB>AD,∴6<x<12,∴△ADP的面积S=AD•DP=(12﹣x)(12﹣)=108﹣6(x+)≤108﹣6•2=108﹣72,当且仅当x=即x=6时取等号,∴△ADP面积的最大值为108﹣72,此时x=6;故答案为:、.点评:本题主要考查了三角形面积公式和基本不等式的性质的运用.三、解答题1015•某某二模)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.(Ⅰ)求角C的大小;(Ⅱ)当cosA+cosB取得最大值时,试判断△ABC的形状.考点:正弦定理;三角函数中的恒等变换应用.专题:解三角形.分析:(Ⅰ)由正弦定理化简已知等式可得,结合角C的X围即可得解.(Ⅱ)由(1)知,则化简可得,结合A的X围可求取得最大值1时A,B,C的值,从而得解.解答:解:(Ⅰ)由结合正弦定理变形得:(3分)从而,,…(6分)∵0<C<π,∴;…(7分)(Ⅱ)由(1)知…(8分)则====(11分)∵,∴…(12分)当时,取得最大值1,…(13分)此时,,…(14分)故此时△ABC为等腰三角形.…(15分)点评:本题主要考查了正弦定理,三角函数中的恒等变换应用,解题时注意分析角的X 围,属于基本知识的考查.1015•浠水县校级模拟)已知数列{a n}中,a1=5,a2=2,a n=2a n﹣1+3a n﹣2(n≥3),设b n=a n+1+a n,=a n+1﹣3a n.(1)证明{b n},{}为等比数列;(2)求{a n}的通项公式.考点:数列递推式;等比关系的确定.专题:等差数列与等比数列.分析:(1)通过对a n+2=2a n+1+3a n(n≥1)变形可知a n+2+a n+1=3(a n+1+a n),进而b n+1=3b n;同理通过a n+2=2a n+1+3a n可知a n+2﹣3a n+1=﹣(a n+1﹣3a n),进而+1=﹣;(2)通过b n=a n+1+a n与=a n+1﹣3a n作差可知a n=(b n﹣),进而计算可得结论.解答:(1)证明:∵a n=2a n﹣1+3a n﹣2(n≥3),∴a n+2=2a n+1+3a n(n≥1),∴a n+2+a n+1=3(a n+1+a n),又∵b n=a n+1+a n,∴b n+1=3b n,又∵b1=a2+a1=7,∴数列{b n}是以7为首项、3为比的等比数列;∵a n+2=2a n+1+3a n,∴a n+2﹣3a n+1=﹣(a n+1﹣3a n),又∵=a n+1﹣3a n,∴+1=﹣;又∵C1=a2﹣3a1=﹣13,∴{}是以﹣13为首项、﹣1为公比的等比数列;(2)解:∵b n=a n+1+a n,=a n+1﹣3a n,∴a n=(b n﹣),由(1)知…①…②①﹣②得.点评:本题考查数列的递推式,考查等比数列的判定,考查数列的通项,注意解题方法的积累,属于中档题.2015•某某二模)如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AD=2,AB=1,AC=.(Ⅰ)证明:MN∥平面PCD;(Ⅱ)求直线MN与平面PAD所成角的正切值.考点:直线与平面所成的角;直线与平面平行的判定.专题:证明题;空间位置关系与距离.分析:(Ⅰ)取PD中点E,连结NE,CE,可证MNEC为平行四边形,由MN∥CE即可判定MN∥平面PCD.(其它证法酌情给分)(Ⅱ)方法一:可证平面PAD⊥平面ABCD,过M作MF⊥AD,则MF⊥平面PAD,连结NF.则∠MNF为直线MN与平面PAD所成的角,解三角形可得解;方法二:PA⊥AB,PA⊥AC,又可证AB⊥AC,分别以AB,AC,AP为x轴,y轴,z轴,建立空间直角坐标系A﹣xyz,设平面PAD的一个法向量为,则设MN与平面PAD 所成的角为θ,则由夹角公式即可求得MN与平面PAD所成角的正切值.解答:解:(Ⅰ)证明:取PD中点E,连结NE,CE.∵N为PA中点,∴NE,又M为BC中点,底面ABCD为平行四边形,∴MC.∴NE MC,即MNEC为平行四边形,…(4分)∴MN∥CE∵EC⊂平面PCD,且MN⊄平面PCD,∴MN∥平面PCD.…(7分)(其它证法酌情给分)(Ⅱ)方法一:∵PA⊥平面ABCD,PA⊂平面ABCD,∴平面PAD⊥平面ABCD,过M作MF⊥AD,则MF⊥平面PAD,连结NF.则∠MNF为直线MN与平面PAD所成的角,…(10分)由AB=1,,AD=2,得AC⊥CD,由AC•CD=AD•MF,得,在Rt△AMN中,AM=AN=1,得.在Rt△MNF中,,∴,直线MN与平面PAD所成角的正切值为.…(15分)方法二:∵PA⊥平面ABCD,PA⊥AB,PA⊥AC,又∵AB=1,,BC=AD=2,∴AB2+AC2=BC2,AB⊥AC.…(9分)如图,分别以AB,AC,AP为x轴,y轴,z轴,建立空间直角坐标系A﹣xyz,则,N(0,0,1),P(0,0,2),,∴,,,…(11分)设平面PAD的一个法向量为,则由,令y=1得,…(13分)设MN与平面PAD所成的角为θ,则,∴MN与平面PAD所成角的正切值为.…(15分)点评:本题主要考查了线与平面平行的判定,求直线MN与平面PAD所成角的正切值,关键在于熟练掌握平面垂直的性质与直线与平面平行的判定定理及其应用,考查了空间想象能力和转化思想,属于中档题.2015•某某模拟)已知函数f(x)=xlnx,(1)求函数f(x)的单调区间和最小值.(2)若函数F(x)=在[1,e]上的最小值为,求a的值.考点:利用导数研究函数的单调性;函数单调性的性质.专题:导数的综合应用.分析:(1)由已知得f′(x)=lnx+1(x>0),由此利用导数性质能求出函数f(x)的单调区间和最小值.(2)F′(x)=,由此根据实数a的取值X围进行分类讨论,结合导数性质能求出a的值.解答:解(本小题满分12分)(1)∵f′(x)=lnx+1(x>0),令f′(x)≥0,即lnx≥﹣1=lne﹣1.∴x≥e﹣1=,∴x∈[,+∞).同理,令f′(x)≤0,可得x∈(0,].∴f(x)单调递增区间为[,+∞),单调递减区间为(0,],由此可知y=f(x)min=f()=﹣.(2)F′(x)=,当a≥0时,F′(x)>0,F(x)在[1,e]上单调递增,F(x)min=F(1)=﹣a=,∴a=﹣∉[0,+∞),舍去.当a<0时,F(x)在(0,﹣a)上单调递减,在(﹣a,+∞)上单调递增,若a∈(﹣1,0),F(x)在[1,e]上单调递增,F(x)min=F(1)=﹣a=,∴a=﹣∉(﹣1,0),舍去;若a∈[﹣e,﹣1],F(x)在[1,﹣a]上单调递减,在[﹣a,e]上单调递增,∴F(x)min=F(﹣a)=ln(﹣a)+1=,a=﹣∈[﹣e,﹣1];若a∈(﹣∞,﹣e),F(x)在[1,e]上单调递减,F(x)min=F(e)=1﹣,∴a=﹣∉(﹣∞,﹣e),舍去.综上所述:a=﹣.点评:本题考查函数的单调区间的最小值的求法,考查实数值的求法,解题时要认真审题,注意导数性质和分类讨论思想的合理运用.2015•某某模拟)已知点A,B的坐标分别为(﹣2,0),(2,0).直线AT,BT交于点T,且它们的斜率之积为常数﹣λ(λ>0,λ≠1),点T的轨迹以及A,B两点构成曲线C.(1)求曲线C的方程,并求其焦点坐标;(2)若0<λ<1,且曲线C上的点到其焦点的最小距离为1.设直线l:x=my+1交曲线C 于M,N,直线AM,BN交于点P.(ⅰ)当m=0时,求点P的坐标;(ⅱ)求证:当m变化时,P总在直线x=4上.考点:直线与圆锥曲线的综合问题.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)设T(x,y),由直线的斜率公式,化简整理讨论即可得到曲线方程;(2)由于0<λ<1,曲线C是焦点在x轴上的椭圆,求得焦点和a﹣c为最小值,解得λ,进而得到椭圆方程,(ⅰ)当m=0时,由x=1代入椭圆方程,即可得到P的坐标;(ⅱ)设M(x1,y1),N(x2,y2),联立及x=my+1,运用韦达定理和恒成立思想,即可得到定直线x=4.解答:解:(1)设T(x,y),则,化简得,又A,B的坐标(﹣2,0),(2,0)也符合上式,故曲线C:;当0<λ<1时,曲线C是焦点在x轴上的椭圆,焦点为,当λ>1时,曲线C是焦点在y轴上的椭圆,焦点为;(2)由于0<λ<1,曲线C是焦点在x轴上的椭圆,其焦点为,椭圆的长轴端点到同侧焦点的距离,是椭圆上的点到焦点的最小距离,故,∴,曲线C的方程为;(ⅰ)联立解得或,当时,,解得P(4,3),当时,由对称性知,P(4,﹣3),所以点P坐标为(4,3)或(4,﹣3);(ⅱ)以下证明当m变化时,点P总在直线x=4上.设M(x1,y1),N(x2,y2),联立及x=my+1,消去x得:(3m2+4)y2+6my﹣9=0,,直线,消去y得,以下只需证明(※)对于m∈R恒成立.而所以(※)式恒成立,即点P横坐标总是4,点P总在直线x=4上,故存在直线l':x=4,使P总在直线l'上.点评:本题考查曲线方程的求法,主要考查椭圆的性质和方程的运用.联立直线方程运用韦达定理以及恒成立思想的运用,属于中档题.。
2016年全国统一高考数学试卷文科全国一附带答案解析

2016年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3B.﹣2C.2D.33.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2D.35.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.10.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a nb n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年全国统一高考数学试卷(文科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}【考点】1E:交集及其运算.【专题】11:计算题;29:规律型;5J:集合.【分析】直接利用交集的运算法则化简求解即可.【解答】解:集合A={1,3,5,7},B={x|2≤x≤5},则A∩B={3,5}.故选:B.【点评】本题考查交集的求法,考查计算能力.2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3B.﹣2C.2D.3【考点】A5:复数的运算.【专题】11:计算题;29:规律型;35:转化思想;5N:数系的扩充和复数.【分析】利用复数的乘法运算法则,通过复数相等的充要条件求解即可.【解答】解:(1+2i)(a+i)=a﹣2+(2a+1)i的实部与虚部相等,可得:a﹣2=2a+1,解得a=﹣3.故选:A.【点评】本题考查复数的相等的充要条件的应用,复数的乘法的运算法则,考查计算能力.3.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.【考点】CB:古典概型及其概率计算公式.【专题】12:应用题;34:方程思想;49:综合法;5I:概率与统计.【分析】确定基本事件的个数,利用古典概型的概率公式,可得结论.【解答】解:从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,有=6种方法,红色和紫色的花在同一花坛,有2种方法,红色和紫色的花不在同一花坛,有4种方法,所以所求的概率为=.另解:由列举法可得,红、黄、白、紫记为1,2,3,4,即有(12,34),(13,24),(14,23),(23,14),(24,13),(34,12),则P==.故选:C.【点评】本题考查等可能事件的概率计算与分步计数原理的应用,考查学生的计算能力,比较基础.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2D.3【考点】HR:余弦定理.【专题】11:计算题;35:转化思想;4R:转化法;58:解三角形.【分析】由余弦定理可得cosA=,利用已知整理可得3b2﹣8b﹣3=0,从而解得b的值.【解答】解:∵a=,c=2,cosA=,∴由余弦定理可得:cosA===,整理可得:3b2﹣8b﹣3=0,∴解得:b=3或﹣(舍去).故选:D.【点评】本题主要考查了余弦定理,一元二次方程的解法在解三角形中的应用,考查了计算能力和转化思想,属于基础题.5.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题;29:规律型;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】设出椭圆的方程,求出直线的方程,利用已知条件列出方程,即可求解椭圆的离心率.【解答】解:设椭圆的方程为:,直线l经过椭圆的一个顶点和一个焦点,则直线方程为:,椭圆中心到l的距离为其短轴长的,可得:,4=b2(),∴,=3,∴e==.故选:B.【点评】本题考查椭圆的简单性质的应用,考查点到直线的距离公式,椭圆的离心率的求法,考查计算能力.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】33:函数思想;48:分析法;57:三角函数的图像与性质.【分析】求得函数y的最小正周期,即有所对的函数式为y=2sin[2(x﹣)+],化简整理即可得到所求函数式.【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.【点评】本题考查三角函数的图象平移变换,注意相位变换针对自变量x而言,考查运算能力,属于基础题和易错题.7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【考点】L!:由三视图求面积、体积.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b【考点】4M:对数值大小的比较.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】根据指数函数,对数函数,幂函数的单调性结合换底公式,逐一分析四个结论的真假,可得答案.【解答】解:∵a>b>0,0<c<1,∴log c a<log c b,故B正确;∴当a>b>1时,0>log a c>log b c,故A错误;a c>b c,故C错误;c a<c b,故D错误;故选:B.【点评】本题考查的知识点是指数函数,对数函数,幂函数的单调性,难度中档.9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.10.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5G:空间角.【分析】画出图形,判断出m、n所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]【考点】6B:利用导数研究函数的单调性.【专题】35:转化思想;4C:分类法;53:导数的综合应用.【分析】求出f(x)的导数,由题意可得f′(x)≥0恒成立,设t=cosx(﹣1≤t ≤1),即有5﹣4t2+3at≥0,对t讨论,分t=0,0<t≤1,﹣1≤t<0,分离参数,运用函数的单调性可得最值,解不等式即可得到所求范围.【解答】解:函数f(x)=x﹣sin2x+asinx的导数为f′(x)=1﹣cos2x+acosx,由题意可得f′(x)≥0恒成立,即为1﹣cos2x+acosx≥0,即有﹣cos2x+acosx≥0,设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,当t=0时,不等式显然成立;当0<t≤1时,3a≥4t﹣,由4t﹣在(0,1]递增,可得t=1时,取得最大值﹣1,可得3a≥﹣1,即a≥﹣;当﹣1≤t<0时,3a≤4t﹣,由4t﹣在[﹣1,0)递增,可得t=﹣1时,取得最小值1,可得3a≤1,即a≤.综上可得a的范围是[﹣,].另解:设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,由题意可得5﹣4+3a≥0,且5﹣4﹣3a≥0,解得a的范围是[﹣,].故选:C.【点评】本题考查导数的运用:求单调性,考查不等式恒成立问题的解法,注意运用参数分离和换元法,考查函数的单调性的运用,属于中档题.二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.【考点】9T:数量积判断两个平面向量的垂直关系.【专题】11:计算题;41:向量法;49:综合法;5A:平面向量及应用.【分析】根据向量垂直的充要条件便可得出,进行向量数量积的坐标运算即可得出关于x的方程,解方程便可得出x的值.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.【点评】考查向量垂直的充要条件,以及向量数量积的坐标运算,清楚向量坐标的概念.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.【考点】GP:两角和与差的三角函数.【专题】11:计算题;35:转化思想;49:综合法;56:三角函数的求值.【分析】由θ得范围求得θ+的范围,结合已知求得cos(θ+),再由诱导公式求得sin()及cos(),进一步由诱导公式及同角三角函数基本关系式求得tan(θ﹣)的值.【解答】解:∵θ是第四象限角,∴,则,又sin(θ+)=,∴cos(θ+)=.∴cos()=sin(θ+)=,sin()=cos(θ+)=.则tan(θ﹣)=﹣tan()=﹣=.故答案为:﹣.【点评】本题考查两角和与差的正切,考查诱导公式及同角三角函数基本关系式的应用,是基础题.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为4π.【考点】J8:直线与圆相交的性质.【专题】11:计算题;35:转化思想;5B:直线与圆.【分析】圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,利用圆的弦长公式,求出a值,进而求出圆半径,可得圆的面积.【解答】解:圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,∵直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,且|AB|=2,∴圆心(0,a)到直线y=x+2a的距离d=,即+3=a2+2,解得:a2=2,故圆的半径r=2.故圆的面积S=4π,故答案为:4π【点评】本题考查的知识点是直线与圆相交的性质,点到直线的距离公式,难度中档.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【考点】7C:简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a nb n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.【考点】8H:数列递推式.【专题】11:计算题;4O:定义法;54:等差数列与等比数列.【分析】(Ⅰ)令n=1,可得a1=2,结合{a n}是公差为3的等差数列,可得{a n}的通项公式;(Ⅱ)由(1)可得:数列{b n}是以1为首项,以为公比的等比数列,进而可得:{b n}的前n项和.【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,+b n+1=nb n.(Ⅱ)由(I)知:(3n﹣1)b n+1即3b n=b n.+1即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n==(1﹣3﹣n)=﹣.【点评】本题考查的知识点是数列的递推式,数列的通项公式,数列的前n项和公式,难度中档.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.【考点】LF:棱柱、棱锥、棱台的体积;MK:点、线、面间的距离计算.【专题】11:计算题;35:转化思想;5F:空间位置关系与距离.【分析】(Ⅰ)根据题意分析可得PD⊥平面ABC,进而可得PD⊥AB,同理可得DE⊥AB,结合两者分析可得AB⊥平面PDE,进而分析可得AB⊥PG,又由PA=PB,由等腰三角形的性质可得证明;(Ⅱ)由线面垂直的判定方法可得EF⊥平面PAC,可得F为E在平面PAC内的正投影.由棱锥的体积公式计算可得答案.【解答】解:(Ⅰ)证明:∵P﹣ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;(Ⅱ)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC 内的正投影.∵正三棱锥P﹣ABC的侧面是直角三角形,∴PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(Ⅰ)知,G是AB的中点,所以D在CG上,故CD=CG.由题设可得PC⊥平面PAB,DE⊥平面PAB,所以DE∥PC,因此PE=PG,DE=PC.由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PG=3,PE=2.在等腰直角三角形EFP中,可得EF=PF=2.所以四面体PDEF的体积V=×DE×S=×2××2×2=.△PEF【点评】本题考查几何体的体积计算以及线面垂直的性质、应用,解题的关键是正确分析几何体的各种位置、距离关系.19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【考点】3H:函数的最值及其几何意义;5C:根据实际问题选择函数类型;B8:频率分布直方图.【专题】11:计算题;51:函数的性质及应用;5I:概率与统计.【分析】(Ⅰ)若n=19,结合题意,可得y与x的分段函数解析式;(Ⅱ)由柱状图分别求出各组的频率,结合“需更换的易损零件数不大于n”的频率不小于0.5,可得n的最小值;(Ⅲ)分别求出每台都购买19个易损零件,或每台都购买20个易损零件时的平均费用,比较后,可得答案.【解答】解:(Ⅰ)当n=19时,y==(Ⅱ)由柱状图知,更换的易损零件数为16个频率为0.06,更换的易损零件数为17个频率为0.16,更换的易损零件数为18个频率为0.24,更换的易损零件数为19个频率为0.24又∵更换易损零件不大于n的频率为不小于0.5.则n≥19∴n的最小值为19件;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,所须费用平均数为:(70×19×200+4300×20+4800×10)=4000(元)假设这100台机器在购机的同时每台都购买20个易损零件,所须费用平均数为(90×4000+10×4500)=4050(元)∵4000<4050∴购买1台机器的同时应购买19台易损零件.【点评】本题考查的知识点是分段函数的应用,频率分布条形图,方案选择,难度中档.20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.【考点】K8:抛物线的性质.【专题】15:综合题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求出P,N,H的坐标,利用=,求;(Ⅱ)直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,利用判别式可得结论.【解答】解:(Ⅰ)将直线l与抛物线方程联立,解得P(,t),∵M关于点P的对称点为N,∴=,=t,∴N(,t),∴ON的方程为y=x,与抛物线方程联立,解得H(,2t)∴==2;(Ⅱ)由(Ⅰ)知k MH=,∴直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,∴△=16t2﹣4×4t2=0,∴直线MH与C除点H外没有其它公共点.【点评】本题考查直线与抛物线的位置关系,考查学生的计算能力,正确联立方程是关键.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.【考点】52:函数零点的判定定理;6B:利用导数研究函数的单调性.【专题】35:转化思想;48:分析法;51:函数的性质及应用;53:导数的综合应用.【分析】(Ⅰ)求出f(x)的导数,讨论当a≥0时,a<﹣时,a=﹣时,﹣<a<0,由导数大于0,可得增区间;由导数小于0,可得减区间;(Ⅱ)由(Ⅰ)的单调区间,对a讨论,结合单调性和函数值的变化特点,即可得到所求范围.【解答】解:(Ⅰ)由f(x)=(x﹣2)e x+a(x﹣1)2,可得f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①当a≥0时,由f′(x)>0,可得x>1;由f′(x)<0,可得x<1,即有f(x)在(﹣∞,1)递减;在(1,+∞)递增(如右上图);②当a<0时,(如右下图)若a=﹣,则f′(x)≥0恒成立,即有f(x)在R上递增;若a<﹣时,由f′(x)>0,可得x<1或x>ln(﹣2a);由f′(x)<0,可得1<x<ln(﹣2a).即有f(x)在(﹣∞,1),(ln(﹣2a),+∞)递增;在(1,ln(﹣2a))递减;若﹣<a<0,由f′(x)>0,可得x<ln(﹣2a)或x>1;由f′(x)<0,可得ln(﹣2a)<x<1.即有f(x)在(﹣∞,ln(﹣2a)),(1,+∞)递增;在(ln(﹣2a),1)递减;(Ⅱ)①由(Ⅰ)可得当a>0时,f(x)在(﹣∞,1)递减;在(1,+∞)递增,且f(1)=﹣e<0,x→+∞,f(x)→+∞;当x→﹣∞时f(x)>0或找到一个x<1使得f(x)>0对于a>0恒成立,f(x)有两个零点;②当a=0时,f(x)=(x﹣2)e x,所以f(x)只有一个零点x=2;③当a<0时,若a<﹣时,f(x)在(1,ln(﹣2a))递减,在(﹣∞,1),(ln(﹣2a),+∞)递增,又当x≤1时,f(x)<0,所以f(x)不存在两个零点;当a≥﹣时,在(﹣∞,ln(﹣2a))单调增,在(1,+∞)单调增,在(1n(﹣2a),1)单调减,只有f(ln(﹣2a))等于0才有两个零点,而当x≤1时,f(x)<0,所以只有一个零点不符题意.综上可得,f(x)有两个零点时,a的取值范围为(0,+∞).【点评】本题考查导数的运用:求单调区间,考查函数零点的判断,注意运用分类讨论的思想方法和函数方程的转化思想,考查化简整理的运算能力,属于难题.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.【专题】14:证明题;35:转化思想;49:综合法;5M:推理和证明.【分析】(Ⅰ)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°=OA,则AB是圆O的切线.(Ⅱ)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.【专题】11:计算题;35:转化思想;4A:数学模型法;5S:坐标系和参数方程.【分析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1﹣a2=0,则a值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.【专题】35:转化思想;48:分析法;59:不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).【点评】本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于基础题.。
2024年高考数学模拟试题含答案(一)

2024年高考数学模拟试题含答案(一)一、选择题(每题5分,共40分)1. 若函数f(x) = 2x - 1在区间(0,2)上是增函数,则实数a的取值范围是()A. a > 0B. a ≥ 1C. a ≤ 1D. a < 0【答案】C【解析】由题意知,f'(x) = 2 > 0,所以函数在区间(0,2)上是增函数。
又因为f(0) = -1,f(2) = 3,所以f(x)在区间(0,2)上的取值范围是(-1,3)。
要使得f(x)在区间(0,2)上是增函数,只需保证a ≤ 1。
2. 已知函数g(x) = x² - 2x + 1,则下列结论正确的是()A. 函数g(x)在区间(-∞,1)上是增函数B. 函数g(x)在区间(1,+∞)上是减函数C. 函数g(x)的对称轴为x = 1D. 函数g(x)的顶点坐标为(1,0)【答案】D【解析】函数g(x) = x² - 2x + 1 = (x - 1)²,所以函数的顶点坐标为(1,0),对称轴为x = 1。
根据二次函数的性质,当x > 1时,函数g(x)递增;当x < 1时,函数g(x)递减。
3. 已知数列{an}的前n项和为Sn,且满足Sn =2an - 1,则数列{an}的通项公式是()A. an = 2^n - 1B. an = 2^nC. an = 2^n + 1D. an = 2^(n-1)【答案】D【解析】由Sn = 2an - 1,得an = (Sn + 1) / 2。
当n = 1时,a1 = (S1 + 1) / 2 = 1。
当n ≥ 2时,an = (Sn + 1) / 2 = (2an - 1 + 1) / 2 = 2an-1。
所以数列{an}是首项为1,公比为2的等比数列,通项公式为an = 2^(n-1)。
4. 已知函数h(x) = |x - 2| - |x + 1|,则函数h(x)的图像是()A. 两条直线B. 两条射线C. 一个三角形D. 一个抛物线【答案】B【解析】函数h(x) = |x - 2| - |x + 1|表示数轴上点x到点2的距离减去点x到点-1的距离。
2023届贵州省贵阳市高考12月模拟性联考 数学(文)试题【含答案】

2023届贵州省贵阳市第一中学高考12月备考模拟性联考文科数学一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合,则表示的集合为(){}{}1,0,1,2,2xA B y y =-==A B ⋂A. B. C. D. {}1-{1,0}-{1,2}{0,1,2}2. 复数,则( )3i11i z -=-+||z =C. 2D. 53. 某医疗公司引进新技术设备后,销售收入(包含医疗产品收人和其他收入)逐年翻一番,据统计该公司销售收入情况如图所示,则下列说法错误的是()A. 该地区2021年的销售收入是2019年的4倍B. 该地区2021年的医疗产品收入比2019年和2020年的医疗产品收入总和还要多C. 该地区2021年其他收人是2020年的其他收入的3倍D. 该地区2021年的其他收入是2019年的其他收人的6倍4. 我国古代数学名著《九章算术》对立体几何有深入的研究,从其中一些数学用语可见,譬如“阳马”意指底面为矩形,一侧棱垂直于底面的四棱锥.某“阳马”的三视图如图所示,则它的最长侧棱与底面所成角的正切值为()A. B. 1125. 已知焦点在坐标轴上且中心在原点的双曲线的一条渐近线方程为,若该双曲线2y x =过点,则它的方程为()(1,1)A.B.C.D.2243y x -=2243x y -=2221y x -=2221x y -=6. 若不等式组所表示的平面区域被直线分成面积相等的两部分,0,2,35,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩(2)x m y =-则实数m 的值为()A. 1B. C. D. 1213147. 已知直线与圆,则下列(2)(1)210()m x m y m m ++---=∈R 22:40C x x y -+=说法错误的是( )A. 对,直线恒过一定点m ∀∈RB. ,使直线与圆相切m ∃∈R C. 对,直线与圆一定相交m ∀∈R D. 直线与圆相交且直线被圆所截得的最短弦长为8. 以下关于的命题,正确的是( )21()sin cos cos 2f x x x x =-+A. 函数在区间上单调递增()f x 2π0,3⎛⎫ ⎪⎝⎭B. 直线是函数图象的一条对称轴π8x =()y f x =C. 点是函数图象的一个对称中心π,04⎛⎫ ⎪⎝⎭()y f x =D. 将函数图象向左平移个单位,可得到的图象()y f x =π82y x=9. 在中,分别为角的对边,且满足,则的ABC ,,a b c ,,A B C 22sin 2Cb a b -=ABC 形状为()A. 直角三角形B. 等边三角形C 直角三角形或等腰三角形D. 等腰直角三角形10. 小明家订了一份牛奶,送奶人可能在早上6:30~7:00之间把牛奶送到小明家,小明出门去上学的时间在早上6:50~7:10之间,则小明在离开家之前能得到牛奶的概率是( )A. B. C. D. 1122378111211. 已知符号函数,函数满足1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩()f x ,当时,,则( )(1)(1),(2)()f x f x f x f x -=++=[0,1]x ∈π()sin 2f x x ⎛⎫= ⎪⎝⎭A. B. sgn(())0f x >404112f ⎛⎫= ⎪⎝⎭C. D. sgn((2))0(Z)f k k =∈sgn((2))|sgn |(Z)f k k k =∈12. 已知直线l 与曲线相切,切点为P ,直线l 与x 轴、y 轴分别交于点A ,B ,O 为e xy =坐标原点.若的面积为,则点P 的个数是( )OAB 1e A. 1B. 2C. 3D. 4二、填空题(本大题共4小题,每小题5分,共20分)13. 已知向量,若,则___________.(1,3),(3,4)a b == ()//()ma b a b -+ m =14. 153与119的最大公约数为__________.15. 若,则a 的值为___________.a =16. 如图,已知正方体的棱长为2,M ,N ,P 分别为棱1111ABCD A B C D -的中点,Q 为该正方体表面上的点,若M ,N ,P ,Q 四点共面,则点Q 的11,,AA CC AD 轨迹围成图形的面积为___________.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17. 随着人民生活水平的不断提高,“衣食住行”愈发被人们所重视,其中对饮食的要求也愈来愈高.某地区为了解当地餐饮情况,随机抽取了100人对该地区的餐饮情况进行了问卷调查.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图),解决下列问题.组别分组频数频率第1组[)50,60140.14第2组[)60,70m第3组[)70,80360.36第4组[)80,900.16第5组[)90,1004n合计(1)求m ,n ,x ,y 的值;(2)求中位数;(3)用分层抽样的方式从第四、第五组抽取5人,再从这5人中随机抽取2人参加某项美食体验活动,求抽到的2人均来自第四组的概率.18. 已知数列是递增的等比数列.设其公比为,前项和为,并且满足{}n a q n n S ,是与的等比中项.1534a a +=82a 4a (1)求数列的通项公式;{}n a (2)若,是的前项和,求使成立的最大正整数的n n b n a =⋅n T n b n 12100n n T n +-⋅>-n 值.19. 如图,在四棱锥中,底面是平行四边形,平面P ABCD -ABCD PD ⊥.,1,ABCD AD BD AB ===(1)求证:平面平面;PBD ⊥PBC (2)若二面角的大小为,求点D 到的距离.P BC D --60︒PBC 20. 已知椭圆过点.2222:1(0,0)x y C a b a b +=>>⎛ ⎝(1)求椭圆C 的方程;(2)已知直线与椭圆交于不同的两点P ,Q ,那么在x 轴上是否存在点M ,:2l y mx =+使且,若存在,求出该直线的方程;若不存在,请说明理由.MP MQ =MP MQ ⊥21. 已经函数.22e ()ln 2,()2()xf x a x xg x x ax a x =+=--∈R (1)求函数的单调性;()f x (2)若,求当时,a 的取值范围.()()()F x f x g x =+()0F x ≥请考生在第22、23两题中任选一题作答,并用2B 铅笔在答题卡上把所选题目的题号涂黑.注意所做题目的题号必须与所涂題题目的题号一致,在答题卡选答区城指定位置答题.如果多做,则按所做的第一题计分.22. 在平面直角坐标系中,曲线C 的参数方程为(为参数),xOy cos )cos )x y θθθθ⎧=-⎪⎨=+⎪⎩θ以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为O x l.πcos 4ρθ⎛⎫+=⎪⎝⎭(1)求直线和曲线的直角坐标方程;l C (2)从原点引一条射线分别交曲线和直线于两点,求的最O C l ,M N 22121||||OM ON +大值.23. 已知函数.()||2af x x a x =++-(1)当时,求不等式的解集;2a =()5f x ≤(2)设且的最小值为m ,若,求的最小值.0,0a b >>()f x 332m b +=32a b +2023届贵州省贵阳市第一中学高考12月备考模拟性联考文科数学一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合,则表示的集合为(){}{}1,0,1,2,2xA B y y =-==A B ⋂A. B. C. D. {}1-{1,0}-{1,2}{0,1,2}【答案】C 【解析】【分析】由指数函数值域得,再根据交集的含义即可得到答案.{0}B yy =>∣【详解】根据指数函数值域可知,{0}B y y =>∣表示的集合为,A B ∴ {}1,2故选:C.2. 复数,则( )3i11i z -=-+||z =C. 2D. 5【答案】C 【解析】【分析】根据复数运算规则计算即可.【详解】 ,()221i 3i 3i 1i 22i 12i 1i 1i 1i 2z ------=-====-+++ ;2z ∴=故选:C.3. 某医疗公司引进新技术设备后,销售收入(包含医疗产品收人和其他收入)逐年翻一番,据统计该公司销售收入情况如图所示,则下列说法错误的是()A. 该地区2021年的销售收入是2019年的4倍B. 该地区2021年的医疗产品收入比2019年和2020年的医疗产品收入总和还要多C. 该地区2021年其他收人是2020年的其他收入的3倍D. 该地区2021年的其他收入是2019年的其他收人的6倍【答案】D 【解析】【分析】设该地区2019年销售收入为,a 则由销售收入(包含医疗产品收人和其他收入)逐年翻一番,所以该地区2020年销售收入为,2a 该地区2021年销售收入为,4a 然后逐项分析即可.【详解】设该地区2019年销售收入为,a 则由销售收入(包含医疗产品收人和其他收入)逐年翻一番,所以该地区2020年销售收入为,2a 该地区2021年销售收入为,4a 选项A :该地区2021年的销售收入是2019年的4倍,故选项A 正确;选项B :由图可得该地区2021年的医疗产品收入为,40.7 2.8a a ⨯=该地区2019年的医疗产品收入为,0.90.9a a ⨯=该地区2020年的医疗产品收入为,20.8 1.6a a ⨯=由,0.9 1.6 2.5 2.8a a a a +=<故选项B 正确;选项C :该地区2021年的其他收入为,40.3 1.2a a ⨯=2020年的其他收入为,20.20.4a a ⨯=所以该地区2021年其他收人是2020年的其他收入的3倍,故选项C 正确;选项D :该地区2021年的其他收入为,40.3 1.2a a ⨯=2019年的其他收入为,0.10.1a a ⨯=所以该地区2021年的其他收入是2019年的其他收人的12倍,故选项D 不正确.故选:D.4. 我国古代数学名著《九章算术》对立体几何有深入的研究,从其中一些数学用语可见,譬如“阳马”意指底面为矩形,一侧棱垂直于底面的四棱锥.某“阳马”的三视图如图所示,则它的最长侧棱与底面所成角的正切值为()A. B. 112【答案】C 【解析】【分析】首先还原几何体,并得到最长侧棱,根据线面角的定义,求线面角的正切值.【详解】如下图,还原几何体,其中平面,底面为矩形,SA ⊥ABCD,,,,1AB =2BC =AC =1SA =SB ==, SD==SC===SC 与底面所成的角是,SC SCA∠tanSASCAAC∠===故选:C5. 已知焦点在坐标轴上且中心在原点的双曲线的一条渐近线方程为,若该双曲线2y x=过点,则它的方程为()(1,1)A. B. C. D.2243y x-=2243x y-=2221y x-=2221x y-=【答案】A【解析】【分析】根据渐近线设双曲线方程为,代入点坐标,计算得到答案.224y xλ-=【详解】双曲线的一条渐近线方程为,设双曲线方程为,2y x=224y xλ-=该双曲线过点,则,故双曲线方程为,(1,1)413λ-==2243y x-=故选:A6. 若不等式组所表示的平面区域被直线分成面积相等的两部分,0,2,35,xx yx y≥⎧⎪+≥⎨⎪+≤⎩(2)x m y=-则实数m的值为()A 1 B. C. D.121314【答案】A【解析】【分析】画出不等式组所表示的平面区域,利用三角形面积公式,选择同一条边为底,高为一半即可.【详解】如图所示,不等式组所表示的平面区域为,0,2,35,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩ABC 为的中点,M BC 解得:、、、()0,2A 31,22B ⎛⎫ ⎪⎝⎭()0,5C 311,44M ⎛⎫ ⎪⎝⎭,此直线过定点.(2)x m y =-∴A 只要直线过点,(2)x m y =-M 就可以将分成面积相等的两部分.ABC 设直线的斜率为,k 则,即,解得.1124134k -==11m =1m =故选:A.7. 已知直线与圆,则下列(2)(1)210()m x m y m m ++---=∈R 22:40C x x y -+=说法错误的是( )A. 对,直线恒过一定点m ∀∈RB. ,使直线与圆相切m ∃∈RC. 对,直线与圆一定相交m ∀∈R D.直线与圆相交且直线被圆所截得的最短弦长为【答案】B 【解析】【分析】首先求出直线过定点,则可判断A ,求出圆心,,则()1,1P ()2,0C 2r =,根据点在圆内,则直线与圆一定相交,故可判断B,C ,对D选项,||2PC =<()1,1P 分析出时弦长最短,则.PC l ⊥l =【详解】直线,即,(2)(1)210m x m y m ++---=(2)210m x y x y +-+--=令,解得,即直线恒过定点,故A 正确;20210x y x y +-=⎧⎨--=⎩11x y =⎧⎨=⎩()1,1P 圆,即圆,圆心,半径,22:40C x x y -+=22:(2)4C x y -+=()2,0C 2r =则,即点在圆内,所以直线与圆一定相交,故B错||2PC ==<()1,1P 误,故C 正确,当时直线与圆相交且直线被圆所截得的弦长最短,最短弦长PCl ⊥,故D正确,l ==故选:B.8. 以下关于的命题,正确的是( )21()sin cos cos 2f x x x x =-+A. 函数在区间上单调递增()f x 2π0,3⎛⎫ ⎪⎝⎭B. 直线是函数图象的一条对称轴π8x =()y f x =C. 点是函数图象的一个对称中心π,04⎛⎫ ⎪⎝⎭()y f x =D. 将函数图象向左平移个单位,可得到的图象()y f x=π82y x=【答案】D【分析】根据三角函数恒等变换化简为21()sin cos cos 2f x x x x =-+,计算出,根据正弦函数的单调性,可判断π())4f x x =-ππ13π2(,4412x -∈-A;采用代入验证的方法可判断;根据三角函数的平移变换可得平移后的函数解析式,判B,C 断D.【详解】由题意得,2111π()sin cos cos sin 2cos 2)2224f x x x x x x x =-+=-=-当时,,由于函数在不单调,2π0,3x ⎛⎫∈ ⎪⎝⎭ππ13π2(,4412x -∈-sin y x =π13π(,)412-故函数在区间上不是单调递增函数,A 错误;()f x 2π0,3⎛⎫⎪⎝⎭当时,,故直线不是函数图象的对称轴,π8x =ππ8(4)f x⨯-==π8x =()y f x =B 错误;当时,,故点不是函数图象的对称中心,π4x =ππ1)42()4f x ⨯-==π,04⎛⎫ ⎪⎝⎭()y f x =C 错误;将函数图象向左平移个单位,可得到的()y f x =π8ππ)284y x x=+-=图象,D 正确,故选:D9. 在中,分别为角的对边,且满足,则的ABC ,,a b c ,,A B C 22sin 2Cb a b -=ABC 形状为()A. 直角三角形B. 等边三角形C. 直角三角形或等腰三角形D. 等腰直角三角形【解析】【分析】根据三角恒等变换得,再由余弦定理解决即可.cos a b C =【详解】由题知,,22sin 2C b a b -=所以,21cos sin 222b a C Cb --==所以,得,cos b a b b C -=-cos a b C =所以,得,2222a b c a b ab +-=⋅222a cb +=所以的形状为直角三角形,ABC 故选:A10. 小明家订了一份牛奶,送奶人可能在早上6:30~7:00之间把牛奶送到小明家,小明出门去上学的时间在早上6:50~7:10之间,则小明在离开家之前能得到牛奶的概率是( )A. B. C. D. 11223781112【答案】D 【解析】【分析】根据题意,设送奶人到达时间为,小明出门去上学的时间为,则可以看x y (,)x y 成平面中的点,分析可得由试验的全部结果所构成的区域并求出其面积,同理可得事件所构成的区域及其面积,由几何概型公式,计算可得结果.A 【详解】设送奶人到达时间为,小明出门去上学的时间为,x y 记小明在离开家之前能得到牛奶为事件,A 以横坐标表示送奶人到达时间,以纵坐标表示小明出门去上学的时间,建立平面直角坐标系,小明在离开家之前能得到牛奶的事件构成的区域如图所示:由于随机试验落在长方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影 部分,就表示小明在离开家之前能得到牛奶,即事件发生,A所以,120301010112()203012P A ⨯-⨯⨯==⨯故选:.D 11. 已知符号函数,函数满足1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩()f x ,当时,,则( )(1)(1),(2)()f x f x f x f x -=++=[0,1]x ∈π()sin 2f x x ⎛⎫= ⎪⎝⎭A. B. sgn(())0f x >404112f ⎛⎫= ⎪⎝⎭C. D. sgn((2))0(Z)f k k =∈sgn((2))|sgn |(Z)f k k k =∈【答案】C 【解析】【分析】计算得到A 错误,根据周期计算B 错误,根sgn((0))0f =40412f ⎛⎫= ⎪⎝⎭据定义计算C 正确,取,得到D 不正确,得到答案.1k =【详解】对选项A :,错误;()sgn((0))sgn 00f ==对选项B :,函数周期为,,错误;(2)()f x f x +=240411πsin 224f f ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭对选项C :,正确;()()sgn((2))sgn sin πsgn 00(Z)f k k k ===∈对选项D :取,,,不正确.1k =()sgn((2))sgn((0))sgn 00f f ===|sgn1|1=故选:C12. 已知直线l 与曲线相切,切点为P ,直线l 与x 轴、y 轴分别交于点A ,B ,O 为e xy =坐标原点.若的面积为,则点P 的个数是( )OAB 1e A. 1 B. 2C. 3D. 4【答案】C 【解析】【分析】设出切点坐标,利用导数求切线斜率,写出切线方程,求出点A ,B 的坐标,表示的面积函数,求面积函数与直线有几个交点.OAB 1e y =【详解】设直线l 与曲线相切于,又,e xy =00(,)P x y e xy '=所以直线l 的斜率为,方程为,0e x k =000e e ()x x y x x -=-令,;令,,即,.0x =00(1)e xy x =-0y =01x x =-0(1,0)A x -00(0,(1)e )x B x -所以.0020001111(1)e (1)e 222x x OAB S OA OB x x x =⨯⨯=⨯-⨯-=-△设,则.21()(1)e 2x f x x =-[]211()2(1)(1)e (1)(1)e 22x xf x x x x x '⎡⎤=--+-=+-⎣⎦由,解得或;由,解得.()0f x '>1x <-1x >()0f x '<11x -<<所以在,上单调递增,在上单调递减.()f x ()1-∞-,()1+∞,()11-,,,,,且恒有21(1)e e f -=>43252511(4)2e 2e e e f -==⨯<(1)0f =2e 1(2)2e f =>成立,()0f x ≥如图,函数与直线有3个交点.()f x 1e y =所以点P 的个数为3.故选:C .二、填空题(本大题共4小题,每小题5分,共20分)13. 已知向量,若,则___________.(1,3),(3,4)a b == ()//()ma b a b -+m =【答案】1-【解析】【分析】根据平面向量的坐标运算以及向量平行的坐标表示可求出结果.【详解】因为,(1,3),(3,4)a b ==所以,,(3,34)ma b m m -=-- (4,7)a b +=因为,所以,解得.()//()ma b a b -+7(3)4(34)0m m ---=1m =-故答案为:.1-14. 153与119的最大公约数为__________.【答案】17【解析】【详解】因为,153119134,11934317,34172=⨯+=⨯+=⨯所以153与119的最大公约数为17.答案:1715. 若,则a 的值为___________.a =【答案】1【解析】【分析】利用对数的运算性质分别对分子分母化简即可得到结果.【详解】原式()()266666612log 3log 3log log 6332log 2-++⋅⨯=()()22666612log 3log 31log 32log 2-++-=.()666666621log 3log 6log 3log 212log 2log 2log 2--====故答案为:116. 如图,已知正方体的棱长为2,M ,N ,P 分别为棱1111ABCD A B C D -的中点,Q 为该正方体表面上的点,若M ,N ,P ,Q 四点共面,则点Q 的11,,AA CC AD轨迹围成图形的面积为___________.【答案】【解析】【分析】根据题意找出点Q 的轨迹围成图形为正六边形即可求解.PENFGM 【详解】如图,取的中点分别为,1111,,CD B C A B EFG 则点Q 的轨迹围成图形为正六边形,PENFGM,所以点Q的轨迹围成图形的面积为,6=故答案为:三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17. 随着人民生活水平的不断提高,“衣食住行”愈发被人们所重视,其中对饮食的要求也愈来愈高.某地区为了解当地餐饮情况,随机抽取了100人对该地区的餐饮情况进行了问卷调查.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图),解决下列问题.组别分组频数频率第1组[)50,60140.14第2组[) 60,70m第3组[)70,80360.36第4组[)80,900.16第5组[)90,1004n 合计(1)求m,n,x,y的值;(2)求中位数;(3)用分层抽样的方式从第四、第五组抽取5人,再从这5人中随机抽取2人参加某项美食体验活动,求抽到的2人均来自第四组的概率.【答案】(1)30;0.04;0.030;0.004(2)71.67(3)35【解析】【分析】(1)根据频率分布表可求得,根据频率分布直方图中的含义即可求得其,m n ,x y 值;(2)根据频率分布直方图,利用中位数的估计方法,可计算得答案;(3)用分层抽样的方式从第四、第五组抽取5人,确定每组中的人数,列举从这5人中随机抽取2人参加某项美食体验活动的所有基本事件,列举出抽到的2人均来自第四组的基本事件,根据古典概型的概率公式,即可求得答案.【小问1详解】由题意可知,第四组的人数为,1000.1616⨯=故,;100143616430m =----=40.04100n ==又内的频率为 ,∴;[)60,70300.30100=0.300.03010x ==∵内的频率为 ,∴.[)90,1000.040.040.00410y ==【小问2详解】由频率分布直方图可知第一、二组频率之和为,0.140.300.44+=前三组频率之和为,0.140.300.360.80++=故中位数为:.0.500.447071.670.036-+≈【小问3详解】由题意可知,第4组共有16人,第5组共有4人,用分层抽样的方式从第四、第五组抽取5人,则第四、第五组抽取人数为4人和1人,设第4组的4人分别为 ,第5组的1人分别为A,a b c d ,,,则从中任取2人,所有基本事件为:共10个,(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)a b a c a d a A b c b d b A c d c A d A又抽到的2人均来自第四组的基本事件有∶共6个,(,),(,),(,),(,),(,),(,)a b a c a d b c b d c d 故抽到的2人均来自第四组的的概率为.63105=18. 已知数列是递增的等比数列.设其公比为,前项和为,并且满足{}n a q n n S ,是与的等比中项.1534a a +=82a 4a (1)求数列的通项公式;{}n a (2)若,是的前项和,求使成立的最大正整数的n n b n a =⋅n T n b n 12100n n T n +-⋅>-n 值.【答案】(1)()2n n a =*n ∈N (2)5【解析】【分析】(1)根据等比数列的性质结合条件是与的等比中项得到,联立82a 4a 1564a a =条件得到和,根据题目条件和等比数列的通项公式即可求解.1532a a +=1a 5a (2)根据(1)求得,利用错位相减求和得到,从而得到,通过2nn b n =⋅n T 12n n T n +-⋅函数法判断出是单调递减数列,即可求解.12n n T n +-⋅【小问1详解】因为是与的等比中项,所以,82a 4a 224864a a ==则由题意得:,即,解得:或,15243464a a a a +=⎧⎨=⎩15153464a a a a +=⎧⎨=⎩15232a a =⎧⎨=⎩15322a a =⎧⎨=⎩因为数列是递增的等比数列,所以,即,,{}n a 1451232a a a q =⎧⎨==⎩12a =2q =所以,111222n n nn a a q --==⨯=故数列的通项公式为().{}n a 2n na=*n ∈N 【小问2详解】由(1)得:(),2n n n b n a n =⋅=⨯*n ∈N则123n nT b b b b =++++ ,①1231222322n n =⨯+⨯+⨯++⨯ 即,②234121222322n n T n +=⨯+⨯+⨯++⨯ 则得:-①②123122222n n nT n +-=++++-⨯ 即(),()11122212212n n n n T n n +++-=⨯-=-+-*n ∈N 所以(),()11112122222n n n n n T n n n ++++-⋅=-+-⋅=-*n ∈N 设,则(),12n n n C T n +=-⋅122n n C +=-*n ∈N 因为在上单调递减,122x y +=-()0,∞+所以是单调递减数列,122n n C +=-又有,,652262100C =-=->-7622126100C =-=-<-所以当且时,成立,5n ≤*n ∈N 12100n nT n +-⋅>-故使成立的最大正整数的值为.12100n n T n +-⋅>-n 519. 如图,在四棱锥中,底面是平行四边形,平面P ABCD -ABCD PD ⊥.,1,ABCD AD BD AB ===(1)求证:平面平面;PBD ⊥PBC (2)若二面角的大小为,求点D 到的距离.P BC D --60︒PBC 【答案】(1)证明见解析;(2【解析】【分析】(1)利用线面垂直及面面垂直的判定定理可得结果;(2)根据等体积法即可求得点到平面的距离.C PBD 【小问1详解】在中, ,ADB1,===AD BD AB ,∴,222AD BD AB ∴+=AD BD ⊥∵平面,平面,∴.PD ⊥ABCD AD ⊂ABCD PD AD ⊥又∵,平面,∴平面,PD BD D ⋂=,PD DB ⊂PBD AD ⊥PBD 又,∴平面,//AD BC BC⊥PBD 又平面,所以平面平面BC ⊂PBC PBD ⊥PBC 【小问2详解】由(1)知平面,,,BC⊥PBD PB BC ∴⊥DB BC ⊥∴为二面角的平面角,∴.PBD ∠P BC D --60PBD ∠=在中, ,Rt PDB1,2===PD BD PB 所以,,111122=⨯⨯= BDC S 11212=⨯⨯= PBC S 设点D 到的距离,PBC d 由,有,P BCDD PBC V V --=1133△△⋅⋅=⋅⋅BDC PBCSPD S d即,解得1111323⨯=⨯⨯d d =即点D 到PBC20. 已知椭圆过点.2222:1(0,0)x y C a b a b +=>>⎛ ⎝(1)求椭圆C 的方程;(2)已知直线与椭圆交于不同的两点P ,Q ,那么在x 轴上是否存在点M ,:2l y mx =+使且,若存在,求出该直线的方程;若不存在,请说明理由.MP MQ =MP MQ ⊥【答案】(1)22142x y +=(2)详见解析【解析】【分析】(1)根据条件得到关于的方程组,即可求得椭圆方程;,,a b c (2)首先直线与椭圆方程联立,利用韦达定理表示线段中点坐标PQ ,再根据,以及,转化为坐标表示,代入韦2242,1212mN m m -⎛⎫ ⎪++⎝⎭MN PQ ⊥MP MQ ⊥达定理后,即可求,m n 【小问1详解】由条件可知,,解得:,,222221312a b c a a b c ⎧+=⎪⎪⎪=⎨⎪=+⎪⎪⎩24a =222b c ==所以椭圆C 的方程是;22142x y +=【小问2详解】假设在轴上存在点,使且,x (),0M n MP MQ =MP MQ ⊥联立,设,,222142y mx x y =+⎧⎪⎨+=⎪⎩()11P x y ()22,Q x y 方程整理为,()2212840m xmx +++=,解得:或,()226416120m m∆=-+>m>m <,,122812m x x m -+=+122412x x m =+1224212x x mm +-=+则线段的中点的横坐标是,中点纵坐标,PQ 2412mx m -=+2224221212m y m m -=+=++即中点坐标,,2242,1212mN m m -⎛⎫ ⎪++⎝⎭(),0M n 则,即,化简为,①MN PQ ⊥222112412m m m n m +=---+2220m n m n ++=又,0MP MQ ⋅= 则,,()()12120x n x n y y --+=()()()()1212220x n x n mx mx --+++=整理为,()()()2212121240m x x m n x x n ++-+++=,()()22224812401212m mm n n m m -+⨯+-⨯++=++化简为②()222124880n m m mn +-++=由①得,即,代入②得()2212mn m+=-()22212m n mn+=-,整理得③,又由①得,代224880mn m mn --++=22340m mn -++=2221mn m -=+入③得,即,222234021mm m m --+⋅+=+()()()222221324210m m m m m -++⋅-++=整理得,即.41m =1m =±当时,,当时,,满足,1m =23n =-1m =-23n =0∆>所以存在定点,此时直线方程是,当定点,此时直线方程是2,03M ⎛⎫- ⎪⎝⎭l 2y x =+2,03M ⎛⎫⎪⎝⎭l .2y x =-+21. 已经函数.22e ()ln 2,()2()xf x a x xg x x ax a x =+=--∈R (1)求函数的单调性;()f x (2)若,求当时,a 的取值范围.()()()F x f xg x =+()0F x ≥【答案】(1)见解析 (2)ea ≤【解析】【分析】(1)根据两种情况讨论.()24x af x x +'=0,0a a ≤>(2)求出,首先证明()ln e ()ln ln e xx xF x a x ax a x x x -=+-=-+()ln e e ln x x x x -≥-只需要求即可.()()ln e ln 0a x x x x -+-≥【小问1详解】()()2440a x af x x x x x+'=+=> (1)时,,所以在单调递增.0a ≥()240x a f x x +'=>()f x ()0,∞+(2)时,a<0()0,f x x '===时,时x ⎛∈ ⎝()0f x '<x ∞⎫∈+⎪⎪⎭()0f x ¢>所以在单调递减,在单调递增.()f x ⎛⎝∞⎫+⎪⎪⎭综上:时在单调递增0a ≥()f x ()0,∞+时在单调递减,在单调递增a<0()f x ⎛⎝∞⎫+⎪⎪⎭【小问2详解】()()()22e e ln 22ln x x F xf xg x a x x x ax a x axx x=+=++--=+-,要求,即求()()ln ln e ln ln e e xx xx a x x a x x -=-+=-+()0F x ≥()ln ln e 0x x a x x --+≥设,则,当,ln 1t x x =-+1110,1xt x x x -'=-===()()0,10,1,0x t x t ∞'∈∈+'><,所以在上单调递增,在单调递减,所以即t ()0,1()1,+∞ln1110t ≤-+=ln 1x x -≥设,,()()()e e 1,e e 0x x h x x x h x '=-≤-=-=()10x h x x '∴=<∈(],1-∞,所以在单调递减,在单调递增()[)01,h x x ∞∈'>+()h x (],1-∞[)1,+∞,故当且仅当时成立.所以当且()()1e e 0h x h ∴≥=-=e e xx ≥1x =()ln e e ln x x x x -≥-仅当即当且仅当时等号成立,ln 1x x -=1x =,又因为()()()ln ln e ln e ln 0x x a x x a x x x x --+≥-+-≥ln 1x x -≤-所以,所以.e 0a -≤e a ≤请考生在第22、23两题中任选一题作答,并用2B 铅笔在答题卡上把所选题目的题号涂黑.注意所做题目的题号必须与所涂題题目的题号一致,在答题卡选答区城指定位置答题.如果多做,则按所做的第一题计分.22. 在平面直角坐标系中,曲线C 的参数方程为(为参数),xOy cos )cos )x y θθθθ⎧=-⎪⎨=+⎪⎩θ以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为O x l.πcos 4ρθ⎛⎫+=⎪⎝⎭(1)求直线和曲线的直角坐标方程;l C (2)从原点引一条射线分别交曲线和直线于两点,求的最O C l ,M N 22121||||OM ON +大值.【答案】(1)直线的直角坐标方程为:,曲线的直角坐标方程为:l 10x y --=C.22164x y +=(2【解析】【分析】(1)消去参数可得曲线的直角坐标方程;利用两角和的余弦公式和θC ,可得直线的直角坐标方程;cos x ρθ=sin y ρθ=l (2)设射线方程为(),将曲线的直角坐标方程化为极坐标方程,θα=0,0πρθ≥≤<C 并将代入可得,将代入可得,再利用辅助角θα=||OM θα=cos sin 10ρθρθ--=||ON 公式可求出的最大值.22121||||OM ON +【小问1详解】由,得,cos )cos )x y θθθθ⎧=-⎪⎨=+⎪⎩2222(sin cos )(sin cos )32x y θθθθ+=-++2=即,22164x y +=所以曲线的直角坐标方程为:.C 22164x y +=由,πcos 4ρθ⎛⎫+= ⎪⎝⎭ππcos cos sin sin 44ρθρθ-=,cos sin θθ=cos sin 10ρθρθ--=将,代入得,cos x ρθ=sin y ρθ=10x y --=所以直线的直角坐标方程为:.l 10x y --=综上所述:直线的直角坐标方程为:,曲线的直角坐标方程为:l 10x y --=C .22164x y +=【小问2详解】设射线方程为(),θα=0,0πρθ≥≤<将,代入,得,cos x ρθ=sin y ρθ=22164x y +=2222cos sin 164ρθρθ+=得,2221cos sin 64θθρ=+将代入,得,得θα=2221cos sin 64θθρ=+2221cos sin 64ααρ=+21||OM ,22cos sin64αα=+由,πcos 4ρθ⎛⎫+=⎪⎝⎭1π4θρ=+将代入,得(),,得θα=1π)4θρ=+1π4αρ=+π5π[0,)(,2π)44α∈ ,221π2cos (||4ON α=+所以22121||||OM ON +222π2cos 3sin 2cos ()4ααα=+++2222cos 3sin 2(cos sin αααα=++-2222cos 3sin (cos sin )αααα=++-22222cos 3sin cos 2sin cos sin αααααα=++-+23sin sin 2αα=+-1cos 23sin 22αα-=+-17cos 2sin 222αα=--+72sin 22αα=++(其中,),7)2αϕ=-+sin ϕ=cos ϕ=tan 2ϕ=因为,所以,π5π[0,)(,2π)44α∈ π5π2[0,)(,4π)22α∈ 又,所以,ϕπ(0,)2∈ππ2(,)(2π,4π)22αϕ-∈- 所以当时,即,即(其中cos(2)1αϕ-=-2αϕ-=3π3π22ϕα=+sin ϕ=,)时,.cos ϕ=tan 2ϕ=22121||||OM ON +23. 已知函数.()||2a f x x a x =++-(1)当时,求不等式的解集;2a =()5f x ≤(2)设且的最小值为m ,若,求的最小值.0,0a b >>()f x 332m b +=32a b +【答案】(1)[3,2]-(2【解析】【分析】(1)分段讨论求解,(2)由绝对值三角不等式求最小值,再由基本不等式求解,m 【小问1详解】当时,,2a =21,2()213,2121,1x x f x x x x x x --<-⎧⎪=++-=-≤≤⎨⎪+>⎩故即或或,()5f x ≤2215x x <-⎧⎨--≤⎩2135x -≤≤⎧⎨≤⎩1215x x >⎧⎨+≤⎩解得,即原不等式的解集为32x -≤≤[3,2]-【小问2详解】由题意得,3()||||222a a f x x a x a a =++-≥+=即,,即,32m a =3333222m b a b +=+=2a b +=而即3232()()55b a a b a b a b ++=++≥+32b ab a =时等号成立,64a b =-=故32a b +。
贵州省安顺市2024年数学(高考)统编版真题(评估卷)模拟试卷

贵州省安顺市2024年数学(高考)统编版真题(评估卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题中国古代数学家用圆内接正边形的周长来近似计算圆周长,以估计圆周率的值.若据此证明,则正整数至少等于()A.B.C.D.第(2)题函数是定义在R上奇函数,且,,则()A.0B.C.2D.1第(3)题技术的数学原理之一是著名的香农公式:.它表示:在受噪声干扰的信道中,最大信息传递速度取决于信道带宽,信道内信号的平均功率,信道内部的高斯噪声功率的大小,其中叫做信噪比.当信噪比较大时,公式中真数中的可以忽略不计.假设目前信噪比为若不改变带宽,而将最大信息传播速度提升那么信噪比要扩大到原来的约()A.倍B.倍C.倍D.倍第(4)题在△ABC中,内角A,B,C所对的边分别是a,b,c,若a=4,A=,则该三角形面积的最大值是A .2B.3C.4D.4第(5)题欧拉恒等式(为虚数单位,为自然对数的底数)被称为数学中最奇妙的公式.它是复分析中欧拉公式的特例:当自变量时,.得.根据欧拉公式,复数在复平面上所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限第(6)题如图所示,单位圆中弧AB的长为x,f(x)表示弧AB与弦AB所围成的弓形面积的2倍,则函数y=f(x)的图像是()A.B.C.D.第(7)题设,已知直线与圆,则“”是“直线与圆相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第(8)题若(为虚数单位),则()A.5B.C.D.二、多项选择题(本题包含3小题,每小题6分,共18分。
在每小题给出的四个选项中,至少有两个选项正确。
全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题将函数的图象向右平移个单位,再把所得图象上各点的横坐标缩短为原来的一半,纵坐标不变,得到函数的图象,则关于的说法正确的是()A.最小正周期为B.奇函数C.在上单调递增D.关于中心对称第(2)题已知复数,,则下列结论中正确的是()A.若,则B.若,则或C.若且,则D.若,则第(3)题双曲线:,左、右顶点分别为,,为坐标原点,如图,已知动直线与双曲线左、右两支分别交于,两点,与其两条渐近线分别交于,两点,则下列命题正确的是()A.存在直线,使得B.在运动的过程中,始终有C.若直线的方程为,存在,使得取到最大值D.若直线的方程为,,则双曲线的离心率为三、填空(本题包含3个小题,每小题5分,共15分。
高考数学文科5年高考3年模拟精品课件全国卷1地区通用:1.1 集合

A.{1}
B.{3,5}
C.{1,2,4,6} D.{1,2,3,4,5}
答案 C ∵U={1,2,3,4,5,6},P={1,3,5}, ∴∁UP={2,4,6}, ∵Q={1,2,4}, ∴(∁UP)∪Q={1,2,4,6}. 2.(2015课标Ⅱ,1,5分)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B= ( ) A.(-1,3) B.(-1,0) C.(0,2) D.(2,3)
A.{0,2} B.{1,2}
C.{0}
D.{-2,-1,0,1,2}
答案 A 本题主要考查集合的基本运算. ∵A={0,2},B={-2,-1,0,1,2},∴A∩B={0,2},故选A.
2.(2018课标全国Ⅱ,2,5分)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B= ( )
答案 A 本题考查集合的并集. A∪B={1,2,3}∪{2,3,4}={1,2,3,4}.故选A. 5.(2017课标全国Ⅲ,1,5分)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为 ( ) A.1 B.2 C.3 D.4 答案 B 因为集合A和集合B有共同元素2,4,所以A∩B={2,4},所以A∩B中元素的个数为2.
12.(2017浙江,1,5分)已知集合P={x|-1<x<1},Q={x|0<x<2},则P∪Q= ( ) A.(-1,2) B.(0,1) C.(-1,0) D.(1,2) 答案 A 本题考查集合的概念和集合的运算. P∪Q={x|-1<x<2}.故选A. 易错警示 把求并集看成求交集,而错选B,因为平时做得最多的集合运算是求两集合的交集, 从而形成思维定势. 13.(2015四川,1,5分)设集合A={x|-1<x<2},集合B={x|1<x<3},则A∪B= ( ) A.{x|-1<x<3} B.{x|-1<x<1} C.{x|1<x<2} D.{x|2<x<3} 答案 A 把集合A、B表示在数轴上,如图.
2024年高考数学全真模拟试卷六(新高考、新结构)(全解全析)

2024年高考数学全真模拟试卷六(新高考、新结构)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a b ∈R ,,i (3i )i a b -=-(i 为虚数单位),则()A .1a =,3b =-B .1a =-,3b =C .1a =-,3b =-D .1a =,3b =【答案】A【解析】因为3i (i)i 1i a b b -=-=+,所以1,3a b ==-.故选A2.已知{}n a 为等差数列,n S 为其前n 项和.若122a a =,公差0,0m d S ≠=,则m 的值为()A .4B .5C .6D .7【答案】B【解析】由已知()12122a a a d ==+,得12a d =-,又()()1112022m m m m m S ma d md d --=+=-+=,又0d ≠,所以()1202m m m --+=,解得5m =或0m =(舍去),故选B.3.纯电动汽车是以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,它使用存储在电池中的电来发动.因其对环境影响较小,逐渐成为当今世界的乘用车的发展方向.研究发现电池的容量随放电电流的大小而改变,1898年Peukert 提出铅酸电池的容量C 、放电时间t 和放电电流I 之间关系的经验公式:C I t λ=,其中λ为与蓄电池结构有关的常数(称为Peukert 常数),在电池容量不变的条件下,当放电电流为7.5A 时,放电时间为60h ;当放电电流为25A 时,放电时间为15h ,则该蓄电池的Peukert 常数λ约为(参考数据:lg 20.301≈,lg 30.477≈)()A .1.12B .1.13C .1.14D .1.15【答案】D【解析】由题意知7.5602515C λλ=⨯=⨯,所以410325607.515λλ⎛⎫= ⎪⎝⎭⎛⎫== ⎪⎝⎭,两边取以10为底的对数,得10lg2lg 23λ=,所以2lg 220.301 1.151lg310.477λ⨯=≈≈--,故选D.4.已知向量,a b 满足||2,(2,0)a b ==,且||2a b += ,则,a b 〈〉= ()A .π6B .π3C .2π3D .5π6【答案】C【解析】由已知||2,2a b == ,所以()22224222cos ,44a ba b a b a b +=+⋅+=+⨯⨯⨯〈〉+=r r r r r r r r,得1cos ,2a b 〈〉=- ,又[],0,πa b 〈〉∈ ,所以2π,3a b 〈〉= .故选C.5.在平面直角坐标系xOy 中,已知()()3,0,1,0,A B P -为圆22:(3)(3)1C x y -+-=上动点,则22PA PB +的最小值为()A .34B .40C .44D .48【答案】B【解析】设(),P x y ,则()()222222223122410PA PB x y x y x y x +=+++-+=+++()22218x y ⎡⎤=+++⎣⎦,即22PA PB +等价于点P 到点()1,0Q -的距离的平方的两倍加8,又1PQ QC PC ≥-=514=-=,即22224840PA PB +≥⨯+=.故选B.6.如图,四棱锥A BCDE -是棱长均为2的正四棱锥,三棱锥A CDF -是正四面体,G 为BE 的中点,则下列结论错误的是()A .点,,,ABC F 共面B .平面ABE 平面CDF C .FG CD ⊥D .FG ⊥平面ACD【答案】D【解析】选项A :如图,取CD 中点H ,连接GH ,FH ,AG ,AH ,因为A BCDE -是正四棱锥,A CDF -是正四面体,G 为BE 的中点,所以CD GH ⊥,CD AH ⊥,CD FH ⊥,因为GH AH H = ,,GH AH ⊂平面AGH ,所以CD ⊥平面AGH ,因为AH FH H = ,,AH FH ⊂平面AFH ,所以CD ⊥平面AFH ,所以,,,A G H F 四点共面,由题意知3AG HF ==2GH AF ==,所以四边形AGHF是平行四边形,所以GH AF ∥,因为BC GH ∥,所以BC AF ∥,所以,,,A B C F 四点共面,故A 说法正确;选项B :由选项A 知AG FH ∥,又AG ⊄平面CDF ,FH ⊂平面CDF ,所以AG 平面CDF ,因为CD BE ∥,且BE ⊄平面CDF ,CD ⊂平面CDF ,所以BE 平面CDF ,又AG ⊂平面ABE ,BE ⊂平面ABE ,且AG BE G = ,所以平面ABE 平面CDF ,故B 说法正确;C 选项:由选项A 可得CD ⊥平面AGHF ,又FG ⊂平面AGHF ,所以FG CD ⊥,故C 说法正确;D 选项:假设FG ⊥平面ACD ,因为AH ⊂平面ACD ,则FG AH ⊥,由选项A 知四边形AGHF 是平行四边形,所以四边形AGHF 是菱形,与3AG =2GH =矛盾,故D 说法错误;故选D7.甲、乙两人进行一场友谊比赛,赛前每人记入3分.一局比赛后,若决出胜负,则胜的一方得1分,负的一方得1-分;若平局,则双方各得0分.若干局比赛后,当一方累计得分为6时比赛结束且该方最终获胜.令i P 表示在甲的累计得分为i 时,最终甲获胜的概率,若在一局中甲获胜的概率为0.5,乙获胜的概率为0.3,则1P =()A .555535-B .666535-C .5662553⨯-D .677553-【答案】C【解析】由题意可知:i 的取值集合为{}0,1,2,3,4,5,6,且060,1P P ==,在甲累计得分为1时,下局甲胜且最终甲获胜的概率为20.5P ,在甲累计得分为1时,下局平局且最终甲获胜的概率为10.2P ,在甲累计得分为1时,下局甲败且最终甲获胜的概率为00.3P ,根据全概率公式可得12100.50.20.3P P P P =++,整理得2108355P P P =-,变形得()211035P P P P -=-,因为100P P ->,则211035P P P P -=-,同理可得324354652132435435P P P P P P P P P P P P P P P P ----====----,所以{}()10,1,2,,5i i P P i +-= 是公比为35的等比数列,所以()()11030,1,2,,55i i i P P P P i +⎛⎫-=-= ⎪⎝⎭ ,各项求和得()()551101135i i i i i P P P P +==⎡⎤⎛⎫-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∑∑,则()661103355315P P P P ⎛⎫- ⎪⎝⎭-=-⋅-,即61133551315P P ⎛⎫- ⎪⎝⎭-=⋅-,解得51662553P ⨯=-.故选C.8.已知0,2a b c <<>,且12212,e (1),2ln2bab c c a==+=,则()A .b a c <-<B .a b c -<<C .c a b <-<D .b c a<<-【答案】B 【解析】令1t a=,则22t t =,令()22,0t f t t t =-<,则()2ln 220t f t t '=->在(),0t ∈-∞上恒成立,故()22t f t t =-在(),0t ∈-∞上单调递增,且()11102f -=-<,110224f ⎛⎫-=-> ⎪⎝⎭,故112t -<<-,故()1,2a -∈,令()()2e 1x g x x =-+,0x >,则()()e 21x g x x '=-+,令()()e 21x q x x =-+,则()e 2x q x '=-,令()0q x '>得ln 2x >,令()0q x '<得0ln 2x <<,故()()e 21xq x x =-+在()0,ln 2上单调递减,在()ln 2,+∞上单调递增,则()()ln 222ln 210q =-+<,()22e 60q =->,由零点存在性定理可得,存在()0ln 2,2x ∈,使得()00q x =,且()()2e 1x g x x =-+在()00,x 上单调递减,在()0,x +∞上单调递增,又()00g =,故()()000g x g <=,又()22e 90g =-<,()33e 160g =->,故()2,3b ∈,令()2ln 2,2h x x x x =->,则()21h x x'=-,当2x >时,()0h x '>,故()2ln 2h x x x =-在()2,+∞上单调递增,又因为()446ln 20h =-<,()552ln100h =->,故()4,5c ∈,综上,a b c -<<.故选B二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知()()1,1,2,1AB AC =-= ,则下列结论正确的是()A .()3,0BC =B .()25AB BC AC ⋅-=C.cos ,AB AC = D .若()3,1AB AC λμμλ+=+,则2μλ-=【答案】ACD【解析】对于A ,()3,0BC AC AB =-= ,故A 正确;对于B ,因为()24,1BC AC -=-,所以()25AB BC AC ⋅-=- ,故B 错误;对于C,因为1,AB AC AB AC ⋅=-==所以cos ,10AB AC ==,故C 正确;对于D ,()()2,3,1AB AC λμμλμλμλ+=-+=+ ,所以231μλμμλλ-=⎧⎨+=+⎩,解得1,1λμ=-=,则2μλ-=,故D 正确.故选ACD.10.关于方程[]()22cos 10,πx y αα+=∈表示的曲线Γ,下列说法正确的是()A .Γ可以表示两条平行的直线,且这两条直线的距离为2B .若Γ为双曲线,则α为钝角C .若α为锐角,则Γ为焦点在y 轴上的椭圆D .若Γ为椭圆,P 为椭圆Γ上不与长轴顶点,A B 重合的点,则cos PA PB k k α⋅=-【答案】AD【解析】对于A 项,当cos 0α=,即π2α=时,方程为21y =,解得1y =±,因此Γ可以表示两条平行的直线,且这两条直线的距离为2,故A 选项正确;对于B 项,若Γ为双曲线,则cos 0α<,即ππ2α<≤,故α为钝角或平角,故B 选项错误;对于C 项,若α为锐角,则0cos 1α<<,即11cos α>.将原方程化为标准方程为2211cos x y α+=⎛⎫⎪⎝⎭,因此Γ为焦点在x 轴上的椭圆,故C 选项错误;对于D 项,若Γ为椭圆,则α为锐角,设椭圆方程为()222210x y a b a b+=>>,则221,1cos a b α==,不妨设()()()00,0,,0,,A a B a P x y -,将点P 的坐标代入椭圆方程得2200cos 1x y α+=,即22001cos y x α=-,故22000022200001cos cos 1cos PA PBy y y x k k x a x a x a x ααα-⋅=⋅===-+---,故D 选项正确.故选AD .11.对于集合A 中的任意两个元素,x y ,若实数(),d x y 同时满足以下三个条件:①“(),0d x y =”的充要条件为“x y =”;②()(),,d x y d y x =;③z A ∀∈,都有()()(),,,d x y d x z d y z ≤+.则称(),d x y 为集合A 上的距离,记为A d .则下列说法正确的是()A .(),d x y x y =-为d RB .(),sin sin d x y x y =-为d RC .若()0,A =+∞,则(),ln ln d x y x y =-为Ad D .若d 为R d ,则1e d -也为R d (e 为自然对数的底数)【答案】AC【解析】对于A ,(),d x y x y =-,即x y =,①,(),0d x y =,即(),0d x y x y =-=,即x y =,若x y =,则(),0d x y x y x x =-=-=,所以“(),0d x y =”的充要条件为“x y =”.②,()(),,d x y x y y x d y x =-=-=,成立,③,,,R x y z ∀∈,()()x y x z z y x z z y -=-+-≤-+-,故A 正确;对于B ,(),sin sin d x y x y =-,①,(),0d x y =,即(),sin sin 0d x y x y =-=,即sin sin x y =,此时若0,πx y ==,则x y ≠,故B 错误;对于C ,(),ln ln d x y x y =-,①,(),0d x y =即ln ln ln0xx y y-==,即1x y =,得x y =,若x y =,则(),ln ln ln ln 0d x y x y x x =-=-=,所以“(),0d x y =”的充要条件为“x y =”.②,()(),ln ln ln ln ,d x y x y y x d y x =-=-=,成立;③,()()(),ln ln ln ln ln ln d x y x y x z z y =-=-+-()()ln ln ln ln ,,x z z y d x z d y z ≤-+-=+,故成立,故C 正确;对于D ,设,x y ∀∈R ,(),d x y x y =-,则()1,1e e x y d x y ---=,①,若(),0d x y =,则0x y -=,即x y =,111e e 0x y d e ----==≠,故D 错误.故选AC.三、填空题:本题共3小题,每小题5分,共15分.12.函数()()2312(2)log 22x f x x a +=+-+是偶函数,则=a .【答案】38【解析】因为()()2312(2)log 22x f x x a +=+-+是偶函数,可得()()()31231228log 83022x x f x f x ax a x +-++--=-=-=+,所以38a =.13.《九章算术》中记录的“羡除”是算学和建筑学术语,指的是一段类似隧道形状的几何体,如图,羡除ABCDEF 中,底面ABCD 是正方形,//EF 平面ABCD ,ADE V 和BCF △均为等边三角形,且26EF AB ==.则这个几何体的外接球的体积为.【答案】36π【解析】连接BD ,分别取EF 、BD 、AD 中点G 、H 、I ,连接GH 、HI 、EI ,由底面ABCD 是正方形,//EF 平面ABCD ,ADE V 和BCF △均为等边三角形,故//EG IH ,GH ⊥底面ABCD ,又26EF AB ==,故3EG AD AB ===,则22EI AD ==,故2GH ==,由H 为底面正方形中心,HG IH ⊥,故羡除ABCDEF 外接球球心O 在直线GH 上,连接OI 、OE 、OA ,设半径为r ,OH a =,则==OA OE r ,由GH ⊥底面ABCD ,AD ⊂平面ABCD ,故GH AD ⊥,又AD IH ⊥,IH 、GH Ì平面IOH ,故AD ⊥平面IOH ,又IO ⊂平面IOH ,故AD IO ⊥,故2222232IO r AI r ⎛⎫=-=- ⎪⎝⎭,又222223+2IO OH IH a ⎛⎫=+= ⎪⎝⎭,故有222233+22r a ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,即229+2r a =,又2222227322EO r a a ⎛⎫==-+=-+ ⎪ ⎪⎝⎭,故有22279+22a a -+=,解得2a =,故22999+9222r a ==+=,即3r =,则这个几何体的外接球的体积为34π36π3V r ==.14.已知函数π2cos (0)4y x ωω⎛⎫=-> ⎪⎝⎭在区间ππ,42⎛⎫⎪⎝⎭上有且仅有一个零点,则ω的取值范围为.【答案】371115(3)(][7]2222,,, 【解析】由题意知函数π2cos (0)4y x ωω⎛⎫=-> ⎪⎝⎭在区间ππ,42⎛⎫⎪⎝⎭上有且仅有一个零点,故函数的最小正周期πππ2ππ082444T ,,ωω≥-=∴≥∴<≤,又ππ,42x ⎛⎫∈ ⎪⎝⎭,则πππππ44424x ωωω-<-<-,而πππ7π4444ω-<-≤,当ππππ4442ω-<-<时,即03ω<<时,需有πππ3π2242ω<-≤,即3722ω<≤,此时3(3)2,ω∈;当πππ442ω-=时,即3ω=时,ππ5π244ω-=,此时函数在π5π(,24)上无零点,不合题意;当πππ3π2442ω<-<时,即37ω<<时,需有3πππ5π2242ω<-≤,即71122ω<≤,此时711(]22,ω∈;当ππ3π442ω-=时,即7ω=时,ππ13π244ω-=,此时函数在3π13π(,)24上有一零点5π2,符合题意;当3πππ7π2444ω<-≤时,即78ω<≤时,需有5πππ7π2242ω<-≤,即111522ω<≤,此时15(7]2,ω∈;综合上述,得ω的取值范围为371115(3)(][7]2222,,, 三、解答题:本题共5小题,共77分,解答应写出文字说明,证明过程和解题步骤.15.(13分)近年来“天宫课堂”受到广大中小学生欢迎,激发了同学们对科学知识的探索欲望和对我国航天事业成就的自豪.为领悟航天精神,感受中国梦想,某校组织了一次“寻梦天宫”航天知识竞赛(满分100分),各年级学生踊跃参加.校团委为了比较高一、高二学生这次竞赛的成绩,从两个年级的答卷中各随机选取了50份,将成绩进行统计得到以下频数分布表:成绩[)60,70[)70,80[)80,90[]90,100高一学生人数1551515高二学生人数10102010试利用样本估计总体的思想,解决下列问题:(1)从平均数与方差的角度分析哪个年级学生这次竞赛成绩更好(同一组中的数据用该组区间的中点值为代表)?(2)校后勤部决定对参与这次竞赛的学生给予一定的奖励,奖励方案有以下两种:方案一:记学生得分为x ,当70x <时,奖励该学生10元食堂代金券;当7090x ≤<时,奖励该学生25元食堂代金券;当90x ≥时,奖励该学生35元食堂代金券;方案二:得分低于样本中位数的每位学生奖励10元食堂代金券;得分不低于中位数的每位学生奖励30元食堂代金券.若高一年级组长希望本年级学生获得多于高二年级的奖励,则他应该选择哪种方案?解:(1)设高一年级学生竞赛成绩的平均数为x ,方差为21s .高二年级学生竞赛成绩的平均数为y ,方差为22s .则6515755851595158150x ⨯+⨯+⨯+⨯==,(1分)2222211[15(6581)5(7581)15(8581)15(9581)]144,50s =⨯-+⨯-+⨯-+⨯-=(3分)1(6510751085209510)8150y =⨯+⨯+⨯+⨯=,(4分)2222221[10(6581)10(7581)20(8581)10(9581)]161.650s =⨯-+⨯-+⨯-+⨯-=,(6分)因x y =2212s s <,故高一年级学生这次竞赛成绩比较稳定集中,成绩更好;(7分)(2)按照方案一,高一年级学生获得奖励为:1510(515)2515351175⨯++⨯+⨯=元,而高二年级学生获得奖励为:1010(1020)2510351200⨯++⨯+⨯=元,即按照方案一,高一年级获得奖励少于高二;(9分)按照方案二,依题意,所抽取的100名参加竞赛学生的成绩中位数为90806801082357-+⨯=,则样本中,高一年级学生成绩低于中位数的人数约为682807155152410-++⨯≈人,则高一年级获得奖励为:241026301020⨯+⨯=元;高二年级学生成绩低于中位数的人数约为6828071010202610-++⨯≈人,则高二年级获得奖励为:26102430980⨯+⨯=元.(11分)因1020980>,即按照方案二,高一年级获得奖励多于高二.故若高一年级组长希望本年级学生获得多于高二年级的奖励,则他应该选择方案二.(13分)16.(15分)已知在四边形ABCD 中,ABD △为锐角三角形,对角线AC 与BD 相交于点O,π2,4,4AD AC BD ABD ∠====.(1)求AB ;(2)求四边形ABCD 面积的最大值.解:(1)由余弦定理可得2222πcos 42AB BD AD AB BD +-=⋅,化简为220AB -+=,解得1AB =1,(4分)当1=AB时,因为2146cos 0BAD +-∠=<,与ABD △为锐角三角形不符合,故1AB =.(7分)(2)作,AE CF 垂直BD 于,E F ,设1AOB ∠=∠,(9分)则()1111sin 1sin 1sin 12222ABCD ABD CBD S S S BD AE BD CF BD AO CO BD AC =+=⋅+⋅=∠+∠=⋅∠ ,当sin 11190AC BD ∠=⇒∠=︒⇒⊥,四边形面积最大,最大面积为146262⨯=(15分)17.(15分)如图,在几何体111B C D ABCD -中,平面111//B C D 平面ABCD ,四边形ABCD 为正方形,四边形11BB D D 为平行四边形,四边形11D DCC 为菱形,112,22,120,DC AC D DC E ︒==∠=为棱11C D 的中点,点F 在棱1CC 上,//AE 平面BDF .(1)证明DE ⊥平面ABCD ;(2)求平面1AB D 与平面BDF 夹角的余弦值.解:(1)如图,连接DC 1,因为四边形11D DCC 为菱形,1120︒∠=D DC ,所以160DCC ︒∠=,所以12DC =,因为12,22AD DC AC ===22211AD DC AC +=,所以1AD DC ⊥,又11,,,AD DC DC DC D DC DC ⊂⊥= 平面11CDD C ,所以AD ⊥平面11CDD C ,所以,AD DE AD DC ⊥⊥,(3分)因为四边形11D DCC 为菱形,且1120︒∠=D DC ,所以1111DD DC D C ==,因为E 为棱11C D 的中点,所以11DE C D ⊥,又11//C D CD ,所以DE CD ⊥,(5分)因为,,,DE AD AD DC D AD DC ⊥=⊂ 平面ABCD ,所以DE ⊥平面ABCD .(7分)(2)以D 为坐标原点,,,DA DC DE分别为x 轴、y 轴、z 轴正方向,建立如图所示的空间直角坐标系D xyz -.易知3DE =所以()0,0,0,(2,0,0),(2,2,0),(0,2,0),3)D A B C E ,113),(0,3)C D -,所以1(0,3),(0,2,0),(2,0,3),(2,2,0),(2,0,0)CC DC AE DB DA =-==-== ,1(0,3)DD -= ,设()10,3(01)CF tCC t t t ==-≤≤ ,则(0,2,3)DF DC CF t t =+=- ,(9分)因为//AE 平面BDF ,所以存在唯一的,R λμ∈,使得(2,2,0)(0,2,3)(2,22,3)AE DB DF t t t λμλμλλμμμ=+=+-=+- .所以22,220,33t t λλμμμ=-+-==23t =,所以111114230,,,(2,1,3)33DF DB DD D B DD DB ⎛⎫==+=+= ⎪ ⎪⎝⎭,(11分)设平面BDF 的法向量为()111,,x n y z = ,则00DF n DB n ⎧⋅=⎪⎨⋅=⎪⎩ ,所以1111423033220y x y ⎧=⎪⎨⎪+=⎩,取13y =-,则113,23x z ==,故(3,3,23)n =- ,设平面1AB D 的法向量为()222,,m x y z = ,则100DA m DB m ⎧⋅=⎪⎨⋅=⎪⎩ ,所以222220230x x y z =⎧⎪⎨+=⎪⎩,取23y =,则220,3x z ==-(0,3,3)m =- ,(13分)设平面1AB D 与平面BDF 的夹角为θ,则10cos cos ,43023m n m n m nθ⋅=〈〉===⨯ ,故平面1AB D 与平面BDF 104(15分)18.(17分)已知抛物线C :()2205y px p =<<上一点M 的纵坐标为3,点M 到焦点距离为5.(1)求抛物线C 的方程:(2)过点()1,0作直线交C 于A ,B 两点,过点A ,B 分别作C 的切线1l 与2l ,1l 与2l 相交于点D ,过点A 作直线3l 垂直于1l ,过点B 作直线4l 垂直于2l ,3l 与4l 相交于点E ,1l 、2l 、3l 、4l 分别与x 轴交于点P 、Q 、R 、S .记DPQ V 、DAB 、ABE 、ERS △的面积分别为1S 、2S 、3S 、4S .若3412S S S S λ=,求实数λ的取值范围.解:(1)设(),3M t ,由题意可得9252pt p t =⎧⎪⎨+=⎪⎩,即9522p p +=,(2分)解得1p =或9p =(舍去),所以抛物线C 的方程为22y x =.(4分)(2)如图,设经过()11,A x y ,()22,B x y 两点的直线方程为AB l :1x my =+(m ∈R ,0m ≠),与抛物线方程22y x =联立可得222y my =+,即2220y my --=,2480m ∆=+>∴122y y m +=,122y y =-.∵22y x =,则y =∴'1y y=,(6分)∴过点A 作C 的切线1l 方程为()11111112y y x x y x y y =-+=+,令0y =,得212y x =-,即21,02y P ⎛⎫- ⎪⎝⎭.同理,过点B 作C 的切线2l 方程为2212y y x y =+,令0y =,得222y x =-,即22,02y Q ⎛⎫- ⎪⎝⎭.∴222122y y PQ =-.(8分)联立两直线方程11221212y y x y y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩,解得1212122y y x y y y m ⎧==-⎪⎪⎨+⎪==⎪⎩,即()1,D m -,则D 到直线AB l的距离2D AB d -==又∵过点A 作直线3l 垂直于1l ,直线3l 的方程为311111112y y y x x y y y x y =-++=-++,令0y =,得2112y x =+,即211,02y R ⎛⎫+ ⎪⎝⎭.(10分)同理,直线4l 的方程为32222y y y x y =-++,令0y =,得2212y x =+,即221,02y S ⎛⎫+ ⎪⎝⎭.∴222122y y RS =-.联立两直线方程3111322222y y y x y y y y x y ⎧=-++⎪⎪⎨⎪=-++⎪⎩,解得()2212121212122y y y y x y y y y y ⎧++=+⎪⎪⎨+⎪=-⎪⎩,整理后可得2222x m y m⎧=+⎨=⎩,即()222,2E m m +,则E 到直线AB l的距离E AB d -==.(13分)由上可得22211112222D y y S PQ y m =⋅=-,212d AB S AB d -=⋅=,312E AB S AB d -=⋅=,222141122222E y y S RS y m =⋅=-,(15分)∴2123422S S m S S +==,得2212m λ=<+,故λ的取值范围为()0,1.(17分)19.(17分)超越数得名于欧拉,它的存在是法国数学家刘维尔(Joseph Liouville )最早证明的.一个超越数不是任何一个如下形式的整系数多项式方程的根:11100n n n n a x a x a x a --++++= (0a ,1a ,…,n a ∈Z ,0n a ≠).数学家证明了自然对数的底数e 与圆周率π是超越数.回答下列问题:已知函数()e x n n n f x b x =-(*n ∈N )只有一个正零点.(1)求数列{}n b 的通项公式;(2)(ⅰ)构造整系数方程00n n a x a +=,证明:若N m ∈,则e m 为有理数当且仅当0m =.(ⅱ)数列{}n b 中是否存在不同的三项构成等比数列?若存在,求出这三项的值;否则说明理由.解:(1)若()e x n n n f x b x =-只有一个正零点,可得e ,e 1,x n n x n n b x b x -==(1分)令()e n x g x x -=,()11()e e e n x n x n x g x nx x x n x -----=-=-',令()0g x '<,(,)x n ∈+∞,令()0g x '>,(0,)x n ∈,故()g x 在(0,)n 上单调递增,在(,)n +∞上单调递减,可得()g x 在x n =处取得最大值,且最大值为()e n n g n x -=,(4分)而当0x →时,()0g x →,当x →+∞时,()0g x →,由题意得,当()g x 最大时,符合题意,故e 1n n n b n -=,即e n n n b n -=⋅.(6分)(2)(ⅰ)若0m =,则e 1m =为有理数;若m 正整数,假设e m 为有理数,则e ,,,0m p y p q q q==∈≠Z ,则方程0q y p ⋅-=的根中有有理数,又在方程0m q x p ⋅-=中,发现e x =是它的根,(8分)而已知e 是超越数,故e 不是方程的根,与0q y p ⋅-=矛盾,即e m 不为有理数;综上所述:m ∈N ,e m 为有理数当且仅当0m =;(10分)(ⅱ)若数列{}n b 中存在不同的三项构成等比数列,则()2e e e e m m n n l l m n ---⋅⋅⋅=⋅,可得22e m n l m n l m n l +--=⋅⋅,由方程右边是有理数知左边是有理数,由上问知当且仅当2m n l +=时成立,故2m n l m n m n l l l ⋅==⋅,则()()1m n m n l l ⋅=,设1m x l-=,则(1)m l x =-,(1)n l x =+,则()()111m n x x -⋅+=,将(1)m l x =-,(1)n l x =+代入进行化简,可得()()(1)111l x l x x x -+-⋅+=,故()()11111l x x x x -+⎡⎤-⋅+=⎣⎦,故()()11111x x x x -+-⋅+=,(14分)构造函数()()()()()1ln 11ln 1f x x x x x =--+++,而()()2ln 10f x x ='-<,知()f x 在其定义域内单调递减,又()00f =,故若()()11111x x x x -+-⋅+=,则有0x =,即2m n l m n l ⋅=成立,当且仅当m n l ==时成立.即数列{}n b 中不存在不同的三项构成等比数列.(17分)。
2016年贵州省贵阳市高考数学二模试卷(文科)(附答案解析)

2016年贵州省贵阳市高考数学二模试卷(文科)一、选择题:本大题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合A={x|x<3},B={x|log2x>0},则A∩B=()A.{x|1<x<3}B.{x|1≤x<3}C.{x|x<3}D.{x|x≤1}2. 复数z=(2−i)2在复平面内对应的点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3. 二次函数f(x)=2x2+bx−3(b∈R)零点的个数是()A.0B.1C.2D.44. 圆x2+y2=1与直线y=kx+2没有公共点的充要条件是()A.k∈(−√2,√2)B.k∈(−∞,−√2)∪(√2,+∞)C.k∈(−√3,√3)D.k∈(−∞,−√3)∪(√3,+∞)5. △ABC的内角A、B、C对边分别为a,b,c且满足a6=b4=c3,则sin C−sin Asin A+sin B+sin C=()A.−313B.127C.313D.−7126. 如图,给出的是计算1+13+15+⋯+199+1101的值的一个程序框图,判断框内应填入的条件是()A.i<101?B.i>101?C.i≤101?D.i≥101?7. 若函数y=kx的图像上存在点(x,y)满足约束条件{x+y−3≤0,x−2y−3≤0,x≥1,则实数k的最大值为()A. 12B. 2C.32D. 18. 过点M(2, 0)作圆x2+y2=1的两条切线MA,MB(A,B为切点),则MA→⋅MB→=()A.5√32B.52C.3√32D.329. 将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()A. B. C. D.10. 函数f(x)=A sin(ωx+π6)(A>0, ω>0)的图象与x轴的交点的横坐标构成一个公差为π2的等差数列,要得到函数g(x)=A cosωx的图象,只需将f(x)的图象()A.向左平移π6个单位 B.向右平移π3个单位C.向左平移2π3个单位 D.向右平移2π3个单位11. 过点(−1, 0)作抛物线y=x2+x+1的切线,则其中一条切线为()A.2x+y+2=0B.3x−y+3=0C.x+y+1=0D.x−y+1=012. 抛物线y 2=2px(p >0)的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足∠AFB =90∘.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则|MN →||AB →|的最大值为( )A.√22B.√32C.1D.√3二、填空题:本大题共4小题,每小题5分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是( )
A.﹣2B.﹣4C.﹣6D.﹣8
9.阅读如图所示的程序框图,若输出的结果是63,则判断框内n的值可为( )
A.8B.7C.6D.5
15.已知命题p:∃x∈R,ax2+2x+1≤0是假命题,则实数a的取值范围是.
16.数列{an}中,已知对任意n∈N*,a1+a2+a3+…+an=3n﹣1,则 =.
三、简答题:解答应写出文字说明,证明过程或演算步骤)
17.在△ABC中,角A,B,C的对边分别为a,b,c,且满足bcosA=(2c+a)cos(A+C).
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)若点P(x,y)是直线l上位于圆内的动点(含端点),求 x+y的最大值和最小值.
[选修4-5:不等式选讲].
24.已知函数f(x)=m﹣|x﹣2|(m>0),且f(x+2)≥0的解集为[﹣3,3]
(Ⅰ)求m的值;
(Ⅱ)若a>0,b>0,c>0且 + + = ,求证:2a+3b+4c≥9.
12.若函数f(x)=﹣ lnx﹣ (a>0,b>0)的图象在x=1处的切线与圆x2+y2=1相切,则a+b的最大值是( )
A.4B.2 C.2D.
二、填空题:(本题共4小题,每题5分,共20分)
13.设函数f(x)= ,则f(f(﹣1))的值为.
14.已知平面向量 , 满足| |=3,| |=2, 与 的夹角为60°,若( ﹣m )⊥ ,则实数m=.
2016年贵州省普通高等学校高考数学模拟试卷(文科)
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|x=2k﹣1,k∈Z},B={﹣1,0,1,2,3,4},则集合A∩B中元素的个数为( )
A.1B.2C.3D.4
2.已知复数z满足(z﹣2)i=1+i(i是虚数单位),则z=( )
2016年贵州省普通高等学校高考数学模拟试卷(文科)
参考答案与试题解析
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|x=2k﹣1,k∈Z},B={﹣1,0,1,2,3,4},则集合A∩B中元素的个数为( )
A.1B.2C.3D.4
10.如图,圆与两坐标轴分别切于A,B两点,圆上一动点P从A开始沿圆周按逆时针方向匀速旋转回到A点,则△OBP的面积随时间变化的图象符合( )
A. B. C. D.
11.经过双曲线 ﹣y2=1右焦点的直线与双曲线交于A,B两点,若|AB|=4,则这样的直线的条数为( )
A.4条B.3条C.2条D.1条
20.设椭圆C: + =1(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且F1恰是QF2的中点.若过A、Q、F2三点的圆恰好与直线l:x﹣ y﹣3=0相切.
(1)求椭பைடு நூலகம்C的方程;
(2)设直线l1:y=x+2与椭圆C交于G、H两点.在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形是菱形.如果存在,求出m的取值范围,如果不存在,请说明理由.
A.50B.60C.70D.80
5.不等式组 所表示的平面区域的面积为( )
A.1B.2C.3D.4
6.一个几何体的三视图如图所示,其中正视图是正三角形,则该几何体的体积为( )
A. B.8C. D.
7.设α、β是两个不重合的平面,m、n是两条不重合的直线,则以下结论错误的是( )
A.若α∥β,m⊂α,则m∥βB.若m∥α,m∥β,α∩β=n,则m∥n
22.已知BC为圆O的直径,点A为圆周上一点,AD⊥BC于点D,过点A作圆O的切线交BC的延长线于点P,过点B作BE垂直PA的延长线于点E.求证:
(1)PA•PD=PE•PC;
(2)AD=AE.
[选修4-4:坐标系与参数方程]
23.已知直线l的参数方程为 (t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cos(θ﹣ )
19.在某次考试中,全部考生参加了“科目一”和“科目二”两个科目的考试,每科成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩数据统计如图所示,其中“科目一”成绩为D的考生恰有4人.
(1)分别求该考场的考生中“科目一”和“科目二”成绩为A的考生人数;
(2)已知在该考场的考生中,恰有2人的两科成绩均为A,在至少一科成绩为A的考生中,随机抽取2人进行访谈,求这2人的两科成绩均为A的概率.
(Ⅰ)求角B的大小;
(Ⅱ)求函数f(x)=2sin2x+sin(2x﹣B)(x∈R)的最大值.
18.如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD= AB=2.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到如图2所示的几何体D﹣ABC
(Ⅰ)求证:AD⊥平面BCD;
(Ⅱ)求点C到平面ABD的距离.
A.3﹣iB.﹣3+iC.﹣3﹣iD.3+i
3.在等差数列{an}中,a3﹣a2=﹣2,a7=﹣2,则a9=( )
A.2B.﹣2C.﹣4D.﹣6
4.某工厂生产A、B、C三种不同型号的产品,其数量之比依次是3:4:7,现在用分层抽样的方法抽出样本容量为n的样本,样本中A型号产品有15件,那么n等于( )
21.已知函数f(x)= x2﹣mlnx,g(x)= x2﹣2x,F(x)=f(x)﹣g(x)
(Ⅰ)当m>0,求函数f(x)的单调区间;
(Ⅱ)当m=﹣1时,试问过点(2,5)可作多少条直线与曲线y=F(x)相切?说明理由.
请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]
【考点】交集及其运算.
【分析】列举出A中的元素,求出两集合的交集,即可作出判断.
【解答】解:∵A={x|x=2k﹣1,k∈Z}={…,﹣3,﹣1,1,3,5,…},B={﹣1,0,1,2,3,4},
∴A∩B={﹣1,1,3},
则集合A∩B中元素的个数为3,
故选:C.