实验三--均值滤波和中值滤波
实验三 均值滤波和中值滤波

实验三图像滤波实验3.13*3均值滤波一.实验目的1.熟悉MATLAB图像处理工具箱及均值滤波函数的使用;2.理解和掌握3*3均值滤波的方法和应用;二.实验设备1.PC机一台;2.软件MATLAB;三.程序设计在MATLAB环境中,程序首先读取图像,然后调用图像增强(均值滤波)函数,设置相关参数,再输出处理后的图像。
closeall;I=imread('cameraman.tif');figure;subplot(2,3,1);imshow(I);%加入Gaussian噪声J1=imnoise(I,'gaussian',0,0.005);subplot(2,3,2);imshow(J1);%加入椒盐噪声J2=imnoise(I,'salt&pepper',0.02);subplot(2,3,3);imshow(J2);h=fspecial('average',[33]);G1=imfilter(J1,h);subplot(2,3,5);imshow(G1);G2=imfilter(J2,h);subplot(2,3,6);imshow(G2);四.实验步骤1.启动MATLAB双击桌面MATLAB图标启动MATLAB环境;2.在MATLAB命令窗口中输入相应程序。
书写程序时,首先读取图像,一般调用MATLAB自带的图像,如:cameraman图像;再调用相应的图像增强(均值滤波)函数,设置参数;最后输出处理后的图像;3.浏览源程序并理解含义;4.运行,观察显示结果;5.结束运行,退出;五.实验结果观察MATLAB环境下原始图像经3*3均值滤波处理后的结果。
(a)原始图像(b)3*3均值滤波处理后的图像图(3)六.实验报告要求输入一幅灰度图像,给出其图像经3*3均值滤波处理后的结果,然后对每一点的灰度值和它周围24个点,一共25个点的灰度值进行均值滤波,看看对25个点取均值与对9个点进行均值滤波有什么区别?有没有其他的算法可以改进滤波效果。
均值滤波 中值滤波 直方图均衡

实验报告一.实验目的对图像进行空域增强,实现均值滤波、中值滤波、直方图均衡。
二.实验内容对加入椒盐噪声的图像进行均值滤波、中值滤波,对图像实现直方图均衡,通过改变图像的直方图来改变图像中像素的灰度,以达到图像增强的目标。
三.实验原理均值滤波的原理均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标象素为中心的周围8个象素,构成一个滤波模板,即去掉目标象素本身)。
再用模板中的全体像素的平均值来代替原来像素值。
均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。
线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(,)x y,选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(,)u x y,即x y,作为处理后图像在该点上的灰度值(,)1(,)(,)u x y f x y m=∑,m 为该模板中包含当前像素在内的像素总个数。
中值滤波的原理中值滤波是一种非线性滤波,由于它在实际运算过程中并不需要图像的统计特性,所以比较方便。
中值滤波首先是被应用在一维信号处理技术中,后来被二维图像信号处理技术所应用。
在一定的条件下,可以克服线性滤波器所带来的图像细节模糊,而且对滤除脉冲干扰及图像扫描噪声最为有效。
中值滤波的目的是保护图像边缘的同时去除噪声。
在一维的情况下,中值滤波器是一个含有奇数个像素的窗口,在处理之后,将窗口正中的像素灰度值用窗口内各像素灰度值的中值来代替。
设有一个维序列12,,...n f f f ,取窗口长度为奇数m ,对此序列进行中值滤波,就是从输入序列中相续抽出m 个数,,,,,i v i i v f f f -+,其中为窗口的中心值(1)/2v m =-,再将这m 个点的数值按其数值大小排列,取其序号为正中间的那个数作为滤波输出。
中值滤波表达式为:{}v i i v i i f f f Med F +-=,,,,对二维序列{X i,j }的中值滤波,滤波窗口也是二维的,但这种二维窗口可以有各种不同的形状,如线状、方形、圆形、十字形、圆环形等。
均值滤波与中值滤波的应用)

摘要通常,在自然界中大部分信号都存在噪声。
而在如今的数字信号处理中,有各种各样的数字信号滤波器,可以实现对噪声信号的滤波,恢复出原始信号的波形。
本课程设计是基于一维信号被噪声信号污染后,分别经过均值滤波和中值滤波处理后,提取出原始信号,并且观看不同M值时滤波后波形的比较。
均值滤波和中值滤波在数字信号处理中都是非常重要的滤波器,具有广泛的应用。
关键词均值滤波中值滤波数字信号处理目录摘要 (1)第1章均值滤波 (3)1.1 均值滤波的原理 (3)1.2 均值滤波的实现算法 (3)1.3 均值滤波的应用 (3)1.4 均值滤波器 (3)第2章中值滤波 (4)1.1 中值滤波的原理 (4)1.2 中值滤波的实现算法 (4)1.3 中值滤波的应用 (4)1.4 中值滤波器 (4)第3章均值滤波和中值滤波滤除噪声方法 (5)3.1 均值滤波和中值滤波对噪声信号滤波 (5)3.2 程序设计 (7)3.3 结果分析 (8)3.4 心得体会 (11)参考文献 (12)1.1均值滤波的原理均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标象素为中心的周围8个象素,构成一个滤波模板,即去掉目标象素本身)。
再用模板中的全体像素的平均值来代替原来像素值。
均值滤波也称为线性滤波,其采用的主要方法为领域平均法。
线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度值u(x,y),即u(x,y)=1/m ∑f(x,y)①m为该模板中包含当前像素在内的像素总个数。
1.2均值滤波的实现算法均值滤波将每个像素点的灰度值设置为以该点为中心的邻域窗口内的所有像素灰度值的平均值,以实现像素的平滑,达到图像去噪的目的。
设输入图像信号为f(x,y),去噪处理后的输出图像为g(x,y),则有g(x,y)=| f(x,y)- u (x,y)| ②通过上式可以达到消除信号噪声的目的,但对于其中的每一个灰度值来说,都需要按照式①求取以该点中心的邻域窗口内所有像素的平均值,对长度为(2n+1)的信号来说,需要进行(2n+1)次加法、一次乘法、一次除法。
实验三均值滤波和中值滤波

实验三均值滤波和中值滤波实验三均值滤波和中值滤波⼀、实验⽬的进⼀步了解MatLab软件/语⾔,学会使⽤MatLab对图像作滤波处理,使学⽣有机会掌握滤波算法,体会滤波效果。
了解⼏种不同滤波⽅式的使⽤和使⽤的场合,培养处理实际图像的能⼒,并为课堂教学提供配套的实践机会。
⼆、实验要求(1)学⽣应当完成对于给定图像+噪声,使⽤平均滤波器、中值滤波器对不同强度的⾼斯噪声和椒盐噪声,进⾏滤波处理;能够正确地评价处理的结果;能够从理论上作出合理的解释。
(2)利⽤MATLAB软件实现空域滤波的程序:I=imread('electric.tif');J = imnoise(I,'gauss',0.02); %添加⾼斯噪声J = imnoise(I,'salt & pepper',0.02); (注意空格) %添加椒盐噪声ave1=fspecial('average',3); %产⽣3×3的均值模版ave2=fspecial('average',5); %产⽣5×5的均值模版K = filter2(ave1,J)/255; %均值滤波3×3L = filter2(ave2,J)/255; %均值滤波5×5M = medfilt2(J,[3 3]); %中值滤波3×3模板N = medfilt2(J,[4 4]); %中值滤波4×4模板imshow(I);figure,imshow(J);figure,imshow(K);figure,imshow(L);figure,imshow(M);figure,imshow(N);三、实验设备与软件(1) IBM-PC计算机系统(2) MatLab软件/语⾔包括图像处理⼯具箱(Image Processing Toolbox)(3) 实验所需要的图⽚四、实验内容与步骤a) 调⼊并显⽰原始图像Sample2-1.jpg 。
中值滤波与均值滤波

最小方差平滑滤波器
—— 模板结构
模板如下:本例在第2和第6中选择一个方差小的。
3
1
2
4
7
9
5
6
8
Sigma平滑滤波器
—— 基本原理
根据统计数学的原理,属于同一类别的元素 的置信区间,落在均值附近±2σ 范围之内。
Sigma滤波器是构造一个模板,计算模板的 标准差σ,置信区间为当前像素值的±2σ范围。
为了改善效果,就可采用加权平均的方式来构造 滤波器。
均值滤波器的改进
—— 加权均值滤波
如下,是几个典型的加权平均滤波器。
1 1 1
H1
1 10
1
2
1
1 1 1 示例
1 2 1
H2
1 16
2
4
2
1 2 1
示例
1 1 1
H3
1 8
1
1
0 1
1 1
示例
0
1 4
0
H4
1 2
1 4
1
1 4
0
1 4
0
示例
如果在某个模板中,对像素进行由小到大排列的 重新排列,那么最亮的或者是最暗的点一定被排 在两侧。
取模板中排在中间位置上的像素的灰度值替代待 处理像素的值,就可以达到滤除噪声的目的。
中值滤波器
—— 原理示例
m-2
m-1
6
10
m
m+1
62
5数值排序mFra bibliotekm+1
m-2
2
5
6
m+2 8
m+2 8
m-1 10
K近邻(KNN)平滑滤波器
均值滤波和中值滤波的比较分析

均值滤波和中值滤波的比较分析一、图像系统中的常见噪声一般在图像中常见的噪声有:1、按噪声幅度分布形状而分,成高斯分布的称为高斯噪声,主要由阻性元器件内部产生。
2、按噪声和信号之间的关系分为加性噪声和乘性噪声。
加性噪声与输入图像信号无关,含噪图像可表示为。
乘性噪声往往随图像信号的变化而变化其含噪图像可表示为3、椒盐(Salt and pepper)噪声:主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生泊松噪声。
4、量化噪声:此类噪声与输入图像信号无关,是量化过程存在量化误差,再反映到接收端而产生,其大小显示出数字图像和原始图像差异。
本文为了分析不同去噪方法的应用范围,将原图像分别加入高斯噪声及椒盐噪声,运用Matalab编程实现两种不同滤波方法的去噪结果,并据此进行比较得出相应结论。
下面几幅图为本文所选用的经过灰度变换后得到的图像、添加椒盐噪声和高斯噪声后的图像:二.去噪的两种常用方法1.均值滤波均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。
其基本原理是用均值替代原图像中的各个像素值,即对待处理的当前像素点,选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点 ,作为处理后图像在该点上的灰度 ,即,其中,为模板,为该模板中包含当前像素在内的像素总个数。
如下即分别为用中值滤波对加有高斯噪声、椒盐噪声、的图像处理后的对比图:2.中值滤波中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术。
其实现原理如下:将某个像素邻域中的像素按灰度值进行排序,然后选择该序列的中间值作为输出的像素值,让周围像素灰度值的差比较大的像素改取与周围的像素值接近的值,从而可以消除孤立的噪声点。
其具体的操作是:首先确定一个以某个像素为中心点的领域,一般为方形领域(如 3 * 3、5 * 5的矩形领域),然后将领域中的各个像素的灰度值进行排序。
假设其排序为:,取排好序的序列的中间值作为中心点像素灰度的新值,这里的邻域通常被称为窗口。
均值滤波、中值滤波、高斯滤波公式

均值滤波、中值滤波、高斯滤波的公式如下:
1.均值滤波:使用邻域平均法,用均值代替原图像中的各个像素值。
设有一个滤波
模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度g(x,y),即g(x,y)=∑f(x,y)/m m为该模板中包含当前像素在内的像素总个数。
2.中值滤波:其数学公式为y[n]=median(x[n-k],…,x[n],…,x[n+k]) 其中x xx是原始
信号,y yy是滤波后的信号,n nn是当前位置,k kk是窗口大小。
3.高斯滤波:高斯函数可以用来模拟存在噪声的图像。
假设有一幅大小为N×N像
素的图像f(x,y),那么任意一点(x,y)上的像素值可以用高斯函数来描述:
f(x,y)=∫∫f(u,v)exp[-{(u-x)^2+(v-y)^2}/2σ^2]dudv 其中,f(u,v)是原始图像上(u,v)点的像素值,σ是高斯滤波参数,表示高斯函数的“宽度”。
以上信息仅供参考,如有需要,建议咨询专业人士。
均值滤波和中值滤波

均值滤波和中值滤波均值滤波与自适应中值滤波的仿真与实现摘要图像是一种重要的信息源,通过图像处理可以帮助人们了解信息的内涵,然而在图像使用和传输过程中,不可避免会受到噪声的干扰,因此为了恢复原始图像,达到好的视觉效果,需要对图像进行滤波操作。
根据噪声种类不同,可以采用不同的滤波方法,均值滤波是典型的线性滤波算法,能够有效滤波图像中的加性噪声,而中值滤波器是能够有效滤除脉冲噪声的非线性滤波器,但传统中值滤波去脉冲噪声的性能受滤波窗口尺寸的影响较大, 在抑制图像噪声和保护细节两方面存在矛盾。
本文首先对不同均值滤波器在处理不同噪声方面的优缺点进行了分析,然后分别用中值滤波器和自适应中值滤波器对被椒盐噪声污染的图像进行了滤波操作,发现自适应中值滤波方法不仅可以有效滤波椒盐噪声,同时还可以有效地克服中值滤波器造成图像边缘模糊的缺点。
1.均值滤波均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素点和其本身像素点。
再用模板中的全体像素的平均值来代替原来像素值。
均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。
线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其邻近的若干像素组成,求模板中所有像素算术平均滤波,几何平均滤波和逆谐波均值滤波对高斯噪声进行滤波A 原始图像B 高斯噪声污染的图像C 用3x3算术均值滤波器滤波后图像D 用3x3几何均值滤波器滤波后图像E Q=-1.5的逆谐波滤波器滤波后图像F Q=1.5的逆谐波滤波器滤波后图像图一均值滤波(高斯噪声)如图一所示,图A为原始图像,图B为被高斯噪声污染的图像,图C为用3x3算术均值滤波处理后的图像,图D为用3x3几何均值滤波处理后的图像,图E为用Q=-1.5的逆谐波均值滤波处理后的图像,图F为用Q=1.5的逆谐波均值滤波处理后的图像。
与图B进行比较,图C,D,E,F经均值滤波处理后视觉效果明显改善,说明均值滤波能有效滤除图像中的高斯噪声。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三均值滤波和中值滤波
一、实验目的
进一步了解MatLab软件/语言,学会使用MatLab对图像作滤波处理,使学生有机会掌握滤波算法,体会滤波效果。
了解几种不同滤波方式的使用和使用的场合,培养处理实际图像的能力,并为课堂教学提供配套的实践机会。
二、实验要求
(1)学生应当完成对于给定图像+噪声,使用平均滤波器、中值滤波器对不同强度的高斯噪声和椒盐噪声,进行滤波处理;能够正确地评价处理的结果;能够从理论上作出合理的解释。
(2)利用MATLAB软件实现空域滤波的程序:
I=imread('electric.tif');
J = imnoise(I,'gauss',0.02); %添加高斯噪声
J = imnoise(I,'salt & pepper',0.02); (注意空格) %添加椒盐噪声
ave1=fspecial('average',3); %产生3×3的均值模版
ave2=fspecial('average',5); %产生5×5的均值模版
K = filter2(ave1,J)/255; %均值滤波3×3
L = filter2(ave2,J)/255; %均值滤波5×5
M = medfilt2(J,[3 3]); %中值滤波3×3模板
N = medfilt2(J,[4 4]); %中值滤波4×4模板
imshow(I);
figure,imshow(J);
figure,imshow(K);
figure,imshow(L);
figure,imshow(M);
figure,imshow(N);
三、实验设备与软件
(1) IBM-PC计算机系统
(2) MatLab软件/语言包括图像处理工具箱(Image Processing Toolbox)
(3) 实验所需要的图片
四、实验内容与步骤
a) 调入并显示原始图像Sample2-1.jpg 。
b) 利用imnoise 命令在图像Sample2-1.jpg 上加入高斯(gaussian) 噪声
c)利用预定义函数fspecial 命令产生平均(average)滤波器
111191111---⎡⎤⎢⎥--⎢⎥⎢⎥---⎣
⎦ d )分别采用3x3和5x5的模板,分别用平均滤波器以及中值滤波器,对加入噪声的图像进行处理并观察不同噪声水平下,上述滤波器处理的结果;
e )选择不同大小的模板,对加入某一固定噪声水平噪声的图像进行处理,观察上述滤波器处理的结果。
f )利用imnoise 命令在图像Sample2-1.jp
g 上加入椒盐噪声(salt & pepper)
g )重复c)~ e )的步骤
h )输出全部结果并进行讨论。
五、思考题/问答题
(1) 简述高斯噪声和椒盐噪声的特点。
(2) 结合实验内容,定性评价平均滤波器/中值滤波器对高斯噪声和椒盐噪声的去噪效果?
(3) 结合实验内容,定性评价滤波窗口对去噪效果的影响?
六、实验报告要求
描述实验的基本步骤,用数据和图片给出各个步骤中取得的实验结果,并进行必要的讨论,必须包括原始图像及其计算/处理后的图像。
七、实验图像
electric.tif (原始图像)。