操作系统实验_实验3

合集下载

操作系统实验,实验3, 进程管理 (1)

操作系统实验,实验3, 进程管理 (1)

在图形界面上利用终端通过命令“su - ”切换到超级用户,编辑文件 “job”; 按组合键[Ctrl+Alt+F2]切换到第二个虚拟终端(超级用户); 输入命令“at –f job now+1 minute”,设置1分钟后执行at调度内容; 稍等后观察at调度的执行效果,再切换到第一个虚拟终端观察at调度 的执行效果;
切换到第一个虚拟终端观察at调度的执行效果(5分钟后系统将执行重 启调度任务)。
[操作要求2] 设置一个调度,要求1分钟后执行文件job中的作业。 文件job的内容为: find /home/jkx/ -name “*.c” > /home/jkx/fdresult wall user jkx, all code files have been searched out! Please check out. [操作步骤]
续表
守 护 进 程 innd Usenet新闻服务器 功 能 说 明
linuxconf
lpd named netfs network
允许使用本地WEB服务器作为用户接口来配置机器
打印服务器 DNS服务器 安装NFS、Samba和NetWare网络文件系统 激活已配置网络接口的脚本程序
nfsd
portmap postgresql routed sendmail
事件(例如xinetd和lpd)
启动守护进程有如下几种方法
在引导系统时启动 人工手动从shell提示符启动
系统启动script的执行期间 被启动(/etc/rc.d) 任何具有相应执行 权限的用户
使用crond守护进程启动
执行at命令启动
守护进程一般由系统在开机时通过脚本或root

操作系统实验3-进程控制

操作系统实验3-进程控制
DWORD dwVerReq=::GetProcessVersion(dwIdThis);
WORD wMajorReq=(WORD)(dwVerReq>16);
WORD wMinorReq=(WORD)(dwVerReq&0xffff);
::cout<<"Process ID:"<<dwIdThis<<",requires OS:"<<wMajorReq<<wMinorReq<<::endl;
{
//改变优先级
::SetPriorityClass(
::GetCurrentProcess(), //利用这一进程
HIGH_PRIORITY_CLASS); //改变为high
//报告给用户
::cout<<"Task Manager should indicate this "
"process is high priority."<<::endl;
//设置版本信息的数据结构,以便保存操作系统的版本信息
OSVERSIONINFOEX osvix;
::ZeroMemory(&osvix,sizeof(osvix));
osvix.dwOSVersionInfoSize=sizeof(osvix);
//提取版本信息和报告
::GetVersionEx(reinterpret_cast<LPOSVERSIONINFO>(&osvix));
Parent();
}
return 0;
}
分析:程序4-3.cpp说明了一个进程从“生”到“死”的整个一生,第一次执行时,它创建一个子进程,其行为如同“父亲”。在创建子进程之前,先创建一个互斥的内核对象,其行为对于子进程来说,如同一个“自杀弹”。当创建子进程时,就打开了互斥体并在其他线程中进行别的处理工作,同时等待着父进程使用ReleaseMutex()API发出“死亡”信号。然后用Sleep()API调用来模拟父进程处理其他工作,等完成时,指令子进程终止。

操作系统实验实验报告

操作系统实验实验报告

操作系统实验实验报告一、实验目的操作系统是计算机系统中最为关键的核心软件,它管理着计算机的硬件资源和软件资源,为用户提供了一个方便、高效、稳定的工作环境。

本次操作系统实验的目的在于通过实际操作和实践,深入理解操作系统的基本原理和核心概念,掌握操作系统的基本功能和操作方法,提高对操作系统的认识和应用能力。

二、实验环境本次实验使用的操作系统为 Windows 10 专业版,开发工具为Visual Studio 2019,编程语言为 C 和 C++。

实验硬件环境为一台配备Intel Core i7 处理器、16GB 内存、512GB SSD 硬盘的个人计算机。

三、实验内容(一)进程管理实验1、进程创建与终止通过编程实现创建新的进程,并在完成任务后终止进程。

在实验中,我们使用了 Windows API 函数 CreateProcess 和 TerminateProcess 来完成进程的创建和终止操作。

通过观察进程的创建和终止过程,深入理解了进程的生命周期和状态转换。

2、进程同步与互斥为了实现进程之间的同步与互斥,我们使用了信号量、互斥量等同步对象。

通过编写多线程程序,模拟了多个进程对共享资源的访问,实现了对共享资源的互斥访问和同步操作。

在实验中,我们深刻体会到了进程同步与互斥的重要性,以及不正确的同步操作可能导致的死锁等问题。

(二)内存管理实验1、内存分配与释放使用 Windows API 函数 VirtualAlloc 和 VirtualFree 进行内存的分配和释放操作。

通过实验,了解了内存分配的不同方式(如堆分配、栈分配等)以及内存释放的时机和方法,掌握了内存管理的基本原理和操作技巧。

2、内存分页与分段通过编程模拟内存的分页和分段管理机制,了解了内存分页和分段的基本原理和实现方法。

在实验中,我们实现了简单的内存分页和分段算法,对内存的地址转换和页面置换等过程有了更深入的理解。

(三)文件系统实验1、文件操作使用 Windows API 函数 CreateFile、ReadFile、WriteFile 等进行文件的创建、读取和写入操作。

哈工大《操作系统》实验3

哈工大《操作系统》实验3

向kernel/printk.c中添加日志打印功能,将以下代码添加到原文件中:
在kernel/fork.c、kernel/sched.c和kernel/exit.c中,找到正确的状态转换点,并添加合适的状态信息,把它输出到log文件之中。

fork.c的修改如下:
exit.c的修改如下:
sched.c的修改如下:
在虚拟机上运行ls -l /var”或“ll /var”查看process.log是否建立,及它的属性和长度;
修改时间片
include/linux/sched.h宏INIT_TASK中定义的:
0,15,15, 分别对应state、counter和priority,将priority值修改,即可实现对时间片大小的调整。

0,15,15, 分别对应state、counter和priority,
priority值修改,即可实现对时间片大小的调整。

在修改时间片将priority由15改为150后,Process 9~20 中Turnaround, Waiting, CPU Burst, I/O Burst变化不大,原因可能是程序中I/O操作占用的时间对于总时间影响的权重过大,导致处理时间体现的并不明显。

或者变化不大的原因是,子进程连续占用cpu的时间要比时间片大很多。

操作系统实验三 时间片轮转法完成进程调度

操作系统实验三 时间片轮转法完成进程调度

实验三:时间片轮转法完成进程调度一、实验目的:(1)加深对进程的理解(2)理解进程控制块的结构(3)理解进程运行的并发性(4)掌握时间片轮转法进程调度算法实验内容:(1)建立进程控制块(2)设计三个链队列,分别表示运行队列、就绪队列和完成队列(3)用户输入进程标识符以及进程所需的时间,申请空间存放进程PCB信息。

(4)每一个时间片结束输出各进程的进程号,CPU时间(即已经占用的CPU时间),所需时间(即还需要的CPU时间),以及状态(即用W表示等待,R表示运行,F表示完成)实验程序:#include <stdio.h>#include <stdlib.h>#include <string.h>typedef struct node{char name[10];/*进程标识符*/int prio;/*进程优先数*/int round;/*进程时间轮转时间片*/int cputime; /*进程占用CPU时间*/int needtime; /*进程到完成还要的时间*/int count;/*计数器*/char state; /*进程的状态*/struct node *next; /*链指针*/}PCB;PCB *finish,*ready,*tail,*run; //队列指针int N,t; //进程数,时间片的大小void firstin(){run=ready;//就绪队列头指针赋值给运行头指针run->state='R'; //进程状态变为运行态ready=ready->next; //就绪队列头指针后移到下一进程}void prt1(char a)//输出标题函数{if(toupper(a)=='P')//优先级法printf("进程名占用CPU时间到完成还要的时间轮转时间片状态\n");} void prt2(char a,PCB *q)//进程PCB输出{if(toupper(a)=='P')//优先级法的输出printf("%4s %8d %12d %14d %8c\n",q->name,q->cputime,q->needtime,q->roun d,q->state);}void prt(char algo)//输出函数二、三、{PCB *p;prt1(algo);//输出标题if(run!=NULL)//如果运行指针不空prt2(algo,run);//输出当前正在运行的PCBp=ready;//输出就绪队列PCBwhile(p!=NULL){prt2(algo,p);p=p->next;}p=finish;//输出完成队列的PCBwhile(p!=NULL){prt2(algo,p);p=p->next;}getchar(); //按住任意键继续}void insert(PCB *q)//时间片轮转的插入算法{PCB *p1,*s,*r;s=q;//待插入的PCB指针p1=ready;//就绪队列头指针r=p1;//*r做pl的前驱指针while(p1!=NULL)if(p1->round<=s->round){r=p1;p1=p1->next;}if(r!=p1){r->next=s;s->next=p1;}else{s->next=p1;//否则插入在就绪队列的头ready=s;}}void create(char alg)//时间片轮转法创建链表进程PCB{PCB *p;int i,time;char na[10];ready=NULL;finish=NULL;run=NULL;printf("输入进程名及其需要运行的时间(中间以空格隔开):\n"); for(i=1;i<=N;i++){p=new PCB;scanf("%s %d",&na,&time);strcpy(p->name,na);p->cputime=0;p->needtime=time;p->state='W';//进程的状态p->round=0;if(ready!=NULL)insert(p);else{p->next=ready;ready=p;}}printf("*************时间片轮转法进程调度过程*************\n"); prt(alg);run=ready;ready=ready->next;run->state='R';}void timeslicecycle(char alg)//时间片轮转法{while(run!=NULL){run->cputime=run->cputime+t;//处理时间加trun->needtime=run->needtime-t;//完成需要时间减trun->round=run->round+t;//运行完将其变为完成态,插入完成队列if(run->needtime<=0)//当进程完成时{run->next=finish;finish=run;run->state='F';run=NULL;if(ready!=NULL)//就绪队列不空,将第一个进程投入进行firstin();}else{run->state='W';//将进程插入到就绪队列中等待轮转insert(run);//将就绪队列的第一个进程投入运行firstin();}prt(alg);}}void main()//主函数{char algo='P';//算法标记printf("输入进程的个数:");scanf("%d",&N);//输入进程数printf("定义时间片大小:");scanf("%d",&t);//输入时间片大小create(algo);//创建进程timeslicecycle(algo);//时间片轮转法调度}//main()四、实验结果:五、实验小结:时间片轮转调度是一种最古老,最简单,最公平且使用最广的算法。

操作系统实验3进程同步报告

操作系统实验3进程同步报告

实验三进程同步一、实验目的:1.了解进程和线程的同步方法,学会运用进程和线程同步方法来解决实际问题;2.了解windows系统下Win32 API或Pthread信号量机制的使用方法;二、实验预备内容:1.对书上所说基于信号量的有限缓冲的生产者-消费者问题;2.对于信号量的概念有大概的了解,知道如何用信号量的wiat()和signal()函数如何取消应用程序进入临界区的忙等;三、实验环境说明:此实验在Win7(32位) CodeBlocks环境下实现,采用WinAPI的信号量机制。

四、实验内容:设计一个程序解决有限缓冲问题,其中的生产者与消费者进程如下图所示。

在Bounded-Buffer Problem(6.6.1节)中使用了三个信号量:empty (记录有多少空位)、full(记录有多少满位)以及mutex(二进制信号量或互斥信号量,以保护对缓冲区插入与删除的操作)。

对于本项目,empty和full将采用标准计数信号量,而mutex将采用二进制信号量。

生产者与消费者作为独立线程,在empty、full、mutex的同步前提下,对缓冲区进行插入与删除。

本项目可采用Pthread或Win32 API。

(本实验采用Win32 API)五、程序设计说明:1.全局变量:定义缓冲区数组及其环形队列表达方式,定义mutex、empty、full 三个信号量。

empty记录缓冲区有多少个空位;full记录缓冲区有多少个满位;mutex作为互斥信号量,保护对缓冲区插入或删除的操作。

具体定义如下:定义生产者、消费者线程结构和包含的信息:(由于题目中没有要求,因此只定义了编号一个变量)2.缓冲区:缓冲区是一个元数据类型为buffer_item(可通过typedef定义)的固定大小的数组,按环形队列处理。

buffer_item的定义及缓冲区大小可保存在头文件中:A.insert_item():先判断缓冲区是否已满,不满则向缓冲区中插入元素;B.remove_item()先判断缓冲区是否为空,不空则从缓冲区中删除元素;3.生产者线程:生产者线程交替执行如下两个阶段:睡眠一段随机事件,向缓冲中插入一个随机数。

操作系统实验报告3

操作系统实验报告3

专业:班级:
姓名:学号:实验日期:年月日
实验名称:操作系统实验3 进程同步(5分)
实验目的:以一个教学型操作系统EOS为例,深入理解进程(线程)同步的原理、意义及信号量的含义和实现方法;能对核心源代码进行分析和修改,能运用信号量实现同步问题;训练分析问题、解决问题以及自主学习能力,逐步达到能独立对小型操作系统的功能进行分析、设计和实现。

实验环境:EOS操作系统及其实验环境。

实验内容:
使用EOS的信号量,实现生产者-消费者问题;跟踪EOS信号量的工作过程,分析EOS 信号量实现的源代码,理解并阐述其实现方法;修改EOS信号量的实现代码,使之支持等待超时唤醒和批量释放功能。

实验步骤:
1)使用EOS的信号量实现生产者-消费者问题
(给出使用EOS的信号量解决生产者-消费者问题的实现方法,包括实现方法的简要描述、源代码、测试及结果等)
2)EOS信号量工作过程的跟踪与源代码分析
(分析EOS信号量实现的核心源代码,阐述其实现方法,包括数据结构和算法等;简要说明在本部分实验过程中完成的主要工作,包括对EOS信号量工作过程的跟踪等)
3)支持等待超时唤醒和批量释放功能的信号量实现
(给出实现方法的简要描述、源代码、测试及结果等)
结果分析:
(对本实验所做工作及结果进行分析,包括EOS信号量实现方法的特点、不足及改进意见;结合EOS对信号量实现的相关问题提出自己的思考;分析支持等待超时唤醒和批量释放功能的信号量实现方法的有效性、不足和改进意见,如果同时采用了多种实现方法,则进行对比分析;其他需要说明的问题)。

实验三 Linux操作系统安全实验 (一)

实验三 Linux操作系统安全实验 (一)

实验三Linux操作系统安全一、实验目的及要求(一)实验目的通过实验熟悉Linux环境下的用户管理、进程管理以及文件管理的相关操作命令。

掌握linux操作系统中相关的系统安全配置方法,建立linux操作系统的基本安全框架。

(二)实验要求根据实验中介绍的Linux操作系统的各项安全性实验要求,详细观察记录设置前后系统的变化,给出分析报告。

使用RPM对系统的软件进行管理,验证系统内软件的完整性,并分析结果。

试比较Linux下网了服务安全设置与Windows下安全设置异同。

二、实验环境安装Red hat9.0操作系统的计算机一台三、实验内容1、账户和口令安全2、文件系统管理安全3、查看和更改PAM模块设置4、RPM软件管理5、系统安全配置四、实验步骤任务一账户和口令安全1、查看和添加账户(1)在X_Windows窗口中单击鼠标右键,选择“信件中断”,输入下面的命令行:[root@localhost root]#useradd mylist利用useradd命令新建名为mylist的新账户。

(2)输入命令行:[root@localhost root]#cat/etc/shadow利用cat查看系统中的账户列表。

用su命令切换到新建的账户,重复步骤(2),检查shadow文件的权限设置是否安全。

设置安全时,普通用户mylist应该没有查看该系统文件的权限。

在终端中出现如下的提示:Cat:/etc/shadow:权限不够2、添加和更改密码(1)在终端输入[root@localhost root]#passwd mylist为新建账户添加密码。

注意:系统管理员无需输入原来密码即可以利用passwd命令添加或改变任意用户的密码,但普通用户只能改变自己的密码。

(2)输入后依次出现如下提示:Changjing passwd for user mylist.New passwd:Retype new passwd:Passwd:all authentication tokens updated susscessfully.输入密码,Linux系统不会将输入显示出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学学生实验报告开课学院及实验室:计算机科学与工程实验室 2015年 12月 1日(***报告只能为文字和图片,老师评语将添加到此处,学生请勿作答***)一、实验目的通过模拟实现请求页式存储管理的几种基本页面置换算法,了解虚拟存储技术的特点,掌握虚拟存储请求页式存储管理中几种基本页面置换算法的基本思想和实现过程,并比较它们的效率。

二、实验容实验1:设计一个虚拟存储区和存工作区,并使用下述算法计算访问命中率。

1、最佳淘汰算法(OPT)2、先进先出的算法(FIFO)3、最近最久未使用算法(LRU)4、最不经常使用算法(LFU)5、最近未使用算法(NUR)命中率=1-页面失效次数/页地址流长度实验2:在Linux环境下利用下列系统调用malloc(),free()编写一段程序实现存分配与回收的管理。

要求:1、返回已分配给变量的存地址;2、返回释放后的存地址;3、释放已分配的存空间后,返回释放存后未使用存的大小。

三、实验原理UNIX中,为了提高存利用率,提供了外存进程对换机制;存空间的分配和回收均以页为单位进行;一个进程只需将其一部分(段或页)调入存便可运行;还支持请求调页的存储管理方式。

当进程在运行中需要访问某部分程序和数据时,发现其所在页面不在存,就立即提出请求(向CPU发出缺中断),由系统将其所需页面调入存。

这种页面调入方式叫请求调页。

为实现请求调页,核心配置了四种数据结构:页表、页框号、访问位、修改位、有效位、保护位等。

当CPU接收到缺页中断信号,中断处理程序先保存现场,分析中断原因,转入缺页中断处理程序。

该程序通过查找页表,得到该页所在外存的物理块号。

如果此时存未满,能容纳新页,则启动磁盘I/O将所缺之页调入存,然后修改页表。

如果存已满,则须按某种置换算法从存中选出一页准备换出,是否重新写盘由页表的修改位决定,然后将缺页调入,修改页表。

利用修改后的页表,去形成所要访问数据的物理地址,再去访问存数据。

整个页面的调入过程对用户是透明的。

四、实验设备安装了Linux系统的电脑五、实验程序实验1:#include<stdio.h>#include<stdlib.h>#define TRUE 1#define FALSE 0#define INV ALID -1//#define NULL 0#define total_instruction 320#define total_vp 32#define clear_period 50typedef struct{int pn,pfn,counter,time;}pl_type;pl_type pl[total_vp];struct pfc_struct{int pn,pfn;struct pfc_struct *next;};typedef struct pfc_struct pfc_type;pfc_type pfc[total_vp],*freepf_head,*busypf_head,*busypf_tail;int diseffect, a[total_instruction];int page[total_instruction], offset[total_instruction];int initialize(int);int FIFO(int);int LRU(int);int LFU(int);int NUR(int);int OPT(int);int main( ){int s,i,j;srand(10*getpid());s=(float)319*rand( )/32767/32767/2+1;for(i=0;i<total_instruction;i+=4){if(s<0||s>319)printf("When i==%d,Error,s==%d\n",i,s);exit(0);}a[i]=s;a[i+1]=a[i]+1;a[i+2]=(float)a[i]*rand( )/32767/32767/2;a[i+3]=a[i+2]+1;s=(float)(318-a[i+2])*rand( )/32767/32767/2+a[i+2]+2;if((a[i+2]>318)||(s>319))printf("a[%d+2],a number which is :%d and s==%d\n",i,a[i+2],s); }for (i=0;i<total_instruction;i++){page[i]=a[i]/10;offset[i]=a[i]%10;}for(i=4;i<=32;i++){printf("---%2d page frames---\n",i);FIFO(i);LRU(i);LFU(i);NUR(i);OPT(i);}return 0;}int initialize(total_pf)int total_pf;{int i;diseffect=0;for(i=0;i<total_vp;i++){pl[i].pn=i;pl[i].pfn=INV ALID;pl[i].counter=0;pl[i].time=-1;}for(i=0;i<total_pf-1;i++){pfc[i].next=&pfc[i+1];pfc[i].pfn=i;pfc[total_pf-1].next=NULL;pfc[total_pf-1].pfn=total_pf-1;freepf_head=&pfc[0];return 0;}int FIFO(total_pf)int total_pf;{int i,j;pfc_type *p;initialize(total_pf);busypf_head=busypf_tail=NULL;for(i=0;i<total_instruction;i++){if(pl[page[i]].pfn==INV ALID){diseffect+=1;if(freepf_head==NULL){p=busypf_head->next;pl[busypf_head->pn].pfn=INV ALID;freepf_head=busypf_head;freepf_head->next=NULL;busypf_head=p;}p=freepf_head->next;freepf_head->next=NULL;freepf_head->pn=page[i];pl[page[i]].pfn=freepf_head->pfn;if(busypf_tail==NULL)busypf_head=busypf_tail=freepf_head;else{busypf_tail->next=freepf_head;busypf_tail=freepf_head;}freepf_head=p;}}printf("FIFO:%6.4f\n",1-(float)diseffect/320); return 0;}int LRU (total_pf)int total_pf;{int min,minj,i,j,present_time;initialize(total_pf);present_time=0;for(i=0;i<total_instruction;i++){if(pl[page[i]].pfn==INV ALID){diseffect++;if(freepf_head==NULL){min=32767;for(j=0;j<total_vp;j++)if(min>pl[j].time&&pl[j].pfn!=INV ALID) {min=pl[j].time;minj=j;}freepf_head=&pfc[pl[minj].pfn];pl[minj].pfn=INV ALID;pl[minj].time=-1;freepf_head->next=NULL;}pl[page[i]].pfn=freepf_head->pfn;pl[page[i]].time=present_time;freepf_head=freepf_head->next;}elsepl[page[i]].time=present_time;present_time++;}printf("LRU:%6.4f\n",1-(float)diseffect/320); return 0;}int NUR(total_pf)int total_pf;{int i,j,dp,cont_flag,old_dp;pfc_type *t;initialize(total_pf);dp=0;for(i=0;i<total_instruction;i++){if (pl[page[i]].pfn==INV ALID){diseffect++;if(freepf_head==NULL){cont_flag=TRUE;old_dp=dp;while(cont_flag)if(pl[dp].counter==0&&pl[dp].pfn!=INV ALID) cont_flag=FALSE;else{dp++;if(dp==total_vp)dp=0;if(dp==old_dp)for(j=0;j<total_vp;j++)pl[j].counter=0;}freepf_head=&pfc[pl[dp].pfn];pl[dp].pfn=INV ALID;freepf_head->next=NULL;}pl[page[i]].pfn=freepf_head->pfn;freepf_head=freepf_head->next;}elsepl[page[i]].counter=1;if(i%clear_period==0)for(j=0;j<total_vp;j++)pl[j].counter=0;}printf("NUR:%6.4f\n",1-(float)diseffect/320); return 0;}int OPT(total_pf)int total_pf;{int i,j, max,maxpage,d,dist[total_vp];pfc_type *t;initialize(total_pf);for(i=0;i<total_instruction;i++){if(pl[page[i]].pfn==INV ALID){diseffect++;if(freepf_head==NULL){for(j=0;j<total_vp;j++)if(pl[j].pfn!=INVALID) dist[j]=32767;else dist[j]=0;d=1;for(j=i+1;j<total_instruction;j++){if(pl[page[j]].pfn!=INV ALID)dist[page[j]]=d;d++;}max=-1;for(j=0;j<total_vp;j++)if(max<dist[j]){max=dist[j];maxpage=j;}freepf_head=&pfc[pl[maxpage].pfn]; freepf_head->next=NULL;pl[maxpage].pfn=INV ALID;}pl[page[i]].pfn=freepf_head->pfn;freepf_head=freepf_head->next;}}printf("OPT:%6.4f\n",1-(float)diseffect/320); return 0;}int LFU(total_pf)int total_pf;{int i,j,min,minpage;pfc_type *t;initialize(total_pf);for(i=0;i<total_instruction;i++){if(pl[page[i]].pfn==INV ALID){diseffect++;if(freepf_head==NULL){min=32767;for(j=0;j<total_vp;j++){if(min>pl[j].counter&&pl[j].pfn!=INV ALID) {min=pl[j].counter;minpage=j;}pl[j].counter=0;}freepf_head=&pfc[pl[minpage].pfn];pl[minpage].pfn=INV ALID;freepf_head->next=NULL;}pl[page[i]].pfn=freepf_head->pfn;pl[page[i]].counter++;freepf_head=freepf_head->next;}elsepl[page[i]].counter++;}printf("LFU:%6.4f\n",1-(float)diseffect/320); return 0;}实验2#include<iostream>using namespace std;#include<stdlib.h>#include<stdio.h>#include<malloc.h>//#include<iostream>int main(){int *string;string=(int*) malloc(10);if(string==NULL)printf("Insufficient memory available\n");else{printf("Memory space allocated for path name\n"); cout<<"string="<<string<<endl;free(string);printf("Memory freed\n");}int *stringy;stringy=(int*)malloc(12);if(stringy==NULL)printf("Insufficient memory available\n");else{printf("Memory space allocated for path name\n");cout<<"stringy="<<stringy<<endl;free(stringy);printf("Memory freed\n");}}六、实验结果试验1:从几种算法的命中率看,OPT最高,其次为NUR相对较高,而FIFO与LRU相差无几,最低的是LFU。

相关文档
最新文档