概率与统计课件第三章

合集下载

概率论与数理统计课件第章节

概率论与数理统计课件第章节
4
五、二维连续型随机变量
设二维随机变量 (X,Y) 旳分布函数为 F(x,y),假如存在非负旳
函数
f
(x,y)
使对于任意
x,y
有:
F
(
x,
y)
y
x
f (u,v)dudv
则称(X,Y ) 是连续型旳二维随机变量。
称 f (x,y) 为随机变量 (X, Y ) 旳概率密度,或称为随机变量 X 和
2
0.010 0.005
求在X=1时Y旳条件分布律.
P{X=1}=0.045 P{Y=0⃒X=1}=0.030 ⁄ 0.045
0.004 0.001
P{Y 1|X 1} 0.010 / 0.045 P{Y 2|X 1} 0.005 / 0.045.
用表格形式表达为:
k
0
1
2
P{Y=k|X=1} 6/9 2/9 1/9
分布函数,也称为 X 和 Y 的联合分布函数.y
(x, y)
分布函数 F(x,y) 在 (x,y)处旳函数值就是: 随机
点 (X,Y ) 落在以点 (x,y) 为顶点且位于该点左下
x
方旳无穷矩形域内旳概率。如图所示.
2
下面利用分布函数来计 算 P{x1 X x2 , y1 Y y2 }
P{x1 X x2 , y1 Y y2 } F(x2 , y2 ) F(x1, y2 ) F ( x2 , y1 ) F ( x1 , y1 )
FX (x) P{ X x} P{ X x,Y } F(x, )
同理有: FY ( y) F (, y)
二、离散型 ( X ,Y ) 的边缘分布律
FX (x) F(x, )
pij, 又 FX ( x) P{ X xi }

概率统计第三章

概率统计第三章
P(AB) 性质2:由条件概率 P(A|B) P(B) P(AB) P(B)P(A|B) 称为乘法公式
下面我们推出多个事件积的计算公式
P(A1A2 A3 ) P(A1A2 )P(A3 | A1A2 )
=P(A )P(A 1)P(A3 | A1A2 ) |A 1 2
P(A1A2A3.........An ) =P(A ) P(A |A ) P(A3 | A1A2 ) 1 2 1
P( X 60 X 70 ) P(X 70 | X 60) P(X 60) P(X 70) 0.28 0.7 应用定义 P(X 60) 0.4
这位老人的寿命超过70岁的可能性为70%,远大于0.4, 真是越活越有希望!?
例1.4.5 有一对青年夫妇已有两个女孩,欲生第三胎, 要个男孩,问第三胎是男孩的概率是多少?
每次发生了事故(红球取出), 安全工作就会抓的紧一些, 下次出现事故的概率就减少了。
a P(A 2 | A1 ) abd
a P(A3 | A1A 2 ) a b 2d
三、全概率公式
全概率公式计算比较复杂事件的概 率, 它们实质上是加法公式和乘法公式 的综合运用。 综合运用 加法公式 P(A+B)=P(A)+P(B) A、B互斥
计算条件概率的方法:1.从实际出发,直接计算; 2.利用定义的公式
例1.4.3 据统计,人的寿命超过60岁的可能性为0.4 ,超过70岁 的可能性为0.28 ,今有一位老人61岁,问他能超过70 的概率是多大?
解: 设人的寿命为 X ,
根据已知条件,有:P(X 60) 0.4. P(X 70) 0.28 .
2 3 P(B|A) 在上例中: P(B) 4 5

概率统计 第3章随机变量的数字特征1节

概率统计   第3章随机变量的数字特征1节

2020/9/21
3
1. 随机变量的数学期望
(1)设有n个数x1,x2,,xn ,那么这n个数的算术平均
x
x1
x2
n
xn
i
n 1
xi
1 n
(2)这n 个数有相同,,不妨设其中有 ni个取值为 xi,i 1,, k,
其均值应为 1
n
k
ni xi
i 1
k i 1
ni n
xi
以数值xi出现的频率为权重做加 权平均
2020/9/21
12
(2)随机变量函数数学期望的计算 方法1 (定义法): g(X)是随机变量, 按照数学期望 的定义计算Eg(X). 关键: 由X的分布求出g(X)的分布. 难点: 一般g(X)形式比较复杂的, 很难求出其分布.
2020/9/21
13
方法2 (公式法):
定理 设X是一个随机变量, Y g(X), 则
k1 k1
2020/9/21
17
(4) 若X与Y相互独立,E( X )与E(Y )存在, 则E(XY ) E(X )E(Y ).
证:仅就连续随机变量情形
EXY xyf x, ydxdy
xy f X x f Y y dxdy
xf
X
x
dx
y fY y dy
2020/9/21
15
补充: 函数
( ) x 1exdx 0
函数有下列结论:
(1) ( 1) ();
(2) Γ(n 1) n !; (3) (1) (2) 1, (1) .
2
0
y12e y1 dy1
(3) 2! 2
2020/9/21
16
二、数学期望的性质

概率论与数理统计课件第三章

概率论与数理统计课件第三章

f
(x,
y)
1
21 2
1
2
exp
1
2(1 2 )
(x
1)2
2 1
2
(x
1)( y 1 2
2 )
(y
2)2
2 2
其中1、2、1、 2、都是常数,且1 0, 2 0,1 1.
则称(X,Y)服从参数为1、2、1、的二2、维 正态分布,
记为
(X
,Y)
~
N (1,
2
,
2 1
,
2 2
2F(x, y) f (x, y) xy
(5)若(X,Y)为二维连续型随机向量,联合概率密度为f(x,y),则
F(x,y) P{X x,Y y}
返回
X
18


例5 设二维随机变量(X,Y)的概率密度为
Ae2(x y) , x 0, y 0
f (x, y)
0, 其他
(1)确定常数A;
分别为(X,Y)关于X和Y的边缘分布函数.
返回
X
25


例1 设二维随机向量(X,Y)的联合分布函数为
(1 e2x )(1 e3y ), x 0, y 0,
F(x, y)
0, 其他.
求边缘分布 FX (x), FY ( y)
当x
0时,FX
(x)
lim (1
y
e2 x
)(1
e3 y
)
1
e2 x
返回
X
14

例3 设随机变量Y~N(0,1),令
0, X 1 1,
| Y | 1
0,
|Y
|

【学习课件】第三章概率论与数理统计

【学习课件】第三章概率论与数理统计

解 确定随机变量的取值:
及F(2,2).
p i j P Xi,Yj
F ( x , y) = P { X x , Y y}
{ P X { X i , Y i } j } { Y { X j } i } { Y j } pij
P Y j|X iP X i
xi x yjy
为 X, Y的 分 布 函 数 , 或 X与 Y的 联 合 分 布 函 数 。
X x ,Y y X x Y y
几 何 意 义 : 分 布 函 数 Fx0,y0表 示 随 机 点 X,Y落 在 区 域
x,y,xx0,yy0
中 的 概 率 。 如 图 阴 影 部 分 所 示 :
y
x0, y0
X=xi ,Y y j
P X=xi
pij , j=1, 2, pi
为给定条件X xi时,Y的条件概率分布律。
3、条件概率分布律
给定条件Yyj时,X的条件概率分布律记作:
X|Yyj
P X=xi |Yyj
pij ,i= 1, 2, pj
X |Y yj
P X |Y y j
x1
p1 j
X , Y ~P X=xi, Y=y j pij , i, j=1, 2,
则称 P X=xi | Y y j
P X=xi ,Y y j P Y=y j
pij , i=1, 2, p j
为给定条件Y y j时,X的条件概率分布律;
P Y=y j | X=xi
P
= limPX x,Y y lim Fx, y
y
y
0, x 0; =x2, 0 x 1;
1, 1 x.
FYy PY yPX ,Y y
= limPX x,Y y limFx, y

概率论与数理统计

概率论与数理统计
1 0x1,0y1 其它
=
0
f X ( x)

f ( x, y)dy
1 0
当0 x 1时:f X ( x) 1dy = 1
x [0,1]时:f X ( x ) 0
1 0 x 1 f X ( x) 其它 0 1 0 y 1 类似 : fY ( y ) 其它 0 f X ( x ) fY ( y ) f ( x, y ) X、Y相互独立。
例. 已知(X, Y)的联合分布函数F(x, y)如下, 求: (1). (X, Y)的联合概率密度及边缘密度。 (2). 判断X、Y是否相互独立?
0 xy F(x,y)= y x 1 x<0或y<0 0x1, 0y1 x>1 0y1
0x1, y>1 x>1, y>1
2 F ( x,y ) 解:(1). f ( x , y ) xy
3. 二维连续型随机变量的(联合)概率密度
定义:对于二维随机变量(X,Y)的分布函
数F(x,y),若存在非负函数f(x,y)使对任意 x,y有:
F ( x , y ) f ( u, v )dudv

y
x
则称(X, Y)为连续型2维随机变量, 称 f(x,y)为(X,Y)的(联合)概率密度。
P{X=0,Y=1}=0/(56/120)=0 P{X=0,Y=3}=(35/120)/(56/120)=5/8
3 5/8 2 3/8
P{X=0,Y=2}=(21/120)/(56/120)=3/8

启示:由此题我们可以知道要想求解离散边缘分 布与离散条件分布就要先求出离散的联合分布, 此后的几个小节的解答也会用到。它是解答边缘 分布、条件分布等的桥梁,所以我们必须要熟知 联合分布的定义与基本公式和求法。

《概率论与数理统计》第3章 二维随机变量及其分布

《概率论与数理统计》第3章 二维随机变量及其分布

23 April 2012
第三章 多维随机变量及其分布
注意点
第32页
(1) X 与Y是独立的其本质是: 任对实数a, b, c, d,有
Pa X b, c Y d Pa X b Pc Y d
(2) X 与Y 是独立的,则g(X)与h(Y)也是独立的.
23 April 2012
0
=A/6
所以, A=6
23 April 2012
第三章 多维随机变量及其分布
第22页
例3.3.2

(X,
Y)

p( x,
y)
6e(2x3y) , 0,
x 0, y 0 其它
试求 P{ X< 2, Y< 1}.
23 April 2012
第三章 多维随机变量及其分布
第23页
y
解: P{ X<2, Y<1} p(x, y)dxdy
3.1.2 联合分布函数
定义3.1.2 (以下仅讨论两维随机变量)
任对实数 x 和 y, 称 F(x, y) = P( X x, Y y)
为(X, Y) 的联合分布函数.
注意:
F(x, y)为(X, Y)落在点(x, y)的左下区域的概率.
23 April 2012
第三章 多维随机变量及其分布
x1 x2 … xi …
23 April 2012
y1 y2 … yj …
p11 p12 … p1j … p21 p22 … p2j … … … ……… pi1 pi2 … pi j … … … ………
第三章 多维随机变量及其分布
第9页
联合分布列的基本性质
(1) pij 0, i, j = 1, 2,… (非负性)

107504-概率统计随机过程课件-第三章(第一,二节)

107504-概率统计随机过程课件-第三章(第一,二节)

第三章二维随机变量引入二维随机变量目的、用处: 在第二章中,我们讨论了用一个随机变量描述试验结果以及随机变量的概率分布问题.但在实际和理论研究中,有许多随机试验,仅用一个随机变量描述不够用.需要引入二维、三维、n维随机变量描述其规律性.例如,对平面上的点目标进行射击,弹着点A的位置需要用横坐标X和纵坐标Y才能确定.由于X和Y 的取值都是随着试验结果而变化.因此X和Y都是随机变量, 弹着点A 的位置是)X.,(Y又如空中飞行的飞机(其重心)需要用三个随机变量Z,才能确X,Y定它的位置.等等.因此需要考虑多个随机变量及其取值规律问题.定义:设试验E 的样本空间为}{e S =,而)(e X X i i =是定义在}{e S =上的随机变量,n i ,,2,1⋅⋅⋅=,把n 个随机变量n X X X ,,,21⋅⋅⋅构成的有序随机变量组),,,(21n X X X ⋅⋅⋅称为n 维随机变量(或n维随机向量);对任意实数n x x x ,,,21⋅⋅⋅,函数),,,(21nx x x F ⋅⋅⋅},,,{2211nn x X x X x X P ≤⋅⋅⋅≤≤= 称为n 维随机变量),,,(21n X X X ⋅⋅⋅的分布函数或称为n 个随机变量nX X X ,,,21⋅⋅⋅的联合分布函数.第一节 随机向量与联合分布一. 定义和基本性质定义1 设试验E 的样本空间为}{e S =,而)(),(e Y Y e X X ==是定义在}{e S =上的两个随机变量.称由这两个随机变量组成的向量),(Y X 为二维随机变量或二维随机向量.例如 掷两颗骰子,观察出现的点数.设X 为第一颗骰子出现的点数,Y 为第二颗骰子出现的点数,Y X ,为定义在}6,,2,1,|),{(⋅⋅⋅==j i j i S上的两个随机变量,),(Y X 为二维随机变量,它描述了掷两颗骰子出现的点数情况.对任意实数y x ,,随机事件})(,)(|{},{y e Y x e X S e y Y x X ≤≤∈=≤≤有概率.定义 2 设),(Y X 为二维随机变量, 对任意实数y x ,,二元函数},{),(y Y x X P y x F ≤≤=})(,)(|{y e Y x e X S e P ≤≤∈=,称为二维随机变量),(Y X 的分布函数,或称为随机变量X 和Y 的联合分布函数.记},|),{(y v x u v u D ≤≤=,则},{),(y Y x X P y x F ≤≤=}),{(D Y X P ∈=分布函数},{),(y Y x X P y x F ≤≤=的性质:),(y x F 的定义域+∞<<∞-x ,+∞<<∞-y ;(1)1),(0≤≤y x F ,且},{lim ),(lim ),(y Y x X P y x F x F y y ≤≤==-∞-∞→-∞→ 0)(==φP ,0},{lim ),(lim ),(=≤≤==-∞-∞→-∞→y Y x X P y x F y F x x 0},{lim ),(lim ),(=≤≤==-∞-∞-∞→-∞→-∞→-∞→y Y x X P y x F F y x y x },{lim ),(lim ),(y Y x X P y x F F y x y x ≤≤==+∞+∞+∞→+∞→+∞→+∞→ 1)(==S P ;(2)),(y x F 对x 或对y 单调不减,即 ),(),(2121y x F y x F x x ≤⇒<,(由},{},{21y Y x X y Y x X ≤≤⊂≤≤及概率的单调性),),(),(2121y x F y x F y y ≤⇒<;(3)),(y x F 对x 或对y 右连续,即有),(),(lim ),(0y x F y x x F y x F x =∆+=+→∆+,),(),(lim ),(0y x F y y x F y x F y =∆+=+→∆+; (4)对任意实数2121,y y x x <<有},{02121y Y y x X x P ≤<≤<≤ ),(),(),(),(12211122y x F y x F y x F y x F --+=, 事实上},{2121y Y y x X x ≤<≤<},{22y Y x X ≤≤= },({21y Y x X ≤≤-}),{121y Y x X x ≤≤<+,},{2121y Y y x X x P ≤<≤< },{22y Y x X P ≤≤= },{(21y Y x X P ≤≤-}),{121y Y x X x P ≤≤<+ )),(),((),(),(11122122y x F y x F y x F y x F ---= ),(),(),(),(12211122y x F y x F y x F y x F --+=.可以证明:凡满足上述性质)4(~)1(的二元函数),(y x F 必定是某个二维随机变量的分布函数.例1 设二维随机变量),(Y X 的分布函数为)2arctan )(arctan (),(y c x b a y x F ++=, (1) 确定常数c b a ,,;(2) 求}0,0{>>Y X P .解(1) 利用分布函数的性质)2)(2(),(1ππ++=+∞+∞=c b a F , )2)(arctan (),(0π-+=-∞=c x b a x F ,由x 的任意性得,0)2(=-πc , 2π=c , )2arctan )(2(),(0y c b a y F +-=-∞=π,由y 的任意性得,0)2(=-πb , ,2π=b 从而21π=a ,2π=b ;(2) }0,0{}0,0{+∞<<+∞<<=>>Y X P Y X P)0,(),0()0,0(),(+∞-+∞-++∞+∞=F F F F4121212211222=⋅⋅-⋅⋅-⋅⋅+=πππππππππ. 例2设二维随机变量),(Y X 的分布函数为⎩⎨⎧>>--=--其它,00,0),)((),(2y x e b e a y x F y x , (1) 确定常数b a ,;(2) 求}2,0{≤>Y X P .解 (1) 利用分布函数的性质b a F ⋅=+∞+∞=),(1,))(1(),(lim ),0(00y x e b a y x F y F -→--===+, 由0>y 的任意性,得 1,01==-a a ,所以 1,1==b a ;(2)}2,0{}2,0{≤<-∞+∞<<=≤>Y X P Y X P),()2,0(),0()2,(-∞+∞---∞++∞=F F F F000)1(12----⋅=-e 21--=e .二. 二维离散型随机变量定义 3 若二维随机变量()Y X ,的所有取值为有限对或可列对⋅⋅⋅=,2,1,),,(j i y x j i ,则称()Y X ,是离散型随机变量.记{},,2,1,,, ====j i p y Y x X P ijj i 称它为二维离散型随机变量()Y X ,的(概率)分布律,或称为X 和Y 的联合(概率)分布律.分布律的表示法:(1)公式法,(2)列表法.例如 随机变量()Y X ,的分布律为二维离散型随机变量()Y X ,的(概率)分布律具有下列基本性质:(1){},,2,1,,0, =≥===j i y Y x X P p ji ij (2)1,=∑j i ijp .利用分布律可计算概率定理 设()Y X ,的分布律为{},,2,1,,, ====j i p y Y x X P ij j i则随机点()Y X ,落在平面上任一区域D 内的概率为∑∈=∈D y x ijj i p D Y X P ),(}),{(, 其中和式是对所有使D y x ji ∈),(的j i ,求和;特别有},{),(y Y x X P y x F ≤≤= }),{(D Y X P ∈=∑∈=D y x ijj i p ),(∑≤≤=y y x x ij j i p.例1 甲、乙两盒内均有3只晶体管,其中甲盒内有1只正品,2只次品; 乙盒内有2只正品,1只次品.第一次从甲盒内随机取出2只管子放入乙盒内; 第二次从乙盒内随机取出2只管子.以Y X ,分别表示第一、二次取出的正品管子的数目. 试求),(Y X 的分布律以及},),{(D Y X P ∈其中}2|),{(:22≥+y x y x D .解 根据题意知,X 的可能取值为0,1;Y 的可能取值为0,1,2.因此, ),(Y X 的可能取值为(0,0),(0,1),(0,2),(1,0),(1,1),(1,2).),(Y X 是离散型随机变量.}0{=X 表示从甲盒内取出2只次品管子放入乙盒内,此时乙盒内有2只正品,3只次品,利用乘法公式可得}0|0{}0{}0,0{==⋅====X Y P X P Y X P30325232322=⋅=C C C C , }0|1{}0{}1,0{==⋅====X Y P X P Y X P3062513122322=⋅=C C C C C , }0|2{}0{}2,0{==⋅====X Y P X P Y X P30125222322=⋅=C C C C , }1{=X 表示从甲盒内取出1只正品和1只次品管子放入乙盒内,此时乙盒内有3只正品,2只次品,利用乘法公式可得}1|0{}1{}0,1{==⋅====X Y P X P Y X P3022522231211=⋅=C C C C C , }1|1{}1{}1,1{==⋅====X Y P X P Y X P3012251312231211=⋅=C C C C C C , }1|2{}1{}2,1{==⋅====X Y P X P Y X P3062523231211=⋅=C C C C C , 于是得),(Y X 的分布律为}),{(D Y X P ∈}2,0{===Y X P}2,1{}1,1{==+==+Y X P Y X P30193063012301=++= . 例2 某射手在射击中,每次击中目标的概率为)10(<<p p ,射击进行到第二次击中目标为止,X 表示第一次击中目标时所进行的射击次数, Y 表示第二次击中目标时所进行的射击次数,试求二维随机变量),(Y X 的分布律.解 设=kA 第k 次射击时击中目标, 根据题意,p A P k=)(,⋅⋅⋅=,2,1k , 且⋅⋅⋅⋅⋅⋅,,,,21kA A A 相互独立, jj i i i A A A A A A j Y i X 1111},{-+-⋅⋅⋅⋅⋅⋅===, 所以),(Y X 的分布律为},{j Y i X P ==)()()()()()(1111j j i i i A P A P A P A P A P A P -+-⋅⋅⋅⋅⋅⋅=22)1(--=j p p ,1,,2,1-⋅⋅⋅=j i ;⋅⋅⋅=,3,2j .例 3 接连不断地掷一颗匀称的骰子,直到出现点数大于2为止, 以X 表示掷骰子的次数.以Y 表示最后一次掷出的点数.求二维随机变量),(Y X 的分布律.解 依题意知,X 的可能取值为⋅⋅⋅,3,2,1;Y 的可能取值为3,4,5,6 设=kB 第k 次掷时出1点或2点,=kj A 第k 次掷时出j 点, 则62)(=kB P ,61)(=kj A P , S A A A A B k k k k k =++++6543,===},{j Y i X “掷骰子i 次,最后一次掷出j 点,前)1(-i 次掷出1点或2点”ij i A B B 11-⋅⋅⋅=,(各次掷骰子出现的点数相互独立)于是),(Y X 的分布律为11)31(6161)62(},{--⋅=⋅===i i j Y i X P , ⋅⋅⋅=,2,1i ,6,5,4,3=j .(例如11)31(6161)62(}3,{--⋅=⋅===i j Y i X P )三. 二维连续型随机变量定义 4 设二维随机变量()Y X ,的分布函数为()y x F ,,若有非负可积函数()y x f ,,使得对任意实数y x ,,恒有()dudv v u f y x F y x⎰⎰∞-∞-=,),( ⎰⎰≤≤=yv x u dudv v u f ),( ,则称()Y X ,是二维连续型随机变量,称函数()y x f ,为连续型随机变量()Y X ,的概率密度, 或称为随机变量X 和Y 的联合概率密度.()Y X ,的概率密度()y x f ,具有下列基本性质:(1) ()0,≥y x f , +∞<<∞-y x , ;(2) ()1),(,=+∞+∞=⎰⎰+∞∞-+∞∞-F dxdy y x f . 反之,可以证明,若二元函数()y x f ,满足上面两条基本性质,那么它一定是某个二维随机变量()Y X ,的概率密度.显然,如果概率密度()y x f ,在点()y x ,处连续,则有()y x f y x F ,2=∂∂∂ . 利用概率密度计算概率定理 设()Y X ,的概率密度为()y x f ,,则有(1)⎰⎰=≤<≤<b a d cdydx y x f d Y c b X a P ),(},{,(2)设D 为平面上任一区域, ⎰⎰=∈Ddxdy y x f D Y X P ),(}),{( .例 3 设二维随机变量()Y X ,具有概率密度⎩⎨⎧>≤≤=-其它,00,20,),(2y x ae y x f y, (1)确定常数a ;(2)求分布函数),(y x F ;(3)求}{X Y P ≤解(1)由概率密度的性质()dy ae dx dxdy y x f y⎰⎰⎰⎰+∞-+∞∞-+∞∞-==0220,1a a e a y =⋅=-=∞+-212|)21(202, 即得1=a ;(2)()dudv v u f y x F y x⎰⎰∞-∞-=,),( , (A )当0,20>≤≤y x 时,dv e du y x F y vx ⎰⎰-=020),()1(2|)21(202yy v e x e x ---=-= , (B )当0,2>>y x 时dv e du y x F y v⎰⎰-=0220),( )1(|)21(2202yy v e e ---=-=, (C )当0<x 或0≤y 时,对y v x u ≤≤,有0),(=v u f ,()0,),(==⎰⎰∞-∞-dudv v u f y x F y x于是得所求分布函数⎪⎪⎩⎪⎪⎨⎧>>->≤≤-=--其它,00,2),1(0,20),1(2),(22y x e y x e x y x F yy ;(3)设}|),{(x y y x D ≤=,}0,20|),{(1x y x y x D ≤≤≤≤=, }),{(}{D Y X P X Y P ∈=≤⎰⎰=D dxdy y x f ),(⎰⎰=1),(D dxdy y x f dx e dy e dx xx y )1(212200220---==⎰⎰⎰ )21212(21|)21(214202-+=+=--e e x x )3(414-+=e . 四. 常用的二维连续型随机变量有下面两种:(1)均匀分布若随机变量()Y X ,概率密度为()⎪⎩⎪⎨⎧∈=其它,0),(,1,D y x A y x f ,其中A 为有界区域D 的面积.则称()Y X ,在区域D 上服从均匀分布. 记为())(~,D U Y X .(2)二维正态分布若随机变量()Y X ,概率密度为),(y x f 221121ρσπσ-=2112[)1(21exp{⎪⎪⎭⎫ ⎝⎛---⋅σμρx 22112σμσμρ---y x ]}222⎪⎪⎭⎫ ⎝⎛-+σμy 其中ρσσμμ,,,,2121均为常数,且 +∞<<∞-1μ,+∞<<∞-2μ 1||,0,021<>>ρσσ,则称随机变量()Y X ,服从参数为ρσσμμ,,,,2121的二维正态分布,记作 );,;,(~),(222211ρσμσμN Y X . 上述五个参数的意义将在第五章中说明.第二节 边沿分布函数(或边缘分布函数)概念:设随机变量()Y X ,的分布函数为),(y x F ,分量X 的分布函数记为)(x F X ,称)(x F X 为()Y X ,关于X 的边沿分布函数; 分量Y 的分布函数记为)(y F Y , 称)(y F Y 为()Y X ,关于Y 的边沿分布函数.边沿分布函数的计算公式:},{}{)(+∞<≤=≤=Y x X P x X P x F X},{lim y Y x X P y ≤≤=+∞→ ),(lim y x F y +∞→=),(+∞=x F , },{}{)(y Y X P y Y P y F Y≤+∞<=≤= },{lim y Y x X P x ≤≤=+∞→),(lim y x F x +∞→= ),(y F +∞=.已知联合分布函数),(y x F ,可以计算出边沿分布函数)(),(y F x F Y X ;但由Y X ,的分布函数)(),(y F x F YX ,一般无法确定联合分布函数),(y x F .例1设二维随机变量()Y X ,的分布函数为 ⎪⎪⎩⎪⎪⎨⎧>>->≤≤-=--其它,00,2),1(0,20),1(2),(22y x e y x e xy x F yy , 求()Y X ,关于X 和关于Y 的边沿分布函数.解 ()Y X ,关于X 的边沿分布函数)(x F X ),(lim ),(y x F x F y +∞→=+∞= ⎪⎪⎩⎪⎪⎨⎧>=-≤≤=-<==-+∞→-+∞→+∞→2,1)1(lim 20,2)1(2lim 0,00lim 22x e x x e x x yy y y y⎪⎪⎩⎪⎪⎨⎧>≤≤<=2,120,2,0x x x x ;()Y X ,关于Y 的边沿分布函数)(y F Y ),(lim ),(y x F y F x +∞→=+∞= ⎩⎨⎧>-=-≤==--+∞→+∞→0,1)1(lim 0,00lim 22y e e y y y x x ⎩⎨⎧>-≤=-0,10,02y e y y.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=
∞ −∞
������
������, ������
������������
Examples
• Consider a circle of radius ������, and suppose that a point within the circle is randomly chosen in such a manner that all regions within the circle of
equal area are equally likely to contain the point. If we let the center of the circle denote the origin and define ������ and ������ to be the coordinates of the point chosen, then, since (������, ������) is equally likely to be near each point in the circle, it follows that the joint density function of ������ and ������ is given by
有房
无贷
10 %
下班按时 回家
60 %
好厨艺
20 %
• Joint Distribution Function(联合分布函数)
• Independent Random Variables(独立随机变量)
• Sums of Independent Random Variables(独立变量之和)
• Identically Distributed Uniform Random Variables(同分布均匀随机变量) • Gamma Random Variables(伽马随机变量) • Normal Random Variables(正态随机变量) • Poisson and Binomial Random Variables(泊松,二项随机变量) • Geometric Random Variables(几何随机变量)
Joint probability density function (联合密度函数)
• ������ and ������ are jointly continuous (联合连续) if there exists a function ������ ������, ������ , define for all ������ and ������ ,having the property that, for every set ������ of pairs of real numbers (that is, ������ is a set in the two-dimensional plane)
b
lim PX a,Y b b
lim F (a,b) F (a, ) b
FY (b) PY b
lim F (a,b) a
F (,b)
Properties
PX a,Y b 1 P(X a,Y bc ) 1 P(X ac Y bc ) 1 P(X a Y b) 1 P(X a) P(Y b) PX a,Y b
joint p.m.f. of ������ and ������
joint p.m.f. of ������ and ������
X Y
1
1
2
3
4
2
3
4
5
0 1/12 1/12 1/12
3
4
5
6
2 1/12 0 1/12 1/12
4
5
6
7
3 1/12 1/12 0 1/12
5
6
7
8
4 1/12 1/12 1/12 0
An extension
• Joint probability distributions for ������ random variable
• for any ������ sets of real numbers ������1, ������2, . . . , ������������
Independent random variables
• In terms of the joint distribution function ������ of ������ and ������, for all ������ and ������ F (a, b) FX (a)FY (b)
We want the p.m.f. of ������ + ������
1/12
0
1/12
In general P(X + Y = z) = ∑(x, y): x + y = z P(X = x, Y = y)
To calculate ������(������ + ������ = ������) we need to know f(x, y) = P(X = x, Y = y)
������ ������, ������ = ������ ������ ≤ ������, ������ ≤ ������ , −∞ < ������, ������ < ∞
• Marginal distributions (边缘分布)
FX (a) PX a PX a,Y P(limX a,Y b)
Joint probability density function
(联合密度函数)of ������ and ������
P(X ,Y ) C f (x, y)dxdy ( x, y )C
PX A,Y B f (x, y)dxdy
AB
2 f (a,b) F(a,b)
•(X,Y)
(0,0) R
Exercise
The joint density function of X and ������ is given by
f (x, y) e(xy) ,0x,0 y 0,otherwise
Find the density function of the random variable ������/������
1 FX (a) FY (b) F (a,b)
Pa1 X a2 ,b1 Y b2
F (a2 , b2 ) F (a1, b1) F (a1, b 2 ) F (a2, b1)
Joint probability mass function of ������ and ������ :
������ = pairs of cards, equally likely outcomes
������ = face value on first card
������ = face value on second card

P(X + Y = 4) = 1/6
= P(X = 1, Y = 3) + P(X = 2, Y = 2) + P(X = 3, Y = 1)
• Random variables ������ and ������ are said to be independent for any two sets of real numbers ������ and ������
PX A,Y B PX A PY B
• ������ and ������ are independent if, for all ������ and ������, the events ������������ = {������ ∈ ������} and ������������ = {������ ∈ ������} are independent
A
Probability density function of ������: ������������ ������
=
∞ −∞
������
������, ������
������������
Probability density function of ������: ������������ ������
f (x, y) c,ifx2 y2 R2 0,ifx2 y2 R2
(a) Determine ������ (b) Fine the marginal density functions of ������ and ������. (c) Compute the probability that ������, the distance from the origin of the point selected, is less than or equal to ������. (d) Find ������ [������].
ab
Marginal probability
• Probability density function of ������ from joint density function
PX A PX A,Y (, )

f (x, y)dydx
A
fX (x)dx
2
0
3 1/6
4 1/6
5 1/3
6 1/6
7 1/6
8
0
p.m.f. of X + Y
Joint distribution functions (联合分布函数)
• For any two random variables ������ and ������, the joint cumulative probability distribution function of ������ and ������ by
相关文档
最新文档