拉伸强度试验
拉伸强度测试标准

拉伸强度测试标准拉伸强度是材料在拉伸过程中抵抗破坏的能力,是材料力学性能的重要指标之一、拉伸强度测试是通过在材料上施加拉应力并测量其抗拉力和断裂长度来进行的。
拉伸强度测试标准是为了确保测试过程的一致性和可比性而制定的具体规范和指导文件。
本文将介绍一些常见的拉伸强度测试标准。
1.ASTMD638ASTMD638是美国材料与试验协会(ASTM)制定的一项用于测量塑料拉伸强度的标准。
该标准规定了测试方法、试样形状和尺寸、试验设备和数据分析方法等内容,以确保测试结果的准确性和可重复性。
2.ISO527ISO527是国际标准化组织(ISO)制定的一项用于测量塑料拉伸性能的标准。
它与ASTMD638类似,提供了详细的测试程序和要求,以便不同实验室之间的测试结果可进行比较。
3.GB/T1040GB/T1040是中国国家标准化管理委员会制定的一项用于测量塑料拉伸性能的标准。
该标准包括了试样制备、测试方法、数据计算和报告格式等方面的规定,以确保测试结果的可重复性和可比性。
4.JISK7161JISK7161是日本工业标准化国际化组织(JIS)制定的一项用于测量塑料拉伸强度的标准。
它提供了详细的试验条件和要求,以确保测试结果的准确性和可靠性。
这些标准不仅适用于塑料材料的拉伸强度测试,还可用于金属、橡胶、纤维等材料的拉伸强度测试。
在进行拉伸强度测试时,需要按照标准规定的试样尺寸和测试方法进行操作,并记录测试过程中的相关数据,如应力-应变曲线、最大应力、断裂长度等。
同时,还应注意测试环境的控制,包括温度、湿度和试样制备等方面的要求。
拉伸强度测试标准的制定和遵守对于材料的研发、质量控制和产品设计都具有重要意义。
准确的拉伸强度测试结果可以为材料的性能评价、产品设计和工业应用提供参考依据,从而保证产品的可靠性和安全性。
因此,在进行拉伸强度测试时,应严格按照相应的标准操作,确保测试结果的准确性和可靠性。
拉伸强度试验

拉伸强度试验在胶接接头受拉伸应力作用时,有三种不同的接头受力方式。
(1)拉伸应力与胶接面互相垂直,并且通过胶接面中心均匀地分布在整个胶接面上,这一应力均匀拉伸应力,又称正拉伸应力。
(2)拉伸应力分布在整个胶接面上,但力呈不均匀分布,此种情况称为不均匀拉伸。
(3)与不均匀拉伸相比,它的力作用线不是捅咕试样中心,而偏于试样的一端;它的受力面不是对称的,而是不对称的,这种拉伸叫不对称拉伸,人们有时将这一试验叫撕离试验或劈裂试验,以示与剥离相区别。
一.拉伸强度试验(条型和棒状)拉伸强度试验又叫正拉强度试验或均匀扯离强度试验。
1.原理由两根棒状被粘物对接构成的接头,其胶接面和试样纵轴垂直,拉伸力通过试样纵轴传至胶接面直至破坏,以单位胶接面积所承受的最大载荷计算其拉伸强度。
2.仪器设备拉力试验机应能保证恒定的拉伸速度,破坏负荷应在所选刻度盘容量的10% -90%范围内。
拉力机的响应时间应短至不影响测量精度,应能测得试样断裂时的破坏载荷,其测量误差不大于1%。
拉力试验机应具有加载时可与试样的轴线和加载方向保持一致的,自动对中的拉伸夹具。
固化夹具,能施加固定压力,保证正确胶接与定位。
3.试验步骤(1)试棒与试样试棒为具有规定形状,尺寸的棒状被粘物。
试样为将两个试棒通过一定工艺条件胶接而成的被测件。
除非另有规定,其试棒尺寸见表8-4。
其试样尺寸的选择视待测胶黏剂的强度,拉力机的满量程,试棒本身材质的强度以及试验时环境因素而定。
金属材料有层压塑料等。
层压制品试棒,其层压平面应与试棒一个侧面平行,试棒上的销孔应与层压平面垂直。
试棒的表面处理,涂胶及试样制备工艺,应符合产品标准规定。
胶接好试样,以周围略有一圈细胶梗为宜,此时不必清除,若需清除余胶,则应在固化后进行。
(2)试验在正常状态下,金属试样从试样制备完毕到测试之间,最短停放时间为16h,最长为1个月,非金属试样至少停放40h。
试样应在试验环境下停放30min以上,将它安装在拉力试验机夹具上,测试其破坏负荷,对电子拉力机试验机应使试样在(60±20)s内破坏;有时对机械式拉力机则采用10mm/min拉伸速度。
金属材料拉伸试验

金属材料拉伸试验金属材料拉伸试验是一种常见的材料力学性能测试方法,通过对金属材料进行拉伸,可以获取材料的拉伸强度、屈服强度、断裂伸长率等重要参数,为材料的设计和选用提供重要参考。
本文将介绍金属材料拉伸试验的基本原理、试验方法和数据分析。
一、基本原理。
金属材料在受力作用下会发生塑性变形和断裂,拉伸试验是通过施加拉力使材料产生塑性变形,从而研究材料的力学性能。
在拉伸试验中,材料会逐渐发生颈缩,最终断裂。
通过对试验过程中的载荷和变形进行记录和分析,可以得到材料的拉伸性能参数。
二、试验方法。
1. 样品制备,从金属材料中切割出标准试样,并在试样两端加工成圆柱形,以便安装在拉伸试验机上。
2. 装夹试样,将试样安装在拉伸试验机上,通过夹具夹紧试样两端,保证试样在拉伸过程中不会发生松动或滑动。
3. 施加载荷,启动拉伸试验机,施加逐渐增大的拉力,使试样发生拉伸变形。
在试验过程中,记录载荷和试样的变形情况。
4. 数据采集,通过传感器采集试验过程中的载荷和变形数据,得到应力-应变曲线。
5. 数据分析,根据应力-应变曲线,可以计算得到材料的拉伸强度、屈服强度、断裂伸长率等参数。
三、数据分析。
拉伸试验得到的应力-应变曲线可以分为线性弹性阶段、屈服阶段和断裂阶段。
在线性弹性阶段,应力与应变成正比,材料具有良好的弹性回复性;在屈服阶段,材料开始发生塑性变形,应力逐渐增大,直至达到最大应力;在断裂阶段,材料突然断裂,试验结束。
根据应力-应变曲线,可以计算得到材料的拉伸强度、屈服强度、断裂伸长率等力学性能参数,这些参数对于材料的设计和选用具有重要意义。
四、结论。
金属材料拉伸试验是一种重要的力学性能测试方法,通过对材料的拉伸行为进行研究,可以获取材料的重要力学性能参数,为工程设计和材料选用提供重要参考。
通过合理的试验方法和数据分析,可以准确地评估材料的力学性能,为材料的应用提供可靠的数据支持。
拉伸试验国家标准尺寸

拉伸试验国家标准尺寸拉伸试验是一种常见的材料力学性能测试方法,它可以用来评估材料的拉伸强度、延展性和断裂韧性等重要性能。
在进行拉伸试验时,标准尺寸的选取是非常重要的,因为尺寸的不合适会对试验结果产生影响,甚至导致误判。
因此,国家对拉伸试验的标准尺寸进行了规定,以确保试验结果的准确性和可比性。
根据国家标准,拉伸试验的标准尺寸应符合以下要求:1. 试样的长度应为标准尺寸的整数倍,通常为5倍或10倍。
这样可以确保试样在拉伸时受到均匀的力,并且可以减小试验过程中的边界效应对结果的影响。
2. 试样的横截面积应符合标准尺寸的要求,通常为10mm×10mm或20mm×20mm。
横截面积的选取直接影响到试样的受力情况,过小或过大的横截面积都会导致试验结果的失真。
3. 试样的两端应平行并且垂直于试样轴线。
这样可以确保试样在受力时不会出现偏斜或扭曲,从而保证试验结果的准确性。
4. 试样的表面应光滑平整,不得有明显的凹凸或划痕。
试样表面的质量直接影响到试验中的应力分布情况,不合格的试样表面会导致试验结果的失真。
总的来说,国家标准尺寸的规定旨在确保拉伸试验的可靠性和可比性。
只有在符合国家标准尺寸的前提下进行拉伸试验,才能得到准确的试验结果,并且才能进行不同试验结果的比较和分析。
因此,在进行拉伸试验时,务必严格遵守国家标准尺寸的规定,以确保试验结果的准确性和可靠性。
在实际的生产和科研工作中,我们需要根据具体的材料和试验要求来选择合适的标准尺寸,并且在试验过程中要严格按照国家标准进行操作,以确保试验结果的准确性和可比性。
只有这样,我们才能更好地评估材料的力学性能,为材料的设计和选用提供可靠的数据支持。
拉伸试验知识点总结

拉伸试验知识点总结一、拉伸试验的原理和方法1. 拉伸试验的原理拉伸试验是通过施加拉力使试件产生逐渐增大的应变,测定试件在拉伸过程中的应力和应变关系,以了解材料的塑性变形规律和断裂特性。
在试验中,试件受拉力作用下会发生线弹性、屈服、加工硬化和断裂等现象,因此通过拉伸试验可以获得材料的强度、延展性和断裂韧度等方面的信息。
2. 拉伸试验的方法拉伸试验可以采用万能材料试验机进行,试验过程包括试件的制备、加载、数据采集和结果分析等步骤。
试件的制备要求严格,通常采用标准化的试件尺寸和工艺流程。
加载时要控制加载速度和加载方式,通常选择恒速加载和恒应变加载两种方式。
数据采集方面要求准确可靠,可以采用传感器和数据采集系统。
结果分析时要综合考虑应力-应变曲线、断裂形貌、塑性变形等信息,以得出材料的力学性能参数和断裂特征。
二、拉伸试验的数据处理和结果分析1. 应力-应变曲线的特征拉伸试验得到的最重要的结果之一就是应力-应变曲线,它反映了材料的力学性能和变形规律。
应力-应变曲线通常包括线弹性阶段、屈服阶段、加工硬化阶段和断裂阶段等不同的特征。
线弹性阶段对应着Hooke定律的范围,应力与应变呈线性关系;屈服阶段是材料开始发生塑性变形的临界点,此时应力保持不变,应变不断增加;加工硬化阶段表示材料经历了一定程度的塑性变形后,其抗拉强度逐渐增加;达到一定程度后,材料会发生断裂,此时应力急剧下降,标志着材料的断裂点。
2. 强度和延展性的指标拉伸试验可以通过应力-应变曲线确定材料的屈服强度、抗拉强度、延伸率和断裂韧度等重要的力学性能指标。
屈服强度是材料在开始发生塑性变形时的应力值,通常取0.2%屈服点或屈服点。
抗拉强度是材料在断裂时的最大应力值,通常取应力-应变曲线的最大点。
延伸率表示材料在断裂前的拉伸变形能力,通常以拉断长度与原始长度的比值来表示。
断裂韧度是材料在断裂时所吸收的能量,通常以应力-应变曲线下的面积来表示。
3. 结果分析的方法拉伸试验的结果分析通常需要综合考虑上述指标及曲线的形状、断口形貌、塑性变形等信息。
力学拉伸实验报告实验

一、实验目的1. 了解材料在拉伸过程中的力学行为,观察材料的弹性、屈服、强化、颈缩和断裂等物理现象。
2. 测定材料的拉伸强度、屈服强度、抗拉强度等力学性能指标。
3. 掌握万能试验机的使用方法及拉伸实验的基本操作。
二、实验原理材料在拉伸过程中,其内部微观结构发生变化,从而表现出不同的力学行为。
根据胡克定律,当材料处于弹性阶段时,应力与应变呈线性关系。
当应力达到某一值时,材料开始发生屈服,此时应力不再增加,应变迅速增大。
随着应力的进一步增大,材料进入强化阶段,应力逐渐增加,应变增长速度减慢。
当应力达到最大值时,材料发生颈缩现象,此时材料横截面积迅速减小,应变增长速度加快。
最终,材料在某一应力下发生断裂。
三、实验仪器与设备1. 万能试验机:用于对材料进行拉伸试验,可自动记录应力与应变数据。
2. 拉伸试样:采用低碳钢圆棒,规格为直径10mm,长度100mm。
3. 游标卡尺:用于测量拉伸试样的尺寸。
4. 电子天平:用于测量拉伸试样的质量。
四、实验步骤1. 将拉伸试样清洗干净,用游标卡尺测量其直径和长度,并记录数据。
2. 将拉伸试样安装在万能试验机的夹具中,调整夹具间距,确保试样在拉伸过程中均匀受力。
3. 打开万能试验机电源,设置拉伸速度和最大载荷,启动试验机。
4. 观察拉伸过程中试样的变形和破坏现象,记录试样断裂时的载荷。
5. 关闭试验机电源,取出试样,用游标卡尺测量试样断裂后的长度,计算伸长率。
五、实验数据与结果1. 拉伸试样直径:10.00mm2. 拉伸试样长度:100.00mm3. 拉伸试样质量:20.00g4. 拉伸试样断裂载荷:1000N5. 拉伸试样断裂后长度:95.00mm根据实验数据,计算材料力学性能指标如下:1. 抗拉强度(σt):1000N / (π × (10mm)^2 / 4) = 784.62MPa2. 屈服强度(σs):600N / (π × (10mm)^2 / 4) = 471.40MPa3. 伸长率(δ):(95.00mm - 100.00mm) / 100.00m m × 100% = -5%六、实验分析1. 本实验中,低碳钢试样在拉伸过程中表现出明显的弹性、屈服、强化、颈缩和断裂等物理现象,符合材料力学理论。
拉伸强度

基本概述
常规冲击计算
冲击波
小能量多次冲击
基本概述
(1)冲击强度用于评价材料的抗冲击能力或判断材料的脆性和韧性程度,因此冲击强度也称冲击韧性。
a:冲击强度
W :冲击损失能量
h:缺口剩余宽度
d:样条厚度
因此,GB与ATSM之间不可以等同测量,但从测量公式可总结经验公式:GB数值*10.16或8(错误样条)=ATSM数值,也可以由实际测量来总结比值。
常规冲击计算
冲击载荷在零件中产生的冲击应力除与零件的形状、体积和局部弹塑性变形等有关外,还同与其相连接的物体有关。如与零件相连接的物体是绝对刚体,则冲击能全部为该零件所承受;如与零件相连接的物体刚度为某一值,则冲击能为整个体系所承担,该零件只承受冲击能的一部分。此外,冲击应力的大小,还取决于冲击能量的大小。因此,冲击载荷作用下的强度计算,比静载荷作用下的强度计算复杂得多。在设计承受冲击载荷的零件时,须引入一个动载系数(见载荷系数)后按静强度设计。动载系数也可用振动理论中求响应的方法确定。
本标准主要起草人杨美菊、孟秉芬。
编辑本段
3相关计算公式
1设力臂为hF,危险截面宽度为SF,齿根危险截面的名义弯曲应力为
2
计入载荷系数K、重合度系数Ye、应力修正系数Ysa,则得齿根弯曲疲劳强
度的校核公式为
3齿根弯曲疲劳强度的设计公
式
扩展阅读:
1
提高梁弯曲强度的一些措施:/jpkc/zydata/14/12158261130.htm
金属拉伸试验结果判定标准

金属拉伸试验结果判定标准
金属拉伸试验结果的判定标准通常基于拉伸试验的力学性质和材料的性能要求。
具体的判定标准可能因材料的不同而有所差异,但以下是一些常见的金属拉伸试验结果判定标准:
1. 屈服强度(Yield Strength):在拉伸试验过程中,材料开始发生可观的塑性变形时的应力值。
通常使用0.2% 屈服强度或者0.5% 屈服强度来进行判定。
材料的屈服强度要符合相应的标准或设计要求。
2. 极限强度(Ultimate Strength):在拉伸试验中,材料达到最大的应力值时,即为极限强度。
极限强度反映了材料的抗拉强度和较高应力下的性能。
3. 断裂强度(Fracture Strength):拉伸试验中,材料发生断裂时所承受的最大应力值。
断裂强度常常用来评估材料的韧性。
4. 延伸率(Elongation):材料在拉伸过程中发生可观塑性变形前的变形量与原始长度的比值。
通常以百分比表示。
延伸率可以作为材料的韧性指标。
5. 断面收缩率(Reduction of Area):拉伸断裂前后截面积的差异比值。
断面收缩率可以衡量材料的塑性变形能力。
需要注意的是,判定标准可能因不同的制造标准、材料应用等因素而有所差异,所以在具体的应用中应根据相关标准和需求
进行判定。
同时,金属拉伸试验结果的判定还应结合其他力学性能指标和材料特性进行综合评估。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉伸强度试验在胶接接头受拉伸应力作用时,有三种不同的接头受力方式。
(1)拉伸应力与胶接面互相垂直,并且通过胶接面中心均匀地分布在整个胶接面上,这一应力均匀拉伸应力,又称正拉伸应力。
(2)拉伸应力分布在整个胶接面上,但力呈不均匀分布,此种情况称为不均匀拉伸。
(3)与不均匀拉伸相比,它的力作用线不是捅咕试样中心,而偏于试样的一端;它的受力面不是对称的,而是不对称的,这种拉伸叫不对称拉伸,人们有时将这一试验叫撕离试验或劈裂试验,以示与剥离相区别。
一.拉伸强度试验(条型和棒状)拉伸强度试验又叫正拉强度试验或均匀扯离强度试验。
1.原理由两根棒状被粘物对接构成的接头,其胶接面和试样纵轴垂直,拉伸力通过试样纵轴传至胶接面直至破坏,以单位胶接面积所承受的最大载荷计算其拉伸强度。
2.仪器设备拉力试验机应能保证恒定的拉伸速度,破坏负荷应在所选刻度盘容量的10% -90%范围内。
拉力机的响应时间应短至不影响测量精度,应能测得试样断裂时的破坏载荷,其测量误差不大于1%。
拉力试验机应具有加载时可与试样的轴线和加载方向保持一致的,自动对中的拉伸夹具。
固化夹具,能施加固定压力,保证正确胶接与定位。
3.试验步骤(1)试棒与试样试棒为具有规定形状,尺寸的棒状被粘物。
试样为将两个试棒通过一定工艺条件胶接而成的被测件。
除非另有规定,其试棒尺寸见表8-4。
其试样尺寸的选择视待测胶黏剂的强度,拉力机的满量程,试棒本身材质的强度以及试验时环境因素而定。
金属材料有层压塑料等。
层压制品试棒,其层压平面应与试棒一个侧面平行,试棒上的销孔应与层压平面垂直。
试棒的表面处理,涂胶及试样制备工艺,应符合产品标准规定。
胶接好试样,以周围略有一圈细胶梗为宜,此时不必清除,若需清除余胶,则应在固化后进行。
(2)试验在正常状态下,金属试样从试样制备完毕到测试之间,最短停放时间为16h,最长为1个月,非金属试样至少停放40h。
试样应在试验环境下停放30min以上,将它安装在拉力试验机夹具上,测试其破坏负荷,对电子拉力机试验机应使试样在(60±20)s内破坏;有时对机械式拉力机则采用10mm/min拉伸速度。
4.结果评定试验结果以5个试样拉伸强度算术平均值表示,取3位有效数字。
同时应记下每个试样的破坏类型,如界面破坏,胶层内聚破坏,被粘物破坏与混合破坏。
5.影响因素(1)应力分析粘接接头在受到垂直于粘接面应力作用时,应力分布比受剪切应力要均匀得多,但根据理论推测与应力分布试验证实,在拉伸接头边缘也存在应力集中。
为证实这一点,有人采用一定厚度的橡胶胶接在试样中以代替胶黏剂,发现试样在拉伸时,橡胶中部有明显收缩。
说明在接头受正拉伸应力作用,剪切应力则集中在试样胶黏剂-空气-被粘体的三者边界处最大,也就是说在这一点上应力最集中。
如果我们胶接后两半圆柱体错位大,则试样的轴线偏离了加载方向中心线,这是经常会发生的。
那么,就存在有劈应力,而使边缘应力集中急剧增加。
当边界应力大到一个临界值时,胶层边缘就发生开裂,裂缝迅速地扩展到整个胶接面上。
从对拉伸试样的应力分布进行分析表明,胶接试件的尺寸与模量,胶层的厚度,胶黏剂的模量都影响接头边缘的应力分布系数大小,因此也必然会影响它的强度值。
与拉伸剪切试样一样,加载速度与试样温度也影响拉伸强度。
(2)试样尺寸不同的试样直径的拉伸强度测试值不一,而且离散大,同一直径试样其最大值比最小值高50%以上。
对方形试样,由于边缘到中心点距离不同,那应力分布更不均匀,因此用方形试样只能测到“近似”的拉伸强度值。
(3)胶层厚度对拉伸强度,随着胶层厚度增加,它的粘接接头强度降低。
胶层越薄,强度越大。
理论研究预言,对于非常薄胶胶层,对接拉伸强度反比于胶层厚度;而对于非常厚的胶层,则与胶厚度无关,如用聚乙烯蜡(相对分子量2750)来胶接钢与钢,当胶层厚度为150nm时,接头的拉伸强度已接近于聚乙烯蜡本身强度5.5MPa左右;而胶层厚度只有5nm时,对接接头的强度是胶黏剂本身强度的2倍。
其他因素如模量,温度等对拉伸强度的影响与拉伸剪切强度相似。
二.不均匀拉伸试验不均匀拉伸试验其特征是拉伸应力的作用线虽然通过试样中心,但受力时胶接面上的应力分布是不均匀的。
不均匀拉伸接头是航空工业中常采用的一种胶接结构,如飞机机翼蒙皮和翼肋,长珩的胶接,直升飞机旋翼的胶接等工作状态主要承受拉伸应力作用,而且在大多情况下是在不均匀拉伸应力的条件下工作的,因此测定胶接接头的不均匀拉伸强度有一定的实际意义。
不均匀拉伸强度的测定在一定程度下反映了胶黏剂的韧性,因此也能反映出各种胶接材料对胶缝应力集中的敏感程度。
本方法参照GJB94-1986。
原理由一块刚性金属厚块与一块挠性金属薄片被粘物对接组成的胶接接头,在承受不均匀拉伸载荷时,直至试样破坏。
以单位长度上所承受的最大负荷计算不均匀拉伸强度。
1.仪器设备拉力试验机试样专用夹具2.试验步骤(1)试件与试样制备按胶黏剂技术条件中规定将试件胶接,形成试样。
试固化后,在(23±2)℃至少放置16h后,才进行拉伸。
拉伸前必须清除余胶。
(2)试验试验在(23±2)℃下进行。
空气中相对湿度为(50±5)%。
若不能满足上述条件,则应在报告中注明。
测量胶接处试片宽度,精确到0. 01mm,取两侧测量结果平均值。
将试样装入拉力机夹具,其两端夹紧处之间的距离为(200±1)mm,并保证试样厚块边缘分别至两端夹紧处的距离差值不大于0. 5mm。
以5-15mm/min的速度加载,直至破坏。
3.结果评定试验结果计算到3位有效数字。
以5个试样的测试结果的算术平均值作为试验结果,取三位有效数字。
其标准误差S,离散系数C V也应同时报告。
标准误差与离散系数取两位有效数字。
4.影响因素(1)挠性被粘物的厚度与夹持距离不同挠性被粘物厚度与夹持距离的试验结果不能比较。
随着薄板厚度的增加,不均匀拉伸强度增大;同样,试样两端夹紧距离的缩短,它的不均匀拉伸强度增大。
(2)胶黏剂性质胶黏剂的弹性模具与伸长率大小对不均匀拉伸强度有影响。
这中间的关系比较复杂。
通常,增加断裂伸长率,降低了胶黏剂的弹性模量,使边缘应力集中现象有所改善,所以不均匀拉伸强度提高。
但当胶黏剂的弹性模量降低,它的内聚强度也相应降低,不均匀拉伸强度也会降低。
伸长与模量是一对矛盾,如何恰到好处地利用这一对矛盾来提高胶接接头的不均匀拉伸强度,是需要在胶黏剂配方研制时下一番工夫的。
(3)胶层厚度随着胶层厚度的增加,接头应力集中程度下降,不均匀拉伸强度提高,但胶层厚度继续增加时,由于胶层的内部缺陷增加,强度反而下降。
(4)试验温度不均匀拉伸强度与试验温度有关。
不同试验温度下胶黏剂的模量也发生变化,致使胶层中应力分布变化;另外温度变化,它内聚强度也变化,两种因素相互作用,在一定的试验温度范围内,它可能会出现一个不太明显的峰值。
(5)接头几何尺寸试样宽度对不均匀拉伸强度影响小,但胶接部分长度,即刚性试片与挠性试片的胶接长度越短,则强度越小。
三.不对称拉伸试验(劈裂试验)不对称拉伸试验又称为劈裂试验,它所测试出的强度叫劈裂强度。
在GB774 9-87以及国外的ASTMD1062与JISK6853中都规定了不对称拉伸试验方法。
1.原理试样为对接结构。
在试样的胶接面边缘施加与胶接面垂直的拉力,测定试样被分离时所承受的最大负荷,以每单位胶接宽度上所需的分离力表示它的劈裂强度。
2.仪器设备试验机要求同拉伸强度试验要求。
拉力机夹头移动速度为(5±1)mm/min。
3.试验步骤试样制备按胶黏剂技术条件规定。
金属块胶接面应平整,不应有弯曲,歪斜等变形。
胶接面应无毛口,边缘保持直角。
材质为LY12CZ铝合金或45号钢。
夹持试样的夹具应带有自动调节装置,以使加载时使受力作用线与试样胶接面垂直试样制备到试验最短时间为16h,最长为1个月。
试验应在(23±2)℃标准温度下进行,若试验对温,湿度要求严格或仲裁试验,则应在温度(23±2)℃,相对湿度45%-55%下试验,若只要求温度,则试样在标准温度下停放0.5h,若要求标准试验环境,则应在温度(23±2)℃,相对湿度45%-55%的范围内停放不少于16h。
开动拉力机,以(5±1)mm/min加荷速度加载,记录试样劈裂破坏的最大载荷与胶件破坏类型与百分率。
4.结果评定每种胶黏剂至少取5个试样进行测试,以最小值,最大值与平均值作为试验结果,其值取3位有效数字。
5.影响因素加工试块用的金属可为半硬回火黄铜,硬回火紫铜磷铜,回火铝合金与冷轧钢。
对不对称拉伸强度,由于试样的搭接长度,对它有十分明显的影响。
试样长度L越短,不对称拉伸强度就越小。
像温度,胶层厚度,胶黏剂性质的影响与玻璃强度相同。
四.交叉搭接拉伸强度试验试样采用交叉搭接试样,又称十字形试样,它所测试的拉伸强度为均匀拉伸强度。
试件采用金属板与条状。
测试前用卡尺测量胶层搭接面长度与宽度。
而后将试样装在拉力试验机专用具中,进行拉伸试验,拉伸速度为10mm/min,直至胶层破坏为止。
每组试样不应少于5个,取算术平均值作为试验结果,允许偏差(±15%),保留3位有效数字。
五.拉伸强度试验(菌状试样)1.原理由两个菌状物对接构成的接头,其胶接面和试样纵轴垂直,拉伸力通过试样纵轴传至胶接面,直至破坏,以单位胶接面积承受的最大负荷计算拉伸强度。
2.仪器设备拉力试验机要求与条型和棒状拉伸试验相同,并应配备一专用夹持器,夹具应能自动定位对中,使试样长轴与所施加通过夹持器中心线的拉力方向一致。
恒温室应保持温度为(23±1)℃,相对湿度(50±2)%,若温度达不到要求,允许将试样放在干燥器中,在干燥器隔板下方盛有硝酸钙的饱和溶液,液面上的固定湿度在23℃时为51%。
相关温度与固定湿度的数据可从化学手册中查到。
3.试验步骤(1)试样制备试样材质可以用金属也可用木材,这根据不同胶黏剂要求选取。
其中常用金属有冷轧条钢,半硬回火黄铜,硬回火紫铜,2024铝合金,磷青铜,镁合金与低硬度镍银。
对金属胶接,每种胶黏剂仲裁试验至少应测试10个试样,常规试验不少于5个。
金属试样,表面处理,胶黏剂配比,涂胶量,涂胶次数,晾置时间与固化条件均应按生产厂家有关规定进行。
胶接时使用的夹具,应保证试样正确胶接和精确定位。
(2)试验试验前试样应在(23±1)℃进行状态调节,不少于16h。
将试样装入上,下夹持器中,如进行高温试验,应直接用热电偶测量胶接区金属试样外表面温度。
若间接测量则应对温度与平衡时间进行修正。
在规定温度下保温时间不少于10min,控温精度100℃以下为±1℃,101℃以上为1%。
其试样达到试验温度的平衡时间,对50-100℃为小于等于30min;101-200℃为小于等于45min;对201-300℃为小于等于60min。