金属拉伸强度测试标准 金属拉伸强度检测

合集下载

金属材料拉伸标准

金属材料拉伸标准

金属材料拉伸标准一、试验样品1.1 样品选择:选择金属材料样品时,应选用具有代表性的均匀材料,如板材、棒材、线材等。

样品应无缺陷、无氧化皮、无机械损伤等。

1.2 样品制备:样品应按照相关标准进行制备,如厚度、宽度、长度等参数应符合要求。

制备过程中应避免产生应力集中和机械损伤。

二、试验温度2.1 试验温度范围:金属材料拉伸试验应在规定的温度范围内进行,通常为室温至300℃之间。

具体温度范围应根据材料种类和试验要求确定。

2.2 温度稳定性:在试验过程中,温度应保持稳定,以避免因温度变化而影响试验结果。

可使用恒温装置来保持温度稳定。

三、试验速度3.1 试验速度范围:金属材料拉伸试验的速度应在规定范围内,通常为0.00025-10mm/min。

具体速度范围应根据材料种类和试验要求确定。

3.2 速度控制:在试验过程中,速度应保持稳定,以避免因速度变化而影响试验结果。

可使用拉伸试验机来控制速度。

四、试验仪器4.1 拉伸试验机:应使用符合相关标准的拉伸试验机,能够测量材料的拉伸强度、延伸率等参数。

4.2 引伸计:引伸计是用于测量材料变形量的装置,应按照相关标准进行选择和使用。

4.3 夹具:夹具是用于固定试样的装置,应能够保证试样在试验过程中不发生移动或变形。

五、数据处理5.1 数据记录:在试验过程中,应记录试样的原始尺寸、弹性模量、屈服强度、抗拉强度等参数。

5.2 数据处理方法:数据处理应采用合适的统计方法,如平均值、标准差等,以获得更准确的结果。

六、结果比较6.1 不同材料比较:将不同材料的试验结果进行比较,可分析材料的优缺点和适用范围。

6.2 同一材料不同处理方式比较:将同一材料经过不同处理方式的试验结果进行比较,可研究处理工艺对材料性能的影响。

七、结果应用7.1 材料性能评估:根据试验结果,可以对金属材料的性能进行评估,如强度、韧性、硬度等参数。

这些参数对于材料的选择和使用具有重要意义。

7.2 工艺优化:根据试验结果,可以对加工工艺进行优化,以提高材料的性能和生产效率。

金属材料 室温拉伸试验方法 GB

金属材料 室温拉伸试验方法 GB

金属材料室温拉伸试验方法 GB/T228-2002金属材料室温拉伸试验方法GB中华人民共和国国家标准GB/T228-2002eqv ISO 6892:1998金属材料室温拉伸试验方法Metallic materials——Tensile testing at ambient temperature发布GB/T228-2002目次前言ⅢISO前言Ⅳ1 范围12 引用标准13 原理14 定义15 符号和说明56 试样67 原始横截面积(So)的测定78 原始标距(Lo)标记79 试验设备的准确度710 试验要求811 断后伸长率(A)和断裂总伸长率(At)的测定812 最大力总伸长率(Agt)和最大力非比例伸长率(Ag)的测定913 屈服点延伸率(Ae)的测定914 上屈服强度(ReH)和下屈服强度(ReH)和下屈服强度(ReL)的测定1015 规定非比例延伸强度(Rp)的测定1016 规定总延伸强度(Rt)的测定1117 规定残余延伸强度(Rr)的验证方法1118 抗拉强度(Rm)的测定1119 断面收缩率(Z)的测定1220 性能测定结果数值的修约1421 性能测定结果的准确度1422 试验结果处理1523 试验报告15附录A(标准的附录)厚度0.1mm~<3 mm薄板和薄带使用的试样类型16附录B(标准的附录)厚度等于或大于3mm板材和扁材以及直径或厚度等于或大于4mm线材、棒材和型材使用的试样型17附录C(标准的附表录)直径或厚度小于4mm线材、棒材和型材使作的试样类型20附录D(标准的附录)管材使用的试样类型21附录E(提示的附录)断后伸长率规定值低于5%的测定方法24附录F(提示的附录)移位方法测定断后伸长率24附录G(提示的附录)人工方法测定棒材、线材和条材等长产品的最大力总伸长率25附录H(提示的附录)逐步逼近方法测定规定非比例延伸强度(Rp)26附录I(提示的附录)卸力方法测定规定残余延伸强度(Rr0。

金属拉伸试验结果判定标准

金属拉伸试验结果判定标准

金属拉伸试验结果判定标准
金属拉伸试验结果的判定标准通常根据金属材料的强度、延伸性和断裂模式进行评估。

以下是一些常见的金属拉伸试验结果判定标准:
1. 屈服强度(Yield Strength):金属材料经过拉伸力作用后,
开始产生可观察的塑性变形时的应力值。

屈服强度是指材料开始产生塑性变形时的应力值。

通常以一定的偏差值(例如0.2%偏差)来确定。

2. 极限抗拉强度(Ultimate Tensile Strength,UTS):金属材
料在拉伸试验中,施加的拉力达到最大值时的应力值。

UTS
是材料能够承受的最大应力。

3. 断裂强度(Fracture Strength):金属材料在拉伸试验中,发生断裂时的应力值。

断裂强度可以用来评估材料的韧性和强度。

4. 断口形态(Fracture Mode):根据金属材料在拉伸试验中的断口形态,可以判断其断裂模式。

常见的断口形态包括韧性断裂、脆性断裂、屈服断裂等。

5. 延伸率(Elongation):指材料在断裂前的长度与断裂后长
度之间的相对差异。

延伸率可以用来评估材料的延伸性,通常以百分比表示。

6. 断面收缩率(Reduction of Area):指材料在断裂前的横截
面面积与断裂后横截面面积之间的相对差异。

断面收缩率可以
用来评估材料的延伸性和韧性,通常以百分比表示。

以上是一些常见的金属拉伸试验结果判定标准,不同金属材料和应用领域可能有不同的标准要求。

在实际应用中,一般会参考相关的标准规范或指导文件来进行判定。

GBT 228.1-金属材料 室温拉伸试验方法共42页文档

GBT 228.1-金属材料 室温拉伸试验方法共42页文档

9试验设备的准确度
试验机应按照GB/T 16825.1进行检验,并且其准 确度应为 1级或优于 1级。
引伸计的准确度级别应符合GB/T 12160的要求。 测定上屈服强度、下屈服强度、屈服点延伸率、规定 塑性延伸强度、规定总延伸强度、规定残余延伸强度, 以Байду номын сангаас规定残余延伸强度的验证试验,应使用不劣于 1 级准确度的引伸计;测定其他具有较大延伸率的性能, 例如抗拉强度、最大力总延伸率和最大力塑性延伸率、 断裂总延伸率,以及断后伸长率,应使用不劣于 2级 准确度的引伸计。
套环夹具等合适的夹具夹持试样。
10.3应变速率控制的试验速率ėLC(方法A)
应变ε :拉伸时试样长度方向特定标距下的伸长量
ΔL与原标距L0的比值,定义为工程应变,即:
ε = ΔL/ L0
10.4应力速率控制的试验速率(方法B) 10.4.1总则
试验速率取决于材料特性并应符合下列要求。如
果没有其他规定,在应力达到规定屈服强度的一 半之前,可以用任意的试验速率。超过这点以后
示例1:GB/T228A224表示为应变速率控制,不同阶段的 试验速率范围分别为2,2和4。
示例2:GB/T228B30表示试验为应力速率控制,试验的
名义应力速率为30MPa ·s ˉ1。
示例3:GB/T228B表示试验为应力速率控制,试验的名
11 上屈服强度的测定 上屈服强度ReH可以从力-延伸曲线图或
在弹性范围试验机的横梁位移速率 应在 表 4规定的应力速率范围内,并尽可能保持 恒定。
在塑性范围和直至规定强度(规定塑性延伸 强度、规定总延伸强度和规定残余延伸强
度)应变速率不应超过0.0025s ˉ1 。
10.4.2.5 横梁位移速率

拉伸强度检测相关标准

拉伸强度检测相关标准

拉伸强度检测相关标准 The manuscript was revised on the evening of 2021拉伸强度检测相关标准拉伸强度(tensile strength)是指材料产生最大均匀塑性变形的应力。

(1)在拉伸试验中,试样直至断裂为止所受的最大拉伸应力即为拉伸强度,其结果以MPa表示。

有些错误地称之为抗张强度、抗拉强度等。

(2)用仪器测试样拉伸强度时,可以一并获得拉伸断裂应力、拉伸屈服应力、断裂伸长率等数据。

(3)拉伸强度的计算:σt = p /( b×d)式中,σt为拉伸强度(MPa);p为最大负荷(N);b为试样宽度(mm);d为试样厚度(mm)。

科标无机实验室专业提供检测指标:弹性指标、硬度指标、强度指标、塑性指标、韧性指标、疲劳性能、断裂韧度。

(001)()检测标准:BB/T 0002-2008 双向拉伸聚丙烯珠光薄膜BB/T 0024-2004 运输包装用拉伸缠绕膜CB/T 3457-1992 液压拉伸器CSM 01 01 02 01-2006 金属材料室温拉伸试验测量结果不确定度评定CSM 01 01 02 02-2006 金属拉伸杨氏模量(静态法)测量结果不确定度评定DB13/T 1355-2010 锦纶6综丝拉伸性能的测定DB15/T 456-2009 牧草拉伸膜裹包青贮技术规程DB37/T 2263-2012 硫化橡胶拉伸弹性模量的测定DB53/T 644-2014 烟叶抗张强度的测定恒速拉伸法DB53/T 80-2008 烟用双向拉伸聚丙烯薄膜FZ/T 01031-1993 针织物和弹性机织物接缝强力和伸长率的测定抓样拉伸法FZ/T 01034-2008 纺织品机织物拉伸弹性试验方法FZ/T 01114-2012 织物低应力拉伸性能的试验方法FZ/T 50006-2013 氨纶丝拉伸性能试验方法FZ/T 60037-2013 膜结构用涂层织物拉伸蠕变性能试验方法FZ/T 60041-2014 树脂基三维编织复合材料拉伸性能试验方法FZ/T 70006-2004 针织物拉伸弹性回复率试验方法FZ/T 75004-2014 涂层织物拉伸伸长和永久变形试验方法GB/T 10003-2008 普通用途双向拉伸聚丙烯(BOPP)薄膜GB/T 10120-2013 金属材料拉伸应力松弛试验方法GB/T 塑料拉伸性能的测定第1部分:总则GB/T 塑料拉伸性能的测定第2部分:模塑和挤塑塑料的试验条件GB/T 塑料拉伸性能的测定第3部分:薄膜和薄片的试验条件GB/T 塑料拉伸性能的测定第4部分:各向同性和正交各向异性纤维增强复合材料的试验条件GB/T 塑料拉伸性能的测定第5部分:单向纤维增强复合材料的试验条件GB/T 10573-1989 有色金属细丝拉伸试验方法GB/T 10654-2001 高聚物多孔弹性材料拉伸强度和拉断伸长率的测定GB/T 塑料蠕变性能的测定第1部分:拉伸蠕变GB/T 冷卷圆柱螺旋弹簧技术条件第1部分:拉伸弹簧GB/T 12683-2009 片基与胶片拉伸性能的测定方法GB/T 13239-2006 金属材料低温拉伸试验方法GB/T 建筑密封材料试验方法第12部分: 同一温度下拉伸-压缩循环后粘结性的测定GB/T 建筑密封材料试验方法第14部分: 浸水及拉伸?压缩循环后粘结性的测定GB/T 建筑密封材料试验方法第8部分: 拉伸粘结性的测定GB/T 建筑密封材料试验方法第9部分: 浸水后拉伸粘结性的测定GB/T 13525-1992 塑料拉伸冲击性能试验方法。

金属材料拉伸试验按国家标准执行

金属材料拉伸试验按国家标准执行
它是一种标准化的试验方法,用于确 定材料的弹性模量、屈服强度、抗拉 强度等关键参数。
拉伸试验的目的
评估材料的强度和塑性
通过拉伸试验,可以了解材料在受力过程中发生的变形行为,从而 评估其强度和塑性。
确定材料的关键力学性能参数
拉伸试验可以获得材料的弹性模量、屈服强度、抗拉强度等关键参 数,这些参数对于材料的应用和设计具有重要意义。
试验机选择
根据试验要求选择合适的试验机,确保其精度和量程满足要求。
试验环境
确保试验环境温度、湿度等参数符合标准规定,以减小环境对试验结果的影响。
操作规范
严格按照操作规程进行试验,避免操作失误对试验结果造成影响。
拉伸试验的误差来源
试样制备误差
试样尺寸、形状、表面处理等不符合标准要 求,导致试验结果失真。
比较不同材料的性能
拉伸试验是一种相对比较的试验方法,可以用于比较不同材料的性 能,从而为材料的选择和应用提供依据。
拉伸试验的原理
拉伸试验通常在万能材料试验机上进行,通过在试样两端施加拉伸载荷,使试样发生变形直至断裂。
在拉伸过程中,试验机记录试样的应力-应变曲线,通过该曲线可以获得材料的弹性模量、屈服强度、 抗拉强度等关键参数。
根据需要,计算并记录弹性模量、屈 服点、抗拉强度、延伸率等拉伸特性 指标。
05
03
预加载
对试样施加一定的预载荷,以消除夹 具与试样之间的间隙,并使试样处于 紧张状态。
Байду номын сангаас04
拉伸试验
以恒定的速率对试样施加拉伸力,记 录试样的变形和应力变化。
03
拉伸试验的设备与工具
拉伸试验机的类型
机械式拉伸试验机
01
屈服点是指金属材料在受到拉伸 力作用时,开始发生屈服现象的 应力极限。

金属拉伸试验标准

金属拉伸试验标准金属拉伸试验是用来评估金属材料的力学性能的一种重要方法,通过对金属材料在拉伸加载下的变形和破坏行为进行观察和分析,可以获得材料的拉伸强度、屈服强度、延伸率等重要力学性能参数。

为了保证金属拉伸试验的准确性和可比性,制定了一系列的金属拉伸试验标准,以规范试验过程和结果的评定。

首先,金属拉伸试验标准要求在进行试验前对试样进行充分的准备工作,包括试样的制备、尺寸的测量、表面的处理等。

试样的准备工作直接影响到试验结果的准确性,因此必须严格按照标准要求进行操作,以确保试验结果的可靠性。

其次,金属拉伸试验标准规定了试验过程中的加载速率、试验温度、环境条件等重要参数。

这些参数的选择对于不同金属材料是有一定差异的,但是必须严格按照标准要求进行控制,以保证试验结果的可比性和准确性。

另外,金属拉伸试验标准还规定了试验结果的评定方法,包括拉伸强度、屈服强度、延伸率、断面收缩率等指标的计算和分析。

这些指标直接反映了金属材料的力学性能,对于材料的设计和选用具有重要的指导意义。

需要指出的是,金属拉伸试验标准是非常严格和规范的,试验人员必须严格按照标准要求进行操作,以确保试验结果的准确性和可靠性。

同时,金属拉伸试验标准的制定也是一个不断完善和更新的过程,随着科学技术的发展和应用的需要,金属拉伸试验标准也在不断地进行修订和完善。

总的来说,金属拉伸试验标准对于评估金属材料的力学性能具有非常重要的意义,它不仅可以指导材料的生产和加工过程,还可以为材料的选用和设计提供重要依据。

因此,对于金属拉伸试验标准的理解和遵守是非常重要的,只有严格按照标准要求进行操作,才能够获得准确可靠的试验结果,为工程实践和科学研究提供有力的支撑。

金属拉伸试验标准

金属拉伸试验标准金属拉伸试验是一种常见的金属材料力学性能测试方法,通过对金属材料进行拉伸试验,可以获取材料的抗拉强度、屈服强度、断裂伸长率等重要力学性能参数,为工程设计和材料选用提供重要参考依据。

为了确保金属拉伸试验的准确性和可比性,制定了一系列的金属拉伸试验标准,以规范试验过程和结果评定。

首先,金属拉伸试验标准对试验样品的制备提出了具体要求。

试验样品通常采用标准试样条,其尺寸和形状需要符合相关标准规定,以确保试验结果的可比性。

同时,试验样品的表面质量和加工工艺也需要符合标准规定,以避免外部因素对试验结果的影响。

其次,金属拉伸试验标准对试验设备和环境条件也有详细规定。

试验设备需要具备足够的精度和稳定性,以保证试验数据的准确性。

同时,试验环境条件如温度、湿度等也需要在一定范围内控制,以排除外部环境对试验结果的影响。

另外,金属拉伸试验标准还规定了试验过程中的操作要求。

包括试验速度、加载方式、试验过程中的数据采集等方面都有具体规定,以确保试验过程的可重复性和可比性。

此外,金属拉伸试验标准还对试验结果的评定和报告提出了要求。

试验结果的处理和分析需要符合统计学原理,以得出准确的试验数据。

同时,试验报告的内容和格式也需要符合标准规定,以便于他人对试验结果进行复核和比对。

总之,金属拉伸试验标准的制定和执行,对于保证金属材料力学性能测试的准确性和可比性具有重要意义。

只有严格按照标准要求进行试验,才能获得可靠的试验数据,为工程设计和材料选用提供科学依据。

同时,金属拉伸试验标准的不断完善和更新,也将推动金属材料力学性能测试技术的进步,为材料科学和工程技术的发展做出贡献。

金属材料拉伸试验标准

金属材料拉伸试验标准
金属材料的力学性能是评价材料质量和适用范围的重要指标之一,而拉伸试验是评价金属材料力学性能的常用方法之一。

本文将对金属材料拉伸试验标准进行详细介绍,以便读者对该标准有一个全面的了解。

首先,拉伸试验的标准是由国际标准化组织(ISO)和国家标准化管理委员会(GB/T)制定的,其中ISO制定的标准是国际通用的,而GB/T制定的标准是中国国家标准。

这些标准主要包括试验设备、试验方法、试样制备、试验过程、试验结果的处理和报告等内容。

在进行拉伸试验时,首先需要准备好试样。

试样的制备应符合标准规定的尺寸和形状,并且表面应光滑无瑕疵。

接下来是试验设备的准备,包括拉伸试验机、夹具、应变测量设备等。

试验过程中,需要按照标准规定的加载速率和加载方式进行试验,并及时记录试验数据。

在拉伸试验过程中,需要测量试样的应力和应变,并绘制应力-应变曲线。

通过分析应力-应变曲线,可以得到材料的屈服强度、抗拉强度、伸长率等力学性能指标。

这些指标对于材料的设计和选择具有重要意义。

除了基本的拉伸试验标准外,还有一些特殊情况下的拉伸试验标准,例如高温下的拉伸试验、低温下的拉伸试验、动态加载下的拉伸试验等。

这些特殊情况下的试验标准对于特定工况下材料的性能评价具有重要意义。

总之,金属材料拉伸试验标准是评价金属材料力学性能的重要依据,了解和遵守这些标准对于材料工程师和科研人员具有重要意义。

希望本文的介绍能够帮助读者对该标准有一个更全面的了解,为实际工程和科研工作提供参考。

金属拉伸试验试样标准

金属拉伸试验试样标准金属拉伸试验是一种常用的金属材料力学性能测试方法,通过对金属试样施加拉伸力,来研究金属材料的拉伸性能和力学性能。

为了保证拉伸试验的准确性和可比性,需要严格遵守金属拉伸试验试样标准。

本文将介绍金属拉伸试验试样标准的相关内容,以便于广大科研人员和工程技术人员在进行金属拉伸试验时,能够按照标准进行操作,获得准确可靠的试验结果。

一、试样的准备。

1. 试样的形状和尺寸。

金属拉伸试验的试样通常为圆柱形,其长度大于直径,试样的尺寸应符合相关标准规定。

在进行试验前,需要对试样进行加工和抛光处理,以确保试样表面光洁、无裂纹和表面缺陷。

2. 试样的标记。

在试样上标记试样的材料、试样的编号、试样的方向等信息,以便于进行试验数据的记录和分析。

二、试验设备的准备。

1. 试验机的选择。

金属拉伸试验通常采用万能试验机进行,试验机的选择应符合相关标准的要求,同时需要对试验机进行定期的校准和维护,以确保试验机的准确性和稳定性。

2. 应变测量设备。

在进行拉伸试验时,需要配备应变测量设备,用于测量试样在拉伸过程中的应变变化,常用的应变测量设备有应变片、应变计等。

三、试验的操作。

1. 装夹试样。

将试样装夹在试验机上,并根据相关标准要求进行试验机的调试和校准,以确保试验过程中试样的受力均匀和稳定。

2. 进行拉伸试验。

通过控制试验机施加拉伸力,对试样进行拉伸,同时记录试验过程中的拉伸力和试样的变形情况,以获得拉伸试验的应力-应变曲线和拉伸性能参数。

四、试验结果的分析。

根据拉伸试验获得的数据,可以对金属材料的拉伸性能进行分析和评价,包括屈服强度、抗拉强度、断裂伸长率等参数的计算和比较,以评估金属材料的力学性能和工程应用价值。

五、试验注意事项。

在进行金属拉伸试验时,需要注意试样的制备、试验设备的选择和校准、试验操作的规范等方面的注意事项,以确保试验的准确性和可靠性。

结语。

金属拉伸试验试样标准对于保证试验的准确性和可比性具有重要意义,只有严格按照标准要求进行试验,才能获得准确可靠的试验结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属拉伸强度测试标准金属拉伸强度检测
拉伸强度是指材料产生最大均匀塑性变形的应力,对于金属材料来说通过做拉伸试验可确定这几个指标:抗拉强度、上屈服强度、下屈服强度、规定塑性延伸强度、规定总延伸强度、规定残余延伸强度。

抗拉强度(Rm)---相应最大力 Fm对应的应力;
上屈服强度(Reh)---试样发生屈服而力首次下降前的最大应力;
下屈服强度(Rel)---在屈服期间,不计初始瞬时效应时的最小应力;
规定塑性延伸强度(Rp)---塑性延伸率等于规定的引伸计标距 Le百分率时对应的应力;
规定总衍射强度(Rt)---总延伸率等于规定的引伸计标距 Le百分率时的应力;
规定残余延伸强度(Rr)---卸除应力后残余延伸率等于规定的原始标距 Lo 或引伸计标距 Le百分率时对应的应力。

金属拉伸强度这几个测试指标均依据GB/T 228-2010 金属材料拉伸试验方法这个标准而定。

金属拉伸强度试验则是应用最广泛的力学性能试验方法。

拉伸性能指标是金属材料的研制、生产和验收最主要的测试项目之一,拉伸试验过程中的各项强度和塑性性能指标是反映金属材料力学性能的重要参数。

拉伸试验原理:金属拉伸实验是测定金属材料力学性能的一个最基本的实验,是了解材料力学性能最全面,最方便的实验。

比如,测定低碳钢在轴向静载拉伸过程中的力学性能。

在试验过程中,利用实验机的自动绘图装置可绘出低碳钢的拉伸图。

由于试件在开始受力时,其两端的夹紧部分在试验机的夹头内有一定的滑动,故绘出的拉伸图最初一段是曲线。

拉伸试验特点:拉伸试验操作简单、方便,通过获得的应力应变曲线包含了大量信息,很容易看出材料的各项力学性能,如比例极限、弹性模量、屈服极限、强度极限等等,因此拉伸试验成为了应用最广泛的力学性能试验方法。

拉伸实验中材料在达到破坏前的变形是均匀的,能够得到单向的应力应变关系,但其缺点是难以获得大的变形量,缩小了测试范围。

洛阳中船重工第七二五研究所专业提供金属材料检测指标:弹性指标、硬度指标、强度指标、塑性指标、韧性指标、疲劳性能、断裂韧度等。

相关文档
最新文档