华东师范大学出版社七年级上册数学知识点总结
华东师大版七年级数学上册知识点总结

七年级数学重点知识记录第二章 一、有理数(一)正、负数相反意义的量 如果用正数表示某种意义的量,那么负数就表示其相反意义的量;拓展:①具有相反意义的量是成对出现的,且不要丢掉单位;正数和负数零既不是正数,也不是负数; 正数>0>负数;负数前面的“—”号,表示这个数的性质,是性质符号;正数前面的“+”号可以省略;常用的一些符号和数学语言的含义: ⑴ a>0,表明a 是正数. ⑵ a<0,表明a 是负数.⑶ a ≥0,表明a 是非负数,即a 是正数或a 为0. ⑷ a≤0,表明a 是非正数,即a 是负数或a 为0.有理数及其分类定义:整数和分数统称为有理数。
按整数、分数的关系分类 按正负分类{负分数正分数分数负整数正整数整数有理数0⎩⎨⎧⎩⎨⎧{{负分数负整数负有理数正分数正整数正有理数有理数0⎩⎨⎧ 非正整数=0+负整数; 非负整数=0+正整数; 非正分数=负分数; 非负分数=正分数;非正数=0+负数; 非负数=0+正数; 非正有理数=0+负有理数; 非负有理数=0+正有理数;π是无理数,跟π有关的都是无理数;数集把一些数放在一起,就组成一个数的集合,简称数集; 表达形式:①用圈表示;②用大括号表示;有理数组成=有理数集; 整数组成=整数集;负数组成=负数集; 正整数+0组成的=非负整数集 等等;用数集表示数时,若这个数集中有无数多个数,则要加“…”。
填数集有两种方法:一种是逐个判断给出的数;二种是逐个填写相关的数集;(二)数轴 规定了原点、正方向和单位长度的直线叫做数轴;数轴是一条直线,可以向两端无限延伸;所有有理数都可以用数轴上的点来表示;数轴上的点并不都表示有理数;在数轴上表示有理数,首先必须准确画出数轴,并标注刻度,找出对应点,并在该点正上方标注数字;在数轴上比较数的大小 在数轴上表示的两个数,右边的数总比左边的数大,简称左小右大. 正数都大于零,负数都小于零,正数大于负数.数轴上的点的移动,要注意方向(左右)和距离(单位长度个数)。
华东师范大学出版社七年级上册数学知识点总结

华东师范大学出版社七年级上册数学知识点总结第1章走进数学世界数学伴我们成长,测量、称重、计算等都与数学有关.1、数学与现实生活密切联系,人类离不开数学.2、人人都能学好数学.3、第2章有理数1相反意义的量:像向东和向西、零上和零下、收入和支出、升高和降低、、买入和卖出等都表示具有相反意义的量.正数和负数、2(1)正数都大于零;(2)在正数前面加上一个“—”号的数叫做负数,负数都小于零;(3)0既不是正数也不是负数,它是正数和负数的分界点.3、有理数(4)有理数:正数和分数统称为有理数;(5)整数包括正整数、0、负整数;(6)分数包括正分数、负分数.4、有理数的分类:0和正数统称为非负数,0和负数统称为非正数.5、数轴的概念:规定了正方向、原点和单位长度的直线叫做数轴.6、有理数的大小比较(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.7、相反数的意义(1)代数意义:只有符号不同的两个数称互为相反数,零的相反数是0;(2)几何意义:在数轴上表示互为相反数的两个点分别位于原点的两侧,且与原点的距离相等.8、相反数的表示方法:数a的相反数是-a,这里的a可以表示任何一个数.9、绝对值的意义(1)几何意义:把数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|;(2)代数意义:一个正数的绝对值等于本身,零的绝对值是0,一个负数的绝对值等于相反数.10、绝对值的非负性:对于任何有理数a,都有|a|≥0.11、两个负数的大小比较法则:两个负数,绝对值大的反而小.12、有理数大小的比较方法(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.两个正数,绝对值大的数大;两个负数绝对值大的数反而小.13、有理数的加法法则(1)同号两数相加,取加数的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减较小的绝对值;(3)互为相反数的两个数相加得0;(4)一个数同0相加仍得这个数.14、在进行有理数的加法运算时,应分两步:首先,判断符号;然后,再计算绝对值.15、有理数的加法运算律(1)交换律:两个数相加,交换加数的位置,和不变,即:a+b=b+a;(用字母表示)(2)结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变,即:(a+b)+c=a+(b+c).(用字母表示)16、运用加法运算律的技巧:正负结合;凑整结合;相反数结合;同分母结合;整分结合.17、有理数减法法则:减去一个数等于加上这个数的相反数,即:a-b=a+(-b).18、加减法统一成加法:有理数的加减法运算可以通过有理数的减法法则将减法转化为加法,统一成只有加法运算的和式.19、和式的写法:在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式.20、加减混合运算的方法和步骤(1)将减法统一成加法,并写成省略加号的和的形式;(2)运用加法的交换律和结合律,简化运算.21、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得0.22、有理数乘法步骤:先确定积的符号;再计算绝对值的积.23、倒数:乘积是1的两个数互为倒数.24、有理数的除法法则(1)除以一个数等于乘以这个数的倒数;(2)两数相除,同号得正,异号得负,并把绝对值相除;(3)0除以任何一个不等于零的数,都得0.25、乘方的有关概念(1)求n个相同因数的积的运算叫乘方,乘方的结果叫幂,a叫底,n叫指数,a n 读作:a的n次方(或a的n次幂).(2)正数的任何次幂都是正数;负数的奇次方幂是负数,偶次方幂是正数.26、科学计数法把一个大于10的数记成a×10n的形式,其中0≤a<10,n是正数,这种计数法叫做科学计数法.27、有理数的混合运算顺序(1)先算乘方,再算乘除,最后算加减;(2)同级运算,按照从左至右的顺序依次进行;(3)如果有括号,就先算小括号,再算中括号,然后算大括号.28、近似数:与实际很接近的数.29、精确度:反映近似数的精确程度的量.一般地,一个近似数四舍五入到某一位,就说这个近似数精确到那一位.30、计算器的组成:计算器的面板由显示器和按键组成.第3章整式的加减用字母表示数后,有些数量之间的关系用含有字母的式子表示,看上去更加1、简明,更具有普遍意义.用字母表示数后,字母的取值要根据实际情景来确定.、2用运算符号把数或表示数的字母连接而成的式子,称为代数式.、3单独一个数或单独一个字母也是代数式.、4、列代数式的实质就是把文字语言转化为符号语言.5列代数式的一般方法有:、6抓住关键词,由关键词确定相应的运算符号;)(1)理清运算顺序,一般是先读的先算,必要时添上括号;2(较复杂的数量关系,可分段处理;)3(根据实际问题中的基本数量关系或公式列代数式.)(4用数值代替代数式中的字母,按照代数式中的运算关系计算得出结果,叫做7、代数式的值.8求代数式的值的步骤:先代入,再求值.、、数与字母的乘积所组成的代数式叫做单项式,单独的数或字母也是单项式.9单项式中的数字因数叫做这个单项式的系数,所有字母指数之和叫做这、11个单项式的次数.几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,11、其中不含字母的项叫做常数项.、在多项式里,最高次项的次数就是这个多项式的次数.12单项式和多项式统称为整式.、13、把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这14个多项式按这个字母的降幂排列.把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这15、个多项式按这个字母的升幂排列.16所含字母相同,并且相同字母的指数也相等的项叫做同类项,所有的常、数项都是同类项.把多项式中的同类项合并成一项,叫做合并同类项.、17合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字、18母的指数不变.去括号法则:19、括号前面是“+”,把括号和它前面的“+”号去掉,括号里各项不改变正)1(负号;)括号前面是“—”,把括号和它前面的“—”号去掉,括号里各项改变正2(负号;添括号法则:21、所添括号前面是“+”号,括到括号里的各项不改变正负号;)1(所添括号前面是“—”号,括到括号里的各项改变正负号;)2(整式加减的一般步骤:先去括号,再合并同类项.21、第4章生活中的立体图形生活中的立体图形有很多,常见的有柱体、锥体和球体,其中柱体分为圆柱1、和棱柱,锥体分为圆锥和棱锥2从正面、上面和侧面(左面或右面)三个不同的方向看一个物体,然后描绘、出三幅所看到的图,即视图.从正面看到的图形,称为主视图;从上面看到的图形,称为俯视图;从侧面看、3到的图形,称为侧视图,依观看的方向不同,有左视图和右视图.单一的规则的立体图形的三视图,如果主视图和侧视图是三角形,一般和锥4、体有关,可根据俯视图是圆形或n边形,可以判断是圆锥或,n棱锥;对于主视图和侧视图是长方形的,一般和柱体有关,再观察俯视图是圆形或n边形,可以判断是圆柱或n棱柱.圆柱的侧面展开图是矩形(长方形或正方形),圆锥的侧面展开图是扇形.5、同一个立体图形,按不同的方式展开得到的平面展开图是不同的.6、圆是由曲面围成的封闭图形;多边形是由线段围成的封闭图形.、7、在多边形中,最基本的图形是三角形.8两点之间线段最短.、9经过两点有1条直线,并且只有1条直线,即两点确定一条直线.、11线段的长短比较有两种方法:一种是度量的方法;一种是叠合的方法.、11、把一条线段分成两条相等线段的点,叫做这条线段的中点.12角是由两条有公共端点的射线组成的图形,角也可以看做是一条射线绕、13着它的端点旋转而成的图形.角的表示方法、14当顶点处只有一个角时,用一个大写字母表示;)(1)用三个大写字母表示,注意顶点字母必须写在中间;2()用希腊字母或阿拉伯数字表示.3(角的大小比较:15、)“形的比较”——叠合法;1(“数的比较”——度量法.)2(从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射16、线叫做这个角的角平分线.两个角的和等于90°(直角),就说这两个角互为余角;两个角的和等17、于180°(平角),就说这两个角互为补角.同角(或等角)的余角相等;同角(或等角)的补角相等.、18第5章相交线与平行线对顶角相等.、1在同一平面内,经过直线外或直线上一点,有且只有1条直线与已知直线垂2、直.直线外一点与直线上各点连接的所有线段中,垂线段最短.3、、两条直线被第三条直线所截,位于截线的同侧,被截直线的同一方的两个角4叫做同位角;位于截线的两侧,被截直线之间的两个角叫做内错角;位于截线的同侧,被截直线之间的两个角叫做同旁内角.在同一平面内不相交的两条直线叫做平行线.5、、经过直线外一点,有1条直线与这条直线平行.6如果两条直线都和第三条直线平行,那么这两条直线也互相平行.、7平行线的判定方法8、)同位角相等,两直线平行;1(内错角相等,两直线平行;)(2)同旁内角互补,两直线平行;3(如果有两条直线与第三条直线平行,那么这两条直线也互相平行;)4(在同一平面内,垂直于同一条直线的两条直线互相平行.)5(平行线的性质9、)两直线平行,同位角相等;1(两直线平行,内错角相等;)2(两直线平行,同旁内角互补.)(3。
华东师大版七年级上册数学各章知识总结

华东师大版七年级上册数学各章知识总结
本文档总结了华东师大版七年级上册数学各章的知识点。
以下是每章的简要概述:
第一章:数与代数运算
本章主要介绍了数的概念和代数运算。
包括整数的加减法、乘除法,以及如何运用代数符号表示数学关系。
第二章:平面几何
此章涵盖了平面几何中的基本概念和性质。
包括点、线、面,以及直线、曲线的判断和分类方法。
第三章:图形的认识
该章讲解了各种图形的特征和性质。
包括多边形、圆、三角形和四边形等图形的定义、性质和分类。
第四章:实数的认识
在这一章中,我们研究了实数的概念和性质。
包括自然数、整数、有理数和无理数的区别和运算方法。
第五章:方程与不等式
此章重点介绍了方程和不等式的概念和解法。
包括一元一次方程和一元一次不等式的求解过程。
第六章:比与比例
本章讲解了比与比例的概念和运算方法。
包括比的表示方式、比例的性质和比例的计算。
第七章:数据与统计
在这一章中,我们研究了数据的收集和整理方法,以及统计图表的制作和解读。
第八章:解析几何初步
该章介绍了解析几何的基本知识和应用。
包括坐标系、点的坐标、距离和斜率的计算方法等。
以上是华东师大版七年级上册数学各章的简要总结。
如有详细内容需求,请参考教材或课堂讲义。
最新华东师范大学出版社七年级上册数学知识点总结

华东师范大学出版社七年级上册数学知识点总结第1章走进数学世界数学伴我们成长,测量、称重、计算等都与数学有关.1、数学与现实生活密切联系,人类离不开数学.2、人人都能学好数学.3、第2章有理数1相反意义的量:像向东和向西、零上和零下、收入和支出、升高和降低、、买入和卖出等都表示具有相反意义的量.正数和负数、2(1)正数都大于零;(2)在正数前面加上一个“—”号的数叫做负数,负数都小于零;(3)0既不是正数也不是负数,它是正数和负数的分界点.3、有理数(4)有理数:正数和分数统称为有理数;(5)整数包括正整数、0、负整数;(6)分数包括正分数、负分数.4、有理数的分类:0和正数统称为非负数,0和负数统称为非正数.5、数轴的概念:规定了正方向、原点和单位长度的直线叫做数轴.6、有理数的大小比较(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.7、相反数的意义(1)代数意义:只有符号不同的两个数称互为相反数,零的相反数是0;(2)几何意义:在数轴上表示互为相反数的两个点分别位于原点的两侧,且与原点的距离相等.8、相反数的表示方法:数a的相反数是-a,这里的a可以表示任何一个数.9、绝对值的意义(1)几何意义:把数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|;(2)代数意义:一个正数的绝对值等于本身,零的绝对值是0,一个负数的绝对值等于相反数.10、绝对值的非负性:对于任何有理数a,都有|a|≥0.11、两个负数的大小比较法则:两个负数,绝对值大的反而小.12、有理数大小的比较方法(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.两个正数,绝对值大的数大;两个负数绝对值大的数反而小.13、有理数的加法法则(1)同号两数相加,取加数的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减较小的绝对值;(3)互为相反数的两个数相加得0;(4)一个数同0相加仍得这个数.14、在进行有理数的加法运算时,应分两步:首先,判断符号;然后,再计算绝对值.15、有理数的加法运算律(1)交换律:两个数相加,交换加数的位置,和不变,即:a+b=b+a;(用字母表示)(2)结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变,即:(a+b)+c=a+(b+c).(用字母表示)16、运用加法运算律的技巧:正负结合;凑整结合;相反数结合;同分母结合;整分结合.17、有理数减法法则:减去一个数等于加上这个数的相反数,即:a-b=a+(-b).18、加减法统一成加法:有理数的加减法运算可以通过有理数的减法法则将减法转化为加法,统一成只有加法运算的和式.19、和式的写法:在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式.20、加减混合运算的方法和步骤(1)将减法统一成加法,并写成省略加号的和的形式;(2)运用加法的交换律和结合律,简化运算.21、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得0.22、有理数乘法步骤:先确定积的符号;再计算绝对值的积.23、倒数:乘积是1的两个数互为倒数.24、有理数的除法法则(1)除以一个数等于乘以这个数的倒数;(2)两数相除,同号得正,异号得负,并把绝对值相除;(3)0除以任何一个不等于零的数,都得0.25、乘方的有关概念(1)求n个相同因数的积的运算叫乘方,乘方的结果叫幂,a叫底,n叫指数,a n 读作:a的n次方(或a的n次幂).(2)正数的任何次幂都是正数;负数的奇次方幂是负数,偶次方幂是正数.26、科学计数法把一个大于10的数记成a×10n的形式,其中0≤a<10,n是正数,这种计数法叫做科学计数法.27、有理数的混合运算顺序(1)先算乘方,再算乘除,最后算加减;(2)同级运算,按照从左至右的顺序依次进行;(3)如果有括号,就先算小括号,再算中括号,然后算大括号.28、近似数:与实际很接近的数.29、精确度:反映近似数的精确程度的量.一般地,一个近似数四舍五入到某一位,就说这个近似数精确到那一位.30、计算器的组成:计算器的面板由显示器和按键组成.第3章整式的加减用字母表示数后,有些数量之间的关系用含有字母的式子表示,看上去更加1、简明,更具有普遍意义.用字母表示数后,字母的取值要根据实际情景来确定.、2用运算符号把数或表示数的字母连接而成的式子,称为代数式.、3单独一个数或单独一个字母也是代数式.、4、列代数式的实质就是把文字语言转化为符号语言.5列代数式的一般方法有:、6抓住关键词,由关键词确定相应的运算符号;)(1)理清运算顺序,一般是先读的先算,必要时添上括号;2(较复杂的数量关系,可分段处理;)3(根据实际问题中的基本数量关系或公式列代数式.)(4用数值代替代数式中的字母,按照代数式中的运算关系计算得出结果,叫做7、代数式的值.8求代数式的值的步骤:先代入,再求值.、、数与字母的乘积所组成的代数式叫做单项式,单独的数或字母也是单项式.9单项式中的数字因数叫做这个单项式的系数,所有字母指数之和叫做这、11个单项式的次数.几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,11、其中不含字母的项叫做常数项.、在多项式里,最高次项的次数就是这个多项式的次数.12单项式和多项式统称为整式.、13、把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这14个多项式按这个字母的降幂排列.把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这15、个多项式按这个字母的升幂排列.16所含字母相同,并且相同字母的指数也相等的项叫做同类项,所有的常、数项都是同类项.把多项式中的同类项合并成一项,叫做合并同类项.、17合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字、18母的指数不变.去括号法则:19、括号前面是“+”,把括号和它前面的“+”号去掉,括号里各项不改变正)1(负号;)括号前面是“—”,把括号和它前面的“—”号去掉,括号里各项改变正2(负号;添括号法则:21、所添括号前面是“+”号,括到括号里的各项不改变正负号;)1(所添括号前面是“—”号,括到括号里的各项改变正负号;)2(整式加减的一般步骤:先去括号,再合并同类项.21、第4章生活中的立体图形生活中的立体图形有很多,常见的有柱体、锥体和球体,其中柱体分为圆柱1、和棱柱,锥体分为圆锥和棱锥2从正面、上面和侧面(左面或右面)三个不同的方向看一个物体,然后描绘、出三幅所看到的图,即视图.从正面看到的图形,称为主视图;从上面看到的图形,称为俯视图;从侧面看、3到的图形,称为侧视图,依观看的方向不同,有左视图和右视图.单一的规则的立体图形的三视图,如果主视图和侧视图是三角形,一般和锥4、体有关,可根据俯视图是圆形或n边形,可以判断是圆锥或,n棱锥;对于主视图和侧视图是长方形的,一般和柱体有关,再观察俯视图是圆形或n边形,可以判断是圆柱或n棱柱.圆柱的侧面展开图是矩形(长方形或正方形),圆锥的侧面展开图是扇形.5、同一个立体图形,按不同的方式展开得到的平面展开图是不同的.6、圆是由曲面围成的封闭图形;多边形是由线段围成的封闭图形.、7、在多边形中,最基本的图形是三角形.8两点之间线段最短.、9经过两点有1条直线,并且只有1条直线,即两点确定一条直线.、11线段的长短比较有两种方法:一种是度量的方法;一种是叠合的方法.、11、把一条线段分成两条相等线段的点,叫做这条线段的中点.12角是由两条有公共端点的射线组成的图形,角也可以看做是一条射线绕、13着它的端点旋转而成的图形.角的表示方法、14当顶点处只有一个角时,用一个大写字母表示;)(1)用三个大写字母表示,注意顶点字母必须写在中间;2()用希腊字母或阿拉伯数字表示.3(角的大小比较:15、)“形的比较”——叠合法;1(“数的比较”——度量法.)2(从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射16、线叫做这个角的角平分线.两个角的和等于90°(直角),就说这两个角互为余角;两个角的和等17、于180°(平角),就说这两个角互为补角.同角(或等角)的余角相等;同角(或等角)的补角相等.、18第5章相交线与平行线对顶角相等.、1在同一平面内,经过直线外或直线上一点,有且只有1条直线与已知直线垂2、直.直线外一点与直线上各点连接的所有线段中,垂线段最短.3、、两条直线被第三条直线所截,位于截线的同侧,被截直线的同一方的两个角4叫做同位角;位于截线的两侧,被截直线之间的两个角叫做内错角;位于截线的同侧,被截直线之间的两个角叫做同旁内角.在同一平面内不相交的两条直线叫做平行线.5、、经过直线外一点,有1条直线与这条直线平行.6如果两条直线都和第三条直线平行,那么这两条直线也互相平行.、7平行线的判定方法8、)同位角相等,两直线平行;1(内错角相等,两直线平行;)(2)同旁内角互补,两直线平行;3(如果有两条直线与第三条直线平行,那么这两条直线也互相平行;)4(在同一平面内,垂直于同一条直线的两条直线互相平行.)5(平行线的性质9、)两直线平行,同位角相等;1(两直线平行,内错角相等;)2(两直线平行,同旁内角互补.)(3。
华东师大版数学七年级上册知识点

华东师大版数学七年级上册知识点七年级上第二章有理数1. 相反意义的量 向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。
2. 正数和负数像+21,+12,1.3,258等大于0的数(“+”通常不写)叫正数。
像-5,-2.8,-43等在正数前面加“—”(读负)的数叫负数。
【注】0既不是正数也不是负数。
3. 有理数(1)整数:正整数、零和负整数统称为整数。
分数:正分数和负分数统称为分数。
有理数:整数和分数统称为有理数。
(2)有理数分类1)按有理数的定义分类 2)按正负分类正整数 正整数 整数 0 正有理数有理数 负整数 有理数 正分数 正分数 0 负整数分数 负有理数负分数 负分数 【注】有限循环小数叫做分数。
(3)数集 把一些数组合在一起,就组成了一个数的集合,简称数集。
所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的正分数负分数正整数0负整数数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。
4. 数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。
【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。
2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.(2)在数轴上比较有理数的大小1)在数轴上表示的两个数,右边的数总比左边的数大。
2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
5. 相反数(1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
(几何意义)(3)0的相反数是0。
也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
(5)数a 的相反数是—a 。
(6)多重符号化简多重符号化简的结果是由“-”号的个数决定的。
华东师范大学出版社七年级上册数学知识点总结

七年级上册知识点总结第1章 走进数学世界1、数学伴我们成长,测量、称重、计算等都与数学有关.2、数学与现实生活密切联系,人类离不开数学.3、人人都能学好数学.第2章 有理数1、相反意义的量:像向东和向西、零上和零下、收入和支出、升高和降低、买入和卖出等都表示具有相反意义的量.2、正数和负数(1)正数都大于零;(2)在正数前面加上一个“—”号的数叫做负数,负数都小于零;(3) 0既不是正数也不是负数,它是正数和负数的分界点.3、有理数(4)有理数:正数和分数统称为有理数;(5)整数包括正整数、0、负整数;(6)分数包括正分数、负分数.4、有理数的分类:0和正数统称为非负数,0和负数统称为非正数.5、数轴的概念:规定了正方向、原点和单位长度的直线叫做数轴.6、有理数的大小比较(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.7、相反数的意义(1)代数意义:只有符号不同的两个数称互为相反数,零的相反数是0;(2)几何意义:在数轴上表示互为相反数的两个点分别位于原点的两侧,且与原点的距离相等.8、相反数的表示方法:数a的相反数是-a,这里的a可以表示任何一个数.9、绝对值的意义(1)几何意义:把数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|;(2)代数意义:一个正数的绝对值等于本身,零的绝对值是0,一个负数的绝对值等于相反数.10、绝对值的非负性:对于任何有理数a,都有|a|≥0.11、两个负数的大小比较法则:两个负数,绝对值大的反而小.12、有理数大小的比较方法(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.两个正数,绝对值大的数大;两个负数绝对值大的数反而小.13、有理数的加法法则(1)同号两数相加,取加数的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减较小的绝对值;(3)互为相反数的两个数相加得0;(4)一个数同0相加仍得这个数.14、在进行有理数的加法运算时,应分两步:首先,判断符号;然后,再计算绝对值.15、有理数的加法运算律(1)交换律:两个数相加,交换加数的位置,和不变,即:a+b=b+a;(用字母表示)(2)结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变,即:(a+b)+c=a+(b+c).(用字母表示)16、运用加法运算律的技巧:正负结合;凑整结合;相反数结合;同分母结合;整分结合.17、有理数减法法则:减去一个数等于加上这个数的相反数,即:a-b=a+(-b).18、加减法统一成加法:有理数的加减法运算可以通过有理数的减法法则将减法转化为加法,统一成只有加法运算的和式.19、和式的写法:在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式.20、加减混合运算的方法和步骤(1)将减法统一成加法,并写成省略加号的和的形式;(2)运用加法的交换律和结合律,简化运算.21、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得0.22、有理数乘法步骤:先确定积的符号;再计算绝对值的积.23、倒数:乘积是1的两个数互为倒数.24、有理数的除法法则(1)除以一个数等于乘以这个数的倒数;(2)两数相除,同号得正,异号得负,并把绝对值相除;(3)0除以任何一个不等于零的数,都得0.25、乘方的有关概念(1)求n个相同因数的积的运算叫乘方,乘方的结果叫幂,a叫底,n叫指数,a n读作:a的n次方(或a的n次幂).(2)正数的任何次幂都是正数;负数的奇次方幂是负数,偶次方幂是正数.26、科学计数法把一个大于10的数记成a×10n的形式,其中0≤a<10,n是正数,这种计数法叫做科学计数法.27、有理数的混合运算顺序(1)先算乘方,再算乘除,最后算加减;(2)同级运算,按照从左至右的顺序依次进行;(3)如果有括号,就先算小括号,再算中括号,然后算大括号.28、近似数:与实际很接近的数.29、精确度:反映近似数的精确程度的量.一般地,一个近似数四舍五入到某一位,就说这个近似数精确到那一位.30、计算器的组成:计算器的面板由显示器和按键组成.第3章 整式的加减1、用字母表示数后,有些数量之间的关系用含有字母的式子表示,看上去更加简明,更具有普遍意义.2、用字母表示数后,字母的取值要根据实际情景来确定.3、用运算符号把数或表示数的字母连接而成的式子,称为代数式.4、单独一个数或单独一个字母也是代数式.5、列代数式的实质就是把文字语言转化为符号语言.6、列代数式的一般方法有:(1)抓住关键词,由关键词确定相应的运算符号;(2)理清运算顺序,一般是先读的先算,必要时添上括号;(3)较复杂的数量关系,可分段处理;(4)根据实际问题中的基本数量关系或公式列代数式.7、用数值代替代数式中的字母,按照代数式中的运算关系计算得出结果,叫做代数式的值.8、求代数式的值的步骤:先代入,再求值.9、数与字母的乘积所组成的代数式叫做单项式,单独的数或字母也是单项式.10、单项式中的数字因数叫做这个单项式的系数,所有字母指数之和叫做这个单项式的次数.11、几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.12、在多项式里,最高次项的次数就是这个多项式的次数.13、单项式和多项式统称为整式.14、把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母的降幂排列.15、把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母的升幂排列.16、所含字母相同,并且相同字母的指数也相等的项叫做同类项,所有的常数项都是同类项.17、把多项式中的同类项合并成一项,叫做合并同类项.18、合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.19、去括号法则:(1)括号前面是“+”,把括号和它前面的“+”号去掉,括号里各项不改变正负号;(2)括号前面是“—”,把括号和它前面的“—”号去掉,括号里各项改变正负号;20、添括号法则:(1)所添括号前面是“+”号,括到括号里的各项不改变正负号;(2)所添括号前面是“—”号,括到括号里的各项改变正负号;21、整式加减的一般步骤:先去括号,再合并同类项.第4章 生活中的立体图形1、生活中的立体图形有很多,常见的有柱体、锥体和球体,其中柱体分为圆柱和棱柱,锥体分为圆锥和棱锥2、从正面、上面和侧面(左面或右面)三个不同的方向看一个物体,然后描绘出三幅所看到的图,即视图.3、从正面看到的图形,称为主视图;从上面看到的图形,称为俯视图;从侧面看到的图形,称为侧视图,依观看的方向不同,有左视图和右视图.4、单一的规则的立体图形的三视图,如果主视图和侧视图是三角形,一般和锥体有关,可根据俯视图是圆形或n边形,可以判断是圆锥或,n棱锥;对于主视图和侧视图是长方形的,一般和柱体有关,再观察俯视图是圆形或n边形,可以判断是圆柱或n棱柱.5、圆柱的侧面展开图是矩形(长方形或正方形),圆锥的侧面展开图是扇形.6、同一个立体图形,按不同的方式展开得到的平面展开图是不同的.7、圆是由曲面围成的封闭图形;多边形是由线段围成的封闭图形.8、在多边形中,最基本的图形是三角形.9、两点之间线段最短.10、经过两点有1条直线,并且只有1条直线,即两点确定一条直线.11、线段的长短比较有两种方法:一种是度量的方法;一种是叠合的方法.12、把一条线段分成两条相等线段的点,叫做这条线段的中点.13、角是由两条有公共端点的射线组成的图形,角也可以看做是一条射线绕着它的端点旋转而成的图形.14、角的表示方法(1)当顶点处只有一个角时,用一个大写字母表示;(2)用三个大写字母表示,注意顶点字母必须写在中间;(3)用希腊字母或阿拉伯数字表示.15、角的大小比较:(1)“形的比较”——叠合法;(2)“数的比较”——度量法.16、从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.17、两个角的和等于90°(直角),就说这两个角互为余角;两个角的和等于180°(平角),就说这两个角互为补角.18、同角(或等角)的余角相等;同角(或等角)的补角相等.第5章 相交线与平行线1、对顶角相等.2、在同一平面内,经过直线外或直线上一点,有且只有1条直线与已知直线垂直.3、直线外一点与直线上各点连接的所有线段中,垂线段最短.4、两条直线被第三条直线所截,位于截线的同侧,被截直线的同一方的两个角叫做同位角;位于截线的两侧,被截直线之间的两个角叫做内错角;位于截线的同侧,被截直线之间的两个角叫做同旁内角.5、在同一平面内不相交的两条直线叫做平行线.6、经过直线外一点,有1条直线与这条直线平行.7、如果两条直线都和第三条直线平行,那么这两条直线也互相平行.8、平行线的判定方法(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)如果有两条直线与第三条直线平行,那么这两条直线也互相平行;(5)在同一平面内,垂直于同一条直线的两条直线互相平行. 9、平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.。
华东师大版数学七年级上册知识点

七年级上第二章有理数1. 相反意义的量 向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。
2. 正数和负数像+21,+12,1.3,258等大于0的数(“+”通常不写)叫正数。
像-5,-2.8,-43等在正数前面加“—”(读负)的数叫负数。
【注】0既不是正数也不是负数。
3. 有理数(1)整数:正整数、零和负整数统称为整数。
分数:正分数和负分数统称为分数。
有理数:整数和分数统称为有理数。
(2)有理数分类1)按有理数的定义分类 2)按正负分类正整数 正整数 整数 0 正有理数有理数 负整数 有理数 正分数 正分数 0 负整数分数 负有理数负分数 负分数 【注】有限循环小数叫做分数。
(3)数集 把一些数组合在一起,就组成了一个数的集合,简称数集。
所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。
正分数负分数正整数0负整数4. 数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。
【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。
2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.(2)在数轴上比较有理数的大小1)在数轴上表示的两个数,右边的数总比左边的数大。
2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
5. 相反数(1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
(几何意义)(3)0的相反数是0。
也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
(5)数a 的相反数是—a 。
(6)多重符号化简多重符号化简的结果是由“-”号的个数决定的。
如果“-”号是奇数个,则结果为负; 如果是偶数个,则结果为正。
华东师大版七年级上册数学各章考点总结

华东师大版七年级上册数学各章考点总结第一章:有理数1. 有理数的概念及表示方法:- 有理数是整数和分数的统称,可以用分数线有限的十进制数或整数形式表示。
- 有理数可以是正数、负数或是零。
2. 有理数的比较和大小关系:- 有理数比较时,可以根据大小关系进行比较运算。
- 正数比负数大,负数比正数小。
- 绝对值较大的有理数较大。
3. 有理数的加法和减法:- 有理数的加法满足“结合律”和“交换律”,即改变加法顺序结果不变。
- 有理数的减法可以看作加法的逆运算,减去一个数等于加上相反数。
4. 有理数的乘法和除法:- 有理数的乘法满足“结合律”和“交换律”,即改变乘法顺序结果不变。
- 有理数的除法可以看作乘法的逆运算,除以一个数等于乘以倒数。
第二章:开方与整式1. 开方的概念和符号:- 开方是指求一个数的平方根。
- 开方符号为√,表示数学上的平方根。
2. 平方根的性质:- 非负数的平方根都是实数。
- 负数的平方根是虚数。
3. 完全平方数和近似平方根:- 完全平方数是指某个数的平方根是整数的数。
- 用近似法求平方根可以得到一个近似平方根的数值。
第三章:平方与立方1. 平方的概念及运算性质:- 平方是指将一个数自乘一次。
- 平方的结果通常是一个非负数。
2. 立方的概念及运算性质:- 立方是指将一个数自乘两次。
- 立方和正负号有关,正数的立方是正数,负数的立方是负数。
3. 平方根和立方根的关系:- 平方根是指求一个数的平方的逆运算。
- 立方根是指求一个数的立方的逆运算。
第四章:数据和统计1. 统计调查和数据整理:- 统计调查是指通过收集数据来了解和研究某个对象或现象。
- 数据整理是指对统计调查所获得的数据进行整理和分类。
2. 统计图和图表的表示:- 统计图主要包括柱形图、折线图、饼图等形式,用来直观地表示数据。
3. 数据的中心趋势:- 代表性数是用来描述数据的中心趋势的。
- 代表性数主要包括平均数、中位数和众数等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册知识点总结第1章走进数学世界1、数学伴我们成长,测量、称重、计算等都与数学有关.2、数学与现实生活密切联系,人类离不开数学.3、人人都能学好数学.第2章有理数1、相反意义的量:像向东和向西、零上和零下、收入和支出、升高和降低、买入和卖出等都表示具有相反意义的量.2、正数和负数(1)正数都大于零;(2)在正数前面加上一个“—”号的数叫做负数,负数都小于零;(3)0既不是正数也不是负数,它是正数和负数的分界点.3、有理数(4)有理数:正数和分数统称为有理数;(5)整数包括正整数、0、负整数;(6)分数包括正分数、负分数.4、有理数的分类:0和正数统称为非负数,0和负数统称为非正数.5、数轴的概念:规定了正方向、原点和单位长度的直线叫做数轴.6、有理数的大小比较(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.7、相反数的意义(1)代数意义:只有符号不同的两个数称互为相反数,零的相反数是0;(2)几何意义:在数轴上表示互为相反数的两个点分别位于原点的两侧,且与原点的距离相等.8、相反数的表示方法:数a的相反数是-a,这里的a可以表示任何一个数.9、绝对值的意义(1)几何意义:把数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|;(2)代数意义:一个正数的绝对值等于本身,零的绝对值是0,一个负数的绝对值等于相反数.10、绝对值的非负性:对于任何有理数a,都有|a|≥0.11、两个负数的大小比较法则:两个负数,绝对值大的反而小.12、有理数大小的比较方法(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.两个正数,绝对值大的数大;两个负数绝对值大的数反而小.13、有理数的加法法则(1)同号两数相加,取加数的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减较小的绝对值;(3)互为相反数的两个数相加得0;(4)一个数同0相加仍得这个数.14、在进行有理数的加法运算时,应分两步:首先,判断符号;然后,再计算绝对值.15、有理数的加法运算律(1)交换律:两个数相加,交换加数的位置,和不变,即:a+b=b+a;(用字母表示)(2)结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变,即:(a+b)+c=a+(b+c).(用字母表示)16、运用加法运算律的技巧:正负结合;凑整结合;相反数结合;同分母结合;整分结合.17、有理数减法法则:减去一个数等于加上这个数的相反数,即:a-b=a+(-b).18、加减法统一成加法:有理数的加减法运算可以通过有理数的减法法则将减法转化为加法,统一成只有加法运算的和式.19、和式的写法:在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式.20、加减混合运算的方法和步骤(1)将减法统一成加法,并写成省略加号的和的形式;(2)运用加法的交换律和结合律,简化运算.21、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得0.22、有理数乘法步骤:先确定积的符号;再计算绝对值的积.23、倒数:乘积是1的两个数互为倒数.24、有理数的除法法则(1)除以一个数等于乘以这个数的倒数;(2)两数相除,同号得正,异号得负,并把绝对值相除;(3)0除以任何一个不等于零的数,都得0.25、乘方的有关概念(1)求n个相同因数的积的运算叫乘方,乘方的结果叫幂,a叫底,n叫指数,a n读作:a的n次方(或a的n次幂).(2)正数的任何次幂都是正数;负数的奇次方幂是负数,偶次方幂是正数.26、科学计数法把一个大于10的数记成a×10n的形式,其中0≤a<10,n是正数,这种计数法叫做科学计数法.27、有理数的混合运算顺序(1)先算乘方,再算乘除,最后算加减;(2)同级运算,按照从左至右的顺序依次进行;(3)如果有括号,就先算小括号,再算中括号,然后算大括号.28、近似数:与实际很接近的数.29、精确度:反映近似数的精确程度的量.一般地,一个近似数四舍五入到某一位,就说这个近似数精确到那一位.30、计算器的组成:计算器的面板由显示器和按键组成.第3章整式的加减1、用字母表示数后,有些数量之间的关系用含有字母的式子表示,看上去更加简明,更具有普遍意义.2、用字母表示数后,字母的取值要根据实际情景来确定.3、用运算符号把数或表示数的字母连接而成的式子,称为代数式.4、单独一个数或单独一个字母也是代数式.5、列代数式的实质就是把文字语言转化为符号语言.6、列代数式的一般方法有:(1)抓住关键词,由关键词确定相应的运算符号;(2)理清运算顺序,一般是先读的先算,必要时添上括号;(3)较复杂的数量关系,可分段处理;(4)根据实际问题中的基本数量关系或公式列代数式.7、用数值代替代数式中的字母,按照代数式中的运算关系计算得出结果,叫做代数式的值.8、求代数式的值的步骤:先代入,再求值.9、数与字母的乘积所组成的代数式叫做单项式,单独的数或字母也是单项式.10、单项式中的数字因数叫做这个单项式的系数,所有字母指数之和叫做这个单项式的次数.11、几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.12、在多项式里,最高次项的次数就是这个多项式的次数.13、单项式和多项式统称为整式.14、把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母的降幂排列.15、把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母的升幂排列.16、所含字母相同,并且相同字母的指数也相等的项叫做同类项,所有的常数项都是同类项.17、把多项式中的同类项合并成一项,叫做合并同类项.18、合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.19、去括号法则:(1)括号前面是“+”,把括号和它前面的“+”号去掉,括号里各项不改变正负号;(2)括号前面是“—”,把括号和它前面的“—”号去掉,括号里各项改变正负号;20、添括号法则:(1)所添括号前面是“+”号,括到括号里的各项不改变正负号;(2)所添括号前面是“—”号,括到括号里的各项改变正负号;21、整式加减的一般步骤:先去括号,再合并同类项.第4章生活中的立体图形1、生活中的立体图形有很多,常见的有柱体、锥体和球体,其中柱体分为圆柱和棱柱,锥体分为圆锥和棱锥2、从正面、上面和侧面(左面或右面)三个不同的方向看一个物体,然后描绘出三幅所看到的图,即视图.3、从正面看到的图形,称为主视图;从上面看到的图形,称为俯视图;从侧面看到的图形,称为侧视图,依观看的方向不同,有左视图和右视图.4、单一的规则的立体图形的三视图,如果主视图和侧视图是三角形,一般和锥体有关,可根据俯视图是圆形或n边形,可以判断是圆锥或,n棱锥;对于主视图和侧视图是长方形的,一般和柱体有关,再观察俯视图是圆形或n边形,可以判断是圆柱或n棱柱.5、圆柱的侧面展开图是矩形(长方形或正方形),圆锥的侧面展开图是扇形.6、同一个立体图形,按不同的方式展开得到的平面展开图是不同的.7、圆是由曲面围成的封闭图形;多边形是由线段围成的封闭图形.8、在多边形中,最基本的图形是三角形.9、两点之间线段最短.10、经过两点有1条直线,并且只有1条直线,即两点确定一条直线.11、线段的长短比较有两种方法:一种是度量的方法;一种是叠合的方法.12、把一条线段分成两条相等线段的点,叫做这条线段的中点.13、角是由两条有公共端点的射线组成的图形,角也可以看做是一条射线绕着它的端点旋转而成的图形.14、角的表示方法(1)当顶点处只有一个角时,用一个大写字母表示;(2)用三个大写字母表示,注意顶点字母必须写在中间;(3)用希腊字母或阿拉伯数字表示.15、角的大小比较:(1)“形的比较”——叠合法;(2)“数的比较”——度量法.16、从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.17、两个角的和等于90°(直角),就说这两个角互为余角;两个角的和等于180°(平角),就说这两个角互为补角.18、同角(或等角)的余角相等;同角(或等角)的补角相等.第5章相交线与平行线1、对顶角相等.2、在同一平面内,经过直线外或直线上一点,有且只有1条直线与已知直线垂直.3、直线外一点与直线上各点连接的所有线段中,垂线段最短.4、两条直线被第三条直线所截,位于截线的同侧,被截直线的同一方的两个角叫做同位角;位于截线的两侧,被截直线之间的两个角叫做内错角;位于截线的同侧,被截直线之间的两个角叫做同旁内角.5、在同一平面内不相交的两条直线叫做平行线.6、经过直线外一点,有1条直线与这条直线平行.7、如果两条直线都和第三条直线平行,那么这两条直线也互相平行.8、平行线的判定方法(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)如果有两条直线与第三条直线平行,那么这两条直线也互相平行;(5)在同一平面内,垂直于同一条直线的两条直线互相平行.9、平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.。