应用多元统计分析试题及答案
应用多元统计分析试题及答案(1)

应用多元统计分析试题及答案(1)多元统计分析是现代统计学中不可或缺的一部分,它是用于对不同数据进行相关分析的高级统计方法。
对于需要进行多因素分析的问题,多元统计分析是必须掌握的技能。
以下是一些应用多元统计分析的试题及答案。
试题1:假设你要进行一项研究,以评估学生在学期末考试成绩与他们的就业情况之间是否存在关联。
你将分析什么类型的多元统计分析?答案:此问题需要进行一种二元多元回归分析。
此方法可以用于探索学期末考试成绩和就业情况之间的相关性。
通过回归分析,我们可以计算出两个变量之间的相关系数以及建立一个数学模型来预测就业成功与否的可能性。
试题2:你是一家旅游公司的行销经理,你想了解你们的财务状况、品牌信誉和市场定位之间的关系。
采用哪种多元统计分析来解决这个问题?答案:这个问题需要进行一种因子分析。
因子分析是一种常用的多元统计技术,可用于探索大量变量之间的共性或相似性。
因此,行销经理可以使用因子分析来探究这三个因素之间的关系,以帮助公司更好地了解市场需求、推广策略和产品定位。
试题3:你是一名医学研究员,你需要研究新型药物的效果以及它是否与特定人群的特征相关。
哪种多元统计分析可用于研究?答案:这个问题需要使用一种路径分析方法。
路径分析是一种分层回归分析技术,可用于探索变量间的直接和间接影响关系。
因此,研究人员可以使用路径分析来研究新型药物的效果以及与特定人群特征的相关性,以便更好地理解治疗效果的影响因素。
试题4:你是一名市场分析师,你需要研究不同年龄、性别和教育水平的人群之间的消费习惯。
采用哪种多元统计分析来解决这个问题?答案:这个问题需要使用一种聚类分析方法。
聚类分析是一种将成为节点的相似对象分组的过程。
因此,市场分析师可以使用聚类分析来将相似的人群以及他们的共同消费习惯分成几个类别,以便更好地了解不同年龄、性别和教育水平背景下的人群之间的消费习惯和偏好。
结论:多元统计分析是一种有用的技术,可以用于探索大量不同变量之间的关系,对于需要分析多个变量之间关系的问题,多元统计分析是必须学习的基本技能。
多元统计分析期末试题及答案

22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.答案:010312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。
答案:W 3(10,∑)()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵答案:211342113611146R ⎛⎫-⎪ ⎪ ⎪=-- ⎪ ⎪ ⎪- ⎪⎝⎭4、__________, __________,(),123设X=xx x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫ ⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭________________。
答案:0.872 1 1.743215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。
答案:T 2(15,p )或(15p/(16-p))F (p ,n-p )12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?答案:2312131231112213312121,2,10021021210001102231642100102x x y y x x x x x x y x x y x x x y E y y V y -⎛⎫==+ ⎪⎝⎭-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎪=- ⎪ ⎪⎝⎭ ⎪⎝⎭、令则01-101-101-11234411002141021061661620162040210616(1,61620)3162040y y N ⎛⎫⎛⎫⎪⎪- ⎪⎪ ⎪⎪-⎝⎭⎝⎭--⎛⎫ ⎪=- ⎪⎪-⎝⎭--⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭1-1故,的联合分布为故不独立。
应用多元统计分析试题及答案

一、填空题:1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法.2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著.3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。
通常聚类分析分为 Q型聚类和 R型聚类。
4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。
5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。
6、若()(,), Px N αμα∑=1,2,3….n且相互独立,则样本均值向量x服从的分布为_x~N(μ,Σ/n)_。
二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。
在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。
选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。
被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。
2、简述相应分析的基本思想。
相应分析,是指对两个定性变量的多种水平进行分析。
设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。
对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。
要寻求列联表列因素A和行因素B的基本分析特征和最优列联表示。
相应分析即是通过列联表的转换,使得因素 A 和因素B具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。
把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A、B的联系。
3、简述费希尔判别法的基本思想。
从k个总体中抽取具有p个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数系数:确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。
将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。
(完整word版)多元统计分析期末试题及答案

22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑L 、设则=服从。
()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪ ⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。
215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--L 、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。
12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?(),123设X=x x x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
应用多元统计分析课后题答案

c) c)2
2( x1
a)( x2
c)]
其中 a x1 b , c x2 d 。求 (1)随机变量 X1 和 X 2 的边缘密度函数、均值和方差; (2)随机变量 X1 和 X 2 的协方差和相关系数; (3)判断 X1 和 X 2 是否相互独立。
(1)解:随机变量 X1 和 X 2 的边缘密度函数、均值和方差;
12
2 2
1/
2
exp
1 2
(x
μ)
12 21
12
2 2
1
(x
μ)
。
2.3 已知随机向量 ( X1 X 2 ) 的联合密度函数为
f
( x1 ,
x2 )
2[(d
c)( x1
a)
(b a)(x2 (b a)2 (d
μ)
1 n 1
n i 1
E(Xi
-
μ)(
X i
-
μ)
nE(X
μ)(X
μ)
Σ
。
故 S 为 Σ 的无偏估计。 n 1
2.9.设 X(1) , X(2) , ..., X(n) 是从多元正态分布 X ~ N p (μ, Σ) 抽出的一个简单随机样本,试求 S
c) 2(x1 a)(x2 a)2(d c)2
c)]
dx2
2(d c)(x1 a)x2 d dc 2[(b a)t 2(x1 a)t] dt
(b a)2 (d c)2
多元统计分析期末试题及答案

22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。
()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪ ⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。
215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。
(),123设X=x x x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫ ⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
多元统计分析期末试题及答案

⎛11、设X ~N 2(μ,∑),其中X =(x 1,x 2),μ=(μ1,μ2),∑=σ2⎝ρ则Cov(x 1+x 2,x 1-x 2)=____.ρ⎫1⎪⎭,2、设Xi~N 3(μ,∑),i =1,服从_________。
,10,则W=∑(X i-μ)(X i-μ)'i =110⎛4x 3)',且协方差矩阵∑= -43⎝-43⎫9-2⎪,⎪-216⎪⎭3、设随机向量X =(x1x2则它的相关矩阵R =___________________4、设X=(x1⎛1- 3 -11R = 3 2 0 ⎝31x2x3)的相关系数矩阵通过因子分析分解为,2⎫3⎪⎛0.9340⎫⎛0.128⎫⎪0.934-0.4170.835⎛⎫ ⎪ ⎪0⎪= -0.4170.894⎪ +0.027⎪⎪⎪00.8940.447⎭ ⎝ ⎪ 0.103⎪⎪⎝0.8350.447⎭⎝⎭⎪1⎪⎭X 1的共性方差h 12=__________ __________,X 1,的方差σ11=________________。
公因子f 1对X 的贡献g 12=5、设X i,i =1,,16是来自多元正态总体N p(μ,∑),X 和A 分别为正态总体N p(μ,∑)的样本均值和样本离差矩阵,则T 2=15[4(X -μ)]'A -1[4(X -μ)]~___________。
⎛16-42⎫1、设X =(x 1,x 2,x 3)~N 3(μ,∑),其中μ=(1,0,-2)',∑= -44-1⎪,⎪ 2-14⎪⎝⎭⎛x 2-x 3⎫试判断x 1+2x 3与 ⎪是否独立?x ⎝1⎭2、对某地区农村的6名2周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值μ0=(90,58,16)',现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
多元统计分析试题(A卷)(答案)

多元统计分析试题(A卷)(答案)《多元统计分析》试卷一、填空题(每空2分,共40分)1、若且相互独立,则样本均值向量X服从的分布为2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。
3、判别分析是判别样品的一种统计方法,常用的判别方法有___、、、。
4、Q型聚类是指对_进行聚类,R型聚类是指对进行聚类。
'5、设样品,总体X~Np(,对样品进行分类常用的距离有:明氏距离,马氏距离,兰氏距离6、因子分析中因子载荷系数aij的统计意义是_第i个变量与第j个公因子的相关系数。
7、一元回归的数学模型是:,多元回归的数学模型是:。
8、对应分析是将和结合起来进行的统计分析方法。
9、典型相关分析是研究两组变量之间相关关系的一种多元统计方法。
二、计算题(每小题10分,共40分)1、设三维随机向量,其中130,问X1与X2是否独立?和X3是否独立?为什么?解:因为,所以X1与X2不独立。
把协差矩阵写成分块矩阵,的协差矩阵为因为,而,所以和X3是不相关的,而正态分布不相关与相互独立是等价的,所以和X3是独立的。
2、设抽了五个样品,每个样品只测了一个指标,它们分别是1 ,2 ,4.5 ,6 ,8。
若样本间采用明氏距离,试用最长距离法对其进行分类,要求给出聚类图。
x1013.55702.54601.53.502x2x3解:样品与样品之间的明氏距离为:D(0)样品最短距离是1,故把X1与X2合并为一类,计算类与类之间距离(最长距离法){x1,x2}03.55701.53.502x3x4得距离阵 D(1)类与类的最短距离是1.5,故把X3与X4合并为一类,计算类与类之间距离(最长距离法)得距离阵D(2){x1,x2}057{x3,x4}x5类与类的最短距离是3.5,故把{X3,X4}与X5合并为一类,计算类与类之间距离(最{x1,x2}07长距离法)得距离阵D(3)分类与聚类图(略)(请你们自己做)3、设变量X1,X2,X3的相关阵为0.631.000.350.35,R的特征值和单位化特征向量分别为TTT(1)取公共因子个数为2,求因子载荷阵A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题:
1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法.
2、回归参数显着性检验是检验解释变量对被解释变量的影响是否着.
3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。
通常聚类分析分为 Q型聚类和 R型聚类。
4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。
5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。
6、若
()
(,), P
x N αμα∑
:=1,2,3….n且相互独立,则样本均值向量x服从的分布为_x~N(μ,Σ/n)_。
二、简答
1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。
在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。
选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。
被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。
2、简述相应分析的基本思想。
相应分析,是指对两个定性变量的多种水平进行分析。
设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。
对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。
要寻求列联表列因素A和行因素B的基本分析特征和最优列联表示。
相应分析即是通过列联表的转换,使得因素 A 和因素B具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。
把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A、B的联系。
3、简述费希尔判别法的基本思想。
从k个总体中抽取具有p个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数
系数:
确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。
将新样
品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。
5、简述多元统计分析中协差阵检验的步骤 第一,提出待检验的假设 和H1;
第二,给出检验的统计量及其服从的分布;
第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定域;
第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。
协差阵的检验
检验0=ΣΣ
0p H =ΣI : /2
/21exp 2np n e tr n λ⎧⎫⎛⎫
=-⎨⎬ ⎪
⎩⎭⎝⎭
S S
00p H =≠ΣΣI : /2
/2**1exp 2np n e tr n λ⎧⎫⎛⎫
=-⎨⎬ ⎪
⎩⎭⎝⎭
S S
检验12k ===ΣΣΣL 012k H ===ΣΣΣL :
统计量/2/2
/2
/2
1
1
i i k
k
n n pn np k i
i
i i n
n
λ===∏∏S
S
6、在进行系统聚类分析时,不同的类间距离计算方法有何区别请举例说明。
设d ij 表示样品X i 与X j 之间距离,用D ij 表示类G i 与G j 之间的距离。
(1). 最短距离法
,min
i k j r
kr ij X G X G D d ∈∈=
min{,}kp kq D D =
(2)最长距离法
,max
i p j q
pq ij X G X G D d ∈∈=
,max
i k j r
kr ij X G X G D d ∈∈=
max{,}kp kq D D =
(3)中间距离法
其中
(4)重心法
ij G X G X ij d D j
j i i ∈∈=
,min
2
2222
121pq
kq kp kr D D D D β++=
2()()pq p q p q D X X X X '=-
- )(1
q q p p r
r
X n X n n X +=
22222
p q p q kr
kp
kq
pq r
r
r n n n n D D D D n n n =
+
-
(5)类平均法
2
21
i p j j
pq ij X G X G p q
D d n n ∈∈=
∑∑
221
i k j r
kr ij X G X G k r
D d n n ∈∈=
∑∑
2
2
p q kp kq r
r
n n D D n n =
+
(6)可变类平均法
其中是可变的且 <1 (7)可变法
2222
1()2
kr kp kq pq D D D D ββ-=
++ 其中是可变的且 <1 (8)离差平方和法
1
()()t
n t it t it t t S X X X X ='=--∑
2222
k p k q k kr
kp
kq pq r k
r k
r k
n n n n n D D D D n n n n n n ++=
+
-
+++
7、比较主成分分析与因子分析的异同点。
相同点:①两种分析方法都是一种降维、简化数据的技术。
②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。
因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。
因子分析也可以说成是主成分分析的逆问题。
如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。
主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。
而因子分析是从显在变量去提炼潜在因子的过程。
此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。
9、进行相应分析时在对因素A 和因素B 进行相应分析之前没有必要进行独立性检验为什么
222
2
(1)(
)p q kr kp kq pq r r
n n D D D D n n ββ=-++
有必要,如果因素A和因素B独立,则没有必要进行相应分析;如果因素A和因素B不独立,可以进一步通过相应分析考察两因素各个水平之间的相关关系。