MOS场效应晶体管.ppt
合集下载
金属—氧化物—半导体场效应晶体管PPT课件

(6-22) 的关系称为MOS系统的电容—电压特性。
1 dVG dV0 d s
C dQM dQM dQM
(6-23)
若令
C0
d QM d V0
CS
dQM
d S
dQS
d S
(6-24) (6-25)
第15页/共76页
6.2 理想MOS电容器
则
1 1 1 C C0 CS
C0 =绝缘层单位面积上的电容,
半导体表面就存在表面势 S >0。因此,欲使能带平直,即除去功函数差所带来的影
响,就必须在金属电极上加一负电压。
VG1
' ms
m'
s'
(6-56)
S
这个电压一部分用来拉平二氧化硅的能带,一部分用来拉平半导体的能带,
使
第31页/共76页
6.4 实际MOS的电容—电压特性
第32页/共76页
6.4 实际MOS的电容—电压特性
6.4实际MOS的电容-电压特性
• 功函数差的影响
第30页/共76页
6.4 实际MOS的电容—电压特性
以铝电极和P型硅衬底为例。铝的功函数比型硅的小,前者的费米能级比 后者的高
。接q触m 前,q功S 函数差EFM EFS
由于功-函数的不=同,-铝( —二氧化硅—P型)<硅0 MOS系统在没有外加偏压的时候,在
qNa
4kS 0 f
qNa
QB qNa xdm
总表面空间电荷
QS QI QB QI qNa xdm
QI
为反型层中单位面积下的可动电荷即沟道电荷:
QI
xI 0
qnI
x dx
(6-19) (6-20) (6-21)
MOS场效应晶体管74026-PPT精选文档

正常 放大 时外 加偏 置电 压的 要求
VGS<0 ,使栅极 PN 结反偏,iG=0。
VDS>0 , 使 形 成 漏 电流iD。
问题:如果是P沟道,直流偏置应如何加?
栅源电压对沟道的控制作用
(动画2-9)
VGS 继续减小,沟道继续变窄, ID继续减小直至为0。当 当 VV =0时,在漏、源之间加有一定电压时,在漏源 GS 当 GS<0时,PN结反偏,形成耗尽层,漏源间的 漏极电流为零时所对应的栅源电压 VGS称为夹断电压 VP。 间将形成多子的漂移运动,产生漏极电流。 沟道将变窄,ID将减小。
断”。
特性曲线
vGS 2 iD IDSS (1 ) VP
v v v V G D G SD S P
(a) N沟道结型FET (b) 输出特性曲线
(b) N沟道结型FET 转移特性曲线
各类场效应三极管的特性曲线
N 沟 道 增 强 型 P 沟 道 增 强 型
绝 缘 栅 场 效 应 管
各类场效应三极管的特性曲线
N 沟 道 耗 尽 型 P 沟 道 耗 尽 型
绝 缘 栅 场 效 应 管
各类场效应三极管的特性曲线
结 型 场 效 应 管
N 沟 道
P 沟 道
场效应管参数 开启电压VGS(th) (或VT)
开启电压是 MOS增强型管的参数,栅源电压 小于开启电压的绝对值, 场效应管不能导通。
§2.3 MOS场效应晶体管
分类
Junction type Field Effect Transistor
ቤተ መጻሕፍቲ ባይዱ
场 效 应 管
结型场效应三极管JFET
N沟道
P沟道
绝缘栅型场效应三极管IGFET Insulated Gate Field Effect Transistor
MOS场效应晶体管的结构 工作原理幻灯片PPT

B G
B
N沟道增强型MOSFET的符号
如左图所示。左面的一个衬底在内部
S
S
与源极相连,右面的一个没有连接,
使用时需要在外部连接。动画2-3
2 N沟道增强型MOSFET的工作原理
对N沟道增强型MOS场效应三极管的工作原理,分两个方面进展讨
论,一是栅源电压UGS对沟道会产生影响,二是漏源电压UDS也会对
2.漏源电压UDS的控制作用
设UGS>UGS(th),增加UDS,此时沟道的变化如下。
U DS
U G S> U G S (th )
ID
SG
预夹断
D
++ ++
S iO 2
N+
N+
P 型衬底
空穴 电子 正离子 负离子
显然漏源电压会对沟道产生影响,因 为源极和衬底相连接,所以参加UDS后, UDS将沿漏到源逐渐降落在沟道内,漏极 和衬底之间反偏最大,PN结的宽度最大。 所以参加UDS后,在漏源之间会形成一个 倾斜的PN结区,从而影响沟道的导电性。
I D/ m A
4 3 2 1
O 123
U th(on)
U DS 10V
4
U GS /V
N沟道增强型MOSFET的转移 特性曲线如左图所示,它是说明栅源
电压UGS对漏极电流ID的控制关系,
可用这个关系式来表达,这条特性曲 线称为转移特性曲线。
转移特性曲线的斜率gm反映了
栅源电压对漏极电流的控制作用。
当UGS=0时,对应的漏极电流用IDSS表示。当UGS>0时,将使ID进 一步增加。UGS<0时,随着UGS的减小漏极电流逐渐减小,直至ID=0。 对应ID=0的UGS称为夹断电压,用符号UGS(off)表示,有时也用UP表示。
场效应晶体管基础PPT课件

Q'SD (max) eNa xdT
金属 氧化物 p型半导体 金属 氧化物 p型半导体
VG VOX s ms
s 2 f p
VOX Q'SD (max) Q'ss COX
VTP
Q'SD (max) Q'ss COX
ms 2 f p
VTP
Q'SD (max) COX
OX
tOX
8、理想 C-V特性
C'
C 'OX
堆积
C 'OX
C 'FB
低频
C 'SD
强反型 中反型
耗尽
C 'min 高频 VFB 0
VT
VG
C 'OX
OX
tOX
C 'FB tOX
LD
OX OX LD s
sVth
eN a
C 'min tOX
xdT
OX OX xdT s
Q'ss
Ec EFi EF Ev
金属 氧化物 半导体
VG VOX s ms
s 0
VOX
Q'm Q'ss COX COX
VFB
Q'ss ms COX
Q'm Q'ss 0
5、 阈值电压
eVOX
es
e f p
Ec EFi EF Ev
Q'mT
Q'ss
xdT
tox
1 2
ms
Eg m 2e f p
第章电力场效应晶体管PPT课件

缓二极管反向恢复时间。
2、结温的影响。
功率MOSFET的结温对CSOA没有直接影响,但是器件的电压和电流直接受结温 高低的影响。
3、线路引线电感的影响。
电路中的引线电感在二极管反向恢复过程会产生反电势,使器件承受很高的峰
值电压。二极管换向速度越快或引线电感越大,器件承受的峰值电压越高。过高的
电压使对器件CSOA的要求更加苛刻。为此,应尽量缩短电路引线,以便使引线电
a) 测试电路 b) 开关过程波形
降时间之和。
up—脉冲信号源,Rs—信号源内阻, RG—栅极电阻,
RL—负载电阻,RF—检测漏极电流
--
9
6.3
功率MOSFET的主要参数
1、静态参数
1) 通态电阻Ron
在确定的栅压UGS下,由可调电阻区进入饱和区时的直流电阻。
——它是影响最大输出功率的重要参数,在开关电路中决定了输出幅 度和自身损耗的大小。
61mosfet的结构和工作原理62功率mosfet的基本特性63功率mosfet的主要参数64功率mosfet的安全工作区65功率mosfet的栅极驱动电路功率场效应晶体管mosfet也分为结型和绝缘栅型类似小功率fieldeffecttransistorfet但通常主要指绝缘栅型中的mos型metaloxidesemiconductorfet简称功率mosfetpowermosfet结型功率场效应晶体管一般称作静电感应晶体管staticinductiontransistorsit功率场效应晶体管mosfet电流容量小耐压低一般只适用于功率不超过10kw的功率电子装置
器件在关断过程中承受很高的再加电压,即dUDS/dt 。
——器件的动态dUDS/dt耐量与本身的耐压水平密切相关。耐压越高, dUDS/dt的耐量越大。
《MOS管教程》课件

利用两个或多个MOS管的 串并联,可以实现与逻辑 功能。
OR门
利用两个或多个MOS管的 串并联,可以实现或逻辑 功能。
NOT门
通过一个MOS管可以实现 非逻辑功能。
04
MOS管的驱动与保护
驱动电路
栅极驱动电路
提供合适的栅极电压,使MOS管正常工作。
源极驱动电路
控制源极的电压,使MOS管在正确的状态下工作。
音频放大
音频功率放大
利用MOS管的放大特性,可以用于音 频信号的功率放大,广泛应用于音响 设备中。
耳机驱动
音频信号处理
在音频信号处理电路中,MOS管可以 作为运算放大器或比较器使用,实现 音频信号的滤波、均衡等处理。
通过控制MOS管的导通和截止,可以 实现耳机的音量控制和音源切换。
数字逻辑门
AND门
漏极驱动电路
控制漏极的电流,使MOS管在合适的电流下工作。
保护电路
01
过流保护电路
当电流过大时,自动切断电源, 防止MOS管烧毁。
02
过压保护电路
03
欠压保护电路
当电压过高时,自动切断电源, 防止MOS管损坏。
当电压过低时,自动切断电源, 防止MOS管工作异常。
安全工作区
电压安全工作区
确保MOS管在正常工作电压范围内工作,避免过压或欠压。
预防措施
在电路设计时,应充分考虑导通电阻的影响,并留有一定的余量。
开关噪声
总结词
开关过程中产生的噪声
详细描述
MOS管在开关过程中会产生噪声,这种噪 声可能会对周围电路产生干扰。
解决方案
预防措施
采用低噪声的MOS管产品,并合理设计电 路布局和布线,减小电磁干扰。
OR门
利用两个或多个MOS管的 串并联,可以实现或逻辑 功能。
NOT门
通过一个MOS管可以实现 非逻辑功能。
04
MOS管的驱动与保护
驱动电路
栅极驱动电路
提供合适的栅极电压,使MOS管正常工作。
源极驱动电路
控制源极的电压,使MOS管在正确的状态下工作。
音频放大
音频功率放大
利用MOS管的放大特性,可以用于音 频信号的功率放大,广泛应用于音响 设备中。
耳机驱动
音频信号处理
在音频信号处理电路中,MOS管可以 作为运算放大器或比较器使用,实现 音频信号的滤波、均衡等处理。
通过控制MOS管的导通和截止,可以 实现耳机的音量控制和音源切换。
数字逻辑门
AND门
漏极驱动电路
控制漏极的电流,使MOS管在合适的电流下工作。
保护电路
01
过流保护电路
当电流过大时,自动切断电源, 防止MOS管烧毁。
02
过压保护电路
03
欠压保护电路
当电压过高时,自动切断电源, 防止MOS管损坏。
当电压过低时,自动切断电源, 防止MOS管工作异常。
安全工作区
电压安全工作区
确保MOS管在正常工作电压范围内工作,避免过压或欠压。
预防措施
在电路设计时,应充分考虑导通电阻的影响,并留有一定的余量。
开关噪声
总结词
开关过程中产生的噪声
详细描述
MOS管在开关过程中会产生噪声,这种噪 声可能会对周围电路产生干扰。
解决方案
预防措施
采用低噪声的MOS管产品,并合理设计电 路布局和布线,减小电磁干扰。
场效应晶体管-MOSFE(4)幻灯片PPT

南京大学
半导体器件原理
南京大学
半导体器件原理
〔3〕MOS场效应管的特征
双边对称:电学性质上源漏可相互交换。 单极性:一种载流子参与导电。
高输入阻抗:栅和其他端点之间不存在直流通道。 电压控制:输入功率很低而有较高的输出能力。
自隔离:不同晶体管之间由于背靠背二极管的作用
南京大学
半导体器件原理
MOSFET的根本构造图
命关系不大〕。 其它:工艺卫生要求较高,速度较低。
南京大学
半导体器件原理
南京大学
半导体器件原理
南京大学
半导体器件原理
Roadmap to the Future
1 9 9 7 1 9 9 9 2 0 0 1 M i n i m u m s i z e ( n m ) 2 5 0 1 8 0 1 5 0 D e v i c e s / c h i p ( 1 0 6 ) 1 1 2 1 4 0 F r e q u e n c y ( M H z ) 7 5 0 1 2 0 0 1 4 0 0 M i n .p o w e r s u p p l y1 . 8 - 2 . 51 . 5 - 1 . 81 . 2 - 1 . 5
• 在理想的情形,由于在Si中没有净的电流存在, 因此,在各种栅压条件下, Si内费米能级将保持 平直,这意味着在各种栅压下,半导体都可作为 热平衡状态处理。
• 通常将Si外表电势相对于Si体内电势的变化称为 外表势。
• 在各种栅压条件下,MOS构造的能带将会出现: 积累、平带、耗尽、反型等几种情形。
南京大学
半导体器件原理
性能比较 输入阻抗高:〔103-106 与109-1015 〕。 噪声系数小。多子输运电流,不存在散粒噪声和配分
半导体器件原理
南京大学
半导体器件原理
〔3〕MOS场效应管的特征
双边对称:电学性质上源漏可相互交换。 单极性:一种载流子参与导电。
高输入阻抗:栅和其他端点之间不存在直流通道。 电压控制:输入功率很低而有较高的输出能力。
自隔离:不同晶体管之间由于背靠背二极管的作用
南京大学
半导体器件原理
MOSFET的根本构造图
命关系不大〕。 其它:工艺卫生要求较高,速度较低。
南京大学
半导体器件原理
南京大学
半导体器件原理
南京大学
半导体器件原理
Roadmap to the Future
1 9 9 7 1 9 9 9 2 0 0 1 M i n i m u m s i z e ( n m ) 2 5 0 1 8 0 1 5 0 D e v i c e s / c h i p ( 1 0 6 ) 1 1 2 1 4 0 F r e q u e n c y ( M H z ) 7 5 0 1 2 0 0 1 4 0 0 M i n .p o w e r s u p p l y1 . 8 - 2 . 51 . 5 - 1 . 81 . 2 - 1 . 5
• 在理想的情形,由于在Si中没有净的电流存在, 因此,在各种栅压条件下, Si内费米能级将保持 平直,这意味着在各种栅压下,半导体都可作为 热平衡状态处理。
• 通常将Si外表电势相对于Si体内电势的变化称为 外表势。
• 在各种栅压条件下,MOS构造的能带将会出现: 积累、平带、耗尽、反型等几种情形。
南京大学
半导体器件原理
性能比较 输入阻抗高:〔103-106 与109-1015 〕。 噪声系数小。多子输运电流,不存在散粒噪声和配分
《第五章MOS器件》PPT课件

• 对于MOSFET来说,最令人关注的是反型的 表面状态。当栅偏压VG 0时,P型半导 体表面的电子浓度将大于空穴浓度,形成 与原来半导体导电类型相反的N型导电层, 它不是因掺杂而形成的,而是由于外加电 压产生电场而在原P型半导体表面感应出来 的,故称为感应反型层。这一反型层与P型 衬底之间被耗尽层隔开,它是MOSFET的导 电沟道,是器件是否正常工作的关键。反 型层与衬底间的P-N结常称为感应结。
电荷。单位为C/cm2。 QGQS 0
• 由于Q0是不变的,因此
2021/4/27
实用文档
15
中国科学技术大学物理系微电子专业
6、半导体表面状态
2021/4/27
实用文档
16
积累:
电荷分布 QS
中国科学技术大学物理系微电子专业
积累情况下能带图及电荷分布
-d
x
Qm
EiEF
PP nie
kT
E(X) 电场分布 靠近氧化层的半导体表面
形成空穴积累
x
2021/4/27
实用文档
17
耗尽:
Vg>0
EF
2021/4/27
中国科学技术大学物理系微电子专业
Ec
Ei EF E
v
(x) Qm
电荷分布
wx -d
电场分布
QscqNAW
E(X)
实用文档
x
18
强反型:
中国科学技术大学物理系微电子专业
2021/4/27
np nieEFEik T
实用文档
氧化物陷阱电荷Qot:和SiO2的缺陷有关,分布在SiO2 层内,和工艺过程有关的Qot可以通过低温退火除掉 大部分。
可动离子电荷Qm:如Na+等碱金属离子,在高温和高 压下工作时,它们可以在氧化层内移动。因此,在