高三上学期期中考试数学理
宁夏六盘山高级中学2023届高三(提升班)上学期期中考试数学(理)试题

宁夏六盘山高级中学2023届高三(提升班)上学期期中考试数学(理)试题1.已知集合,,则为()A .B .C .D .2.“关于的不等式的解集为”的一个必要不充分条件为()A.B.C .D .或3.已知,则()D.2 A.B.C.4.已知等腰直角,,为边上一个动点,则的值为()A.1 B.2 C.D.5.已知在等比数列中,,,则()A.B.C.D.6.定义为a,b,c中的最小值,设,则M的最大值是()A.B.C.1 D.27.《周髀算经》中有这样一个问题:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,自冬至日起,其日影长依次成等差数列,立春当日日影长为9.5尺,立夏当日日影长为2.5尺,则春分当日日影长为()A.4.5尺B.5尺C.5.5尺D.6尺8.定义在R上的奇函数满足,当时,,则在上()A.是减函数,且B.是增函数,且C.是减函数,且D.是增函数,且9.在△ABC中,若22=,则△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形10.已知函数,若,则实数的取值范围为()A.B.C.D.11.已知函数,若存在实数(且),使得成立,则实数的取值范围是()A.B.C.D.12.已知函数(其中),恒成立,且在区间上单调,给出下列命题①是偶函数;②;③是奇数;④的最大值为3;其中正确的命题有()A.①②③B .①②④C.②③④D .①③④13.已知平面向量,,若,则________.14.已知数列的前项和,那么它的通项公式为__.15.若,,且,,则的值是______.16.已知函数,且,给出下列命题:①;②;③当时,;④,其中正确的命题序号是_____.17.已知数列各项均为正数,且.(1)求的通项公式;(2)记数列前项的和为,求的取值范围.18.已知向量,,函数.将函数的图像向左平移个单位长度后得到函数的图像.(1)求函数的零点;(2)若锐角的三个内角的对边分别是,,,且,求的取值范围.19.在中,角,,的对边分别为,,,且.(1)求角的大小;(2)如图,若为外一点,且,,,,求的面积.20.函数,.(1)求的单调递增区间;(2)对,,使成立,求实数的取值范围.21.已知函数.(1)求函数在处的切线方程;(2)求证:.22.在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为:.(1)写出的直角坐标方程和的普通方程;(2)设的交点为P,Q,点M在上,当的面积最大时,求点M的直角坐标.23.函数的最大值为4,.(1)求的值;(2)若,,为正实数,且,求证:.。
吉林省2024-2025学年高三上学期10月期中考试(第78届联考)数学试题含答案

2024-2025学年度友好学校高三期中考试数学试题(答案在最后)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.已知集合{}{}1,0,1,2,0,2,3A B =-=,则A B = ()A.{}0,2 B.{}0,1,2 C.{}1,0,1,2- D.{}1,0,1,2,3-【答案】A 【解析】【分析】根据交集定义求解.【详解】因为{}{}1,0,1,2,0,2,3A B =-=,所以A B = {}0,2,故选:A.2.已知命题p :x R ∃∈,2e 1x x <-,那么命题p ⌝为()A.x R ∃∈,2e 1x x ≥-B.x R ∀∈,2e 1x x <-C.x R ∀∈,2e 1x x ≥-D.x R ∀∈,2e 1x x >-【答案】C 【解析】【分析】利用特称命题的否定变换形式即可求解.【详解】p :x R ∃∈,2e 1x x <-,则p ⌝:x R ∀∈,2e 1x x ≥-.故选:C3.函数()2ln 6f x x x =+-的零点所在区间为()A.10,2⎛⎫ ⎪⎝⎭B.1,12⎛⎫ ⎪⎝⎭C.()1,2 D.()2,3【答案】D 【解析】【分析】利用零点存在定理可判断出函数()y f x =的零点所在的区间.【详解】易知函数()y f x =在 ꌸध 上单调递增,又()150f =-<,()2ln 220f =-<,()3ln 330f =+>,故函数()y f x =的零点所在区间为()2,3.故选:D.【点睛】本题考查函数零点所在区间的判断,一般利用零点存在定理来判断,考查计算能力与推理能力,属于基础题.4.圣·索菲亚教堂(英语:SAINTSOPHIACATHEDRAL )坐落于中国黑龙江省,是一座始建于1907年拜占庭风格的东正教教堂,为哈尔滨的标志性建筑,被列为第四批全国重点文物保护单位.其中央主体建筑集球、圆柱、棱柱于一体,极具对称之美,可以让游客从任何角度都能领略它的美,小明同学为了估算索菲亚教堂的高度,在索非亚教堂的正东方向找到一座建筑物AB ,高为()30330m,-在它们之间的地面上的点M (B ,M ,D 三点共线)处测得楼顶A 教堂顶C 的仰角分别是15°和60°,在楼顶A 处测得塔顶C 的仰角为30°,则小明估算索菲亚教堂的高度为()62.(sin15)4-︒=A.30mB.60mC.303mD.603m【答案】D 【解析】【分析】在ACM △中,利用正弦定理,得sin15sin 30AM CM ︒=︒,再结合锐角三角函数的定义,求得AM ,CD ,得解.【详解】由题意知,45CAM ∠=︒,1801560105AMC ∠=︒-︒-︒=︒,所以1801054530ACM ∠=︒-︒-︒=︒,在Rt ABM 中,sin sin15AB ABAM AMB ==∠︒,在ACM △中,由正弦定理得,sin 30sin 45AM CM=︒︒,所以sin 45sin 45sin 30sin15sin 30AM AB CM ︒︒==︒︒⋅︒,在Rt DCM中,()30sin 45sin 60sin 6060sin15sin 30AB CD CM -⋅︒⋅︒=⋅︒==︒⋅︒所以小明估算索菲亚教堂的高度为米.故选:D .5.设π02θ<<,若()2sin cos 3θθθ++=,则sin2θ=()A.32B.12C.2D.34【答案】B 【解析】【分析】利用二倍角公式以及辅助角公式可推出πsin(2)13θ+=,结合角的范围求得θ,即可求得答案.【详解】由题意()2sin cos 3θθθ++=,则12sin cos 3θθθ++=,即sin22θθ+=,故π2sin(2)23θ+=,即πsin(2)13θ+=,由于π02θ<<,所以ππ4π2(,333θ+∈,则ππ232θ+=,即π12θ=,故π1sin2sin 62θ==,故选:B6.曲线2e x y x =在点()1,e 处的切线方程为()A.e 2e 0x y +-=B.3e 4e 0x y +-= C.3e 2e 0x y --= D.e 32e 0x y -+=【答案】C 【解析】【分析】用导数几何意义去求切线方程即可.【详解】由2e x y x =,得22e e e (2)x x x y x x x x '=+=+,所以该曲线在点(1,e)处的切线斜率为3e k =,故所求切线方程为e 3e(1)y x -=-,即3e 2e 0x y --=.故选:C.7.已知4log 2a =,8log 3b =,1215c ⎛⎫= ⎪⎝⎭,则()A.a b c << B.c a b<< C.a c b<< D.c b a<<【答案】B 【解析】【分析】由题意可得12a =,再由对数函数性质和根式与指数式的互化分别得出12b >和12c <即可得解.【详解】由题41log 22a ==,又由3log y x =是增函数可知881log 3log 2b =>=,121152c ⎛⎫==< ⎪⎝⎭,∴c a b <<,故选:B.8.函数f(x)=2log ,02,0x x x a x >⎧⎨-+≤⎩有且只有一个零点的充分不必要条件是()A.a<0B.0<a<C.<a<1D.a≤0或a>1【答案】A 【解析】【分析】函数y=f (x )只有一个零点,分段函数在 时,2log y x =存在一个零点为1,在0x ≤无零点,所以函数图象向上或向下平移,图像必须在x 轴上方或下方,解题中需要注意的是:题目要求找出充分不必要条件,解题中容易选成充要条件.【详解】当 时,y=2log x ,x=1是函数的一个零点,则当0y 2x x a ≤=-+,无零点,由指数函数图像特征可知:a≤0或a>1又题目求函数只有一个零点充分不必要条件,即求a≤0或a>1的一个真子集,【点睛】本题考查函数零点个数问题,解决问题的关键是确定函数的单调性,利用单调性和特殊点的函数值的正负确定零点的个数;本题还应注意题目要求的是充分不必要条件,D 项是冲要条件,容易疏忽而出错.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A.“a b >”是“22a b >”的既不充分也不必要条件B.221log 4y x ⎛⎫=-+⎪⎝⎭的最大值为2-C.若22cos sin 1αβ+=,则αβ=D.命题“()0,x ∀∈+∞,11x x +>”的否定是“()0,x ∀∈+∞,11x x+≤”【答案】AB 【解析】【分析】利用特殊值判断A ,根据对数函数的性质判断B ,利用平方关系及诱导公式判断C ,根据含有一个量词命题的否定判断D.【详解】对于A :若0a =,1b =-,满足a b >,但是22a b <,故充分性不成立,若1a =-,0b =,满足22a b >,但是a b <,故必要性不成立,即“a b >”是“22a b >”的既不充分也不必要条件,故A 正确;对于B :由2104x -+>,解得1122x -<<,所以函数221log 4y x ⎛⎫=-+ ⎪⎝⎭的定义域为11,22⎛⎫- ⎪⎝⎭,又211044x <-+≤,所以当0x =时函数221log 4y x ⎛⎫=-+ ⎪⎝⎭取得最大值,且max 21log 24y ==-,故B 正确;对于C :因为22cos sin 1αβ+=,又22cos sin 1ββ+=,所以22cos cos αβ=,所以πk βα=+,Z k ∈,故C 错误;对于D :命题“()0,x ∀∈+∞,11x x +>”的否定是“()0,x ∃∈+∞,11x x+≤”,故D 错误;10.下列说法正确的是()A.函数()f x =()g x =是相同的函数B.函数()f x =的最小值为6C.若函数()313xxk f x k -=+⋅在定义域上为奇函数,则1k =D.已知函数()21f x +的定义域为[]1,1-,则函数()f x 的定义域为[]1,3-【答案】AD 【解析】【分析】根据定义域以及对应关系即可判断A ,由基本不等式即可求解B ,根据奇函数的性质即可求解C ,由抽象函数定义域的性质即可求解D.【详解】对于A ,由题意可得1010x x +≥⎧⎨-≥⎩,解得11x -≤≤,所以()f x =[1-,1].由210x -≥得11x -≤≤,所以()g x =[1-,1].又因为()()f x g x =,故函数()f x 与()g x 是相同的函数,故A 正确.对于B,()6f x ==2169x +=方程无解,故等号不成立,故B 错误.对于C,若()313xxk f x k -=+⋅在定义域上为奇函数,当0k <时,x 需要满足01313xxkk +≠≠-⋅⇒,则由奇函数定义域关于原点对称,可得0131k k-=⇒=-,此时()()133031131x x x x f x x --==≠-+-,()()13313131x x x xf x f x ---===--++-,为奇函数,所以1k =-满足题意;若0k ≥,可得函数的定义域为R ,故()1001k f k-==+,解得1k =,经检验符合题意,所以1k =±,故C 错误,对于D ,对于已知函数()21f x +的定义域为[]1,1-,则11x -≤≤,故1213x -≤+≤,则函数()f x 的定义域为[]1,3-,D 正确,故选:AD .11.已知函数()21sin sin cos 2f x x x x =++的图象为C ,以下说法中正确的是()A.函数()f x 的最大值为12+B.图象C 关于π8,0⎛⎫⎪⎝⎭中心对称C.函数()f x 在区间π3π,88⎛⎫- ⎪⎝⎭内是增函数D.函数()f x 图象上,横坐标伸长到原来的2倍,向左平移π4可得到2sin 12y x =+【答案】CD 【解析】【分析】根据降幂公式、二倍角正弦公式,结合正弦型函数的最值、对称性、单调性、图象变换性质逐一判断即可.【详解】()211cos 2112πsin sin cos sin 2sin 21222224x f x x x x x x -⎛⎫=++=++=-+ ⎪⎝⎭.A :函数()f x 的最大值为12+,因此本选项不正确;B :因为π2ππsin 2118284f ⎛⎫⎛⎫=⨯-+=⎪ ⎪⎝⎭⎝⎭,所以图象C 不关于π8,0⎛⎫ ⎪⎝⎭中心对称,因此本选项不正确;C :当π3π,88x ⎛⎫∈- ⎪⎝⎭时,πππ2,422x ⎛⎫-∈- ⎪⎝⎭,所以函数()f x 在区间π3π,88⎛⎫- ⎪⎝⎭内是增函数,因此本选项正确;D :函数()f x 图象上,横坐标伸长到原来的2倍,得到2πsin 124y x ⎛⎫=-+ ⎪⎝⎭,再向左平移π4可得到2sin 12y x =+,所以本选项正确,故选:CD第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分12.设1x >-,则函数461y x x =+++的最小值是__________.【答案】9【解析】【分析】根据题意,化简4461511y x x x x =++=+++++,结合基本不等式,即可求解.【详解】由1x >-,可得10x +>,则446155911y x x x x =++=+++≥+=++,当且仅当411x x +=+时,即1x =时,等号成立,所以函数461y x x =+++的最小值是最小值为9.故答案为:9.13.已知集合2}71|0{2A x x x =++≤,集合{}|122B x m x m =-<<其中x A ∈是x B ∈的充分不必要条件,则m 的取值范围是________________.【答案】5,2∞⎛⎫+ ⎪⎝⎭【解析】【分析】由条件可得AB ,化简集合A ,根据集合的包含关系列不等式可求m 的取值范围.【详解】因为x A ∈是x B ∈的充分不必要条件,所以AB ,因为不等式27120x x ++≤的解集为{}43x x -≤≤-,所以{}43A x x =-≤≤-,所以23124m m >-⎧⎨-<-⎩,所以52m >,所以m 的取值范围是5,2⎛⎫+∞⎪⎝⎭.故答案为:5,2⎛⎫+∞⎪⎝⎭.14.关于函数()22sin cos f x x x x =-,有如下命题:(1)3x π=是()f x 图象的一条对称轴;(2),06π()是()f x 图象的一个对称中心;(3)将()f x 的图象向左平移6π,可得到一个奇函数的图象.其中真命题的序号为______________.【答案】(2)(3)【解析】【分析】将函数的解析式化为()2cos 26f x x π⎛⎫=+ ⎪⎝⎭,然后对给出的三个命题分别进行验证后可得正确的命题.【详解】由题意得()sin22cos 26f x x x x π⎛⎫=-=+ ⎪⎝⎭,对于(1),当3x π=时,22cos 2336f πππ⎛⎫⎛⎫=+≠± ⎪⎪⎝⎭⎝⎭,所以3x π=不是函数图象的对称轴,所以(1)不正确.对于(2),6x π=时,2cos 0636f πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以π,06()是()f x 图象的一个对称中心,所以(2)正确.对于(3),将()f x 的图象向左平移6π后所得图象对应的解析式为()2cos 266f x x ππ⎡⎤⎛⎫=++ ⎪⎢⎝⎭⎣⎦2cos 2222x sin x π⎛⎫=+=- ⎪⎝⎭,为奇函数,所以(3)正确.综上可得(2)(3)为真命题.故答案为(2)(3).【点睛】本题考查三角函数的性质和图象变换,解题的关键是将函数的解析式化为()2cos 26f x x π⎛⎫=+ ⎪⎝⎭的形式后,将26x π+作为一个整体,并结合余弦函数的性质求解,属于基础题.四.解答题:本小题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知全集U R =,集合{}2|340A x x x =+-≤,{}|11B x m x m =-≤≤+.(1)若1m =,求()U A B ð;(2)若B A ⊆,求m 的取值范围.【答案】(1)(){}|40U B A x x =-≤<I ð;(2)[]3,0-【解析】【分析】(1)分别求出U B ð和A ,再取交集,即可.(2)因为B A ⊆且11m m -<+恒成立,所以1411m m -≥-⎧⎨+≤⎩,解出即可.【详解】解:(1)若1m =,则{}|02B x x =≤≤,所以{|0U B x x =<ð或 h ,又因为{}|41A x x =-≤≤,所以(){}|40U B A x x =-≤<I ð.(2)由(1)得,{}|41A x x =-≤≤,又因为B A ⊆,所以1411m m -≥-⎧⎨+≤⎩,解得[]3,0m ∈-.【点睛】本题考查了交、补集的混合运算,考查了利用集合间的关系求参数的取值问题,解答此题的关键是对集合端点值的取舍,是基础题.16.已知函数()ln sin f x x x =+.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)求函数()f x 在区间[]1,e 上的最小值.【答案】(1)()1cos1sin1cos11y x =++--(2)sin1【解析】【分析】(1)利用导数的几何意义结合给定条件求解切线方程即可.(2)利用导数结合零点存在性定理求出函数单调性,再求解最值即可.【小问1详解】由题意得,()1cos f x x x+'=,所以()11cos1f =+',又()1sin1f =,所以曲线 y m 在点 ꌸm 处的切线方程为()()sin11cos11y x -=+-,即()1cos1sin1cos11y x =++--;【小问2详解】由上问得()1cos f x x x +'=,因为1y x =和cos y x =均在区间[]1,e 上单调递减,所以m 在区间[]1,e 上单调递减,因为()11cos10f +'=>,()112π11e cose cos 0e e 3e 2f =+<+=-<',所以()0f x '=在()1,e 上有且只有一个零点,记为0x ,所以[)01,x x ∈时,m ;(]0,e x x ∈时,m ,所以()f x 在[)01,x 上单调递增,在(]0,e x 上单调递减,因为()()1sin1,e 1sine f f ==+,所以()f x 在区间[]1,e 上的最小值为sin1.17.已知函数()22sin .f x x x =+(1)求()f x 的最小正周期及单调递增区间;(2)求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的值域.【答案】(1)最小正周期T π=,单调递增区间为,63k k ππππ⎡⎤-+⎢⎥⎣⎦,Z k ∈;(2)[]0,3.【解析】【分析】(1)利用二倍角的余弦公式、辅助角公式化简()2216f x sin x π⎛⎫=-+ ⎪⎝⎭,由周期公式计算得()f x 的最小正周期,由222262k x k πππππ-≤-≤+,Z k ∈可解得函数()f x 的单调增区间;(2)由x 的范围求出26x π-的范围,进一步求出sin 26x π⎛⎫- ⎪⎝⎭的范围,从而可得结果.【详解】(1)()22sin 1cos2f x x x x x=+=+-12sin2cos212sin 21226x x x π⎛⎫⎛⎫=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭.()f x \的最小正周期22T ππ==,令222262k x k πππππ-≤-≤+,Z k ∈,得63k x k ππππ-#+,Z k ∈,()f x \的单调递增区间为,63k k ππππ⎡⎤-+⎢⎥⎣⎦,Z k ∈;(2)0,2x π⎡⎤∈⎢⎥⎣⎦时,52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,1sin 2,162x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以2sin 26x π⎛⎫- ⎪⎝⎭的最大值为2,最小值为1-()2216f x sin x π⎛⎫∴=-+ ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的值域为[]0,3.【点睛】方法点睛:函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,2222k x k πππωϕπ-+≤+≤+求得增区间;18.记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin cos b A B =.(1)求A ;(2)求2b c a +的最大值.【答案】(1)π3A =(2)2213.【解析】【分析】(1)方法1,利用正弦定理边化角,进而可得tan A =,结合角的范围即可求解;方法2,利用余弦定理进行边角的互化,进而可得tan A =,结合角的范围即可求解;(2)利用正弦定理边化角,结合辅助角公式进而可得()23b c B a ϕ+=+,结合正弦函数的性质即可求解.【小问1详解】方法1:由sin cos b A B +=及正弦定理可得:()sin sin cos B A A B C A B +==+,所以sin sin cos cos sin B A A B A B A B +=+,故sin sin sin B A A B =,因为0πB <<,即sin 0B >,故sin 0A A =>,所以tan A =,又0πA <<,所以π3A =.方法2:由sin cos b A B +=及余弦定理可得:()222sin2a c b b A ac +-+=,所以)222sin 02b c a A A bc +-==>,所以tan A =,又0πA <<,所以π3A =.【小问2详解】由正弦定理可知22sin sin sin b c B C a A++=,即()2232π23532212sin sin sin cos sin 333223b c B B B B B a ϕ⎛⎫+⎡⎤⎛⎫=+-=+=+ ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭,其中πtan 52ϕϕ⎛⎫=< ⎪⎝⎭,2π7π0,036B B ϕ<<∴<+< ,故当π2B ϕ+=时,2b c a +19.设函数()2ln 25f x x x x =+-.(1)求函数()f x 的极小值;(2)若关于x 的方程()()226f x x m x =+-在区间2[1,e ]上有唯一实数解,求实数m 的取值范围.【答案】(1)极小值为()13f =-;(2)222{|11,=1}m m m e e≤<++或.【解析】【分析】(1)根据导函数的符号判断出单调性,然后可求出函数的极小值;(2)由题意并结合分离参数法得到方程2ln 11,e x m x ⎡⎤=+⎣⎦在区间上有唯一解,设()ln 1x g x x=+,然后得到函数()g x 的单调性和最值,进而得到其图象,最后根据y m =和函数()g x 的图象可得到所求的范围.【详解】(1)依题意知()f x 的定义域为()0,+∞,∵()2ln 25f x x x x =+-,∴()()()2411145145x x x x f x x x x x---+='=+-=,令()0,f x '=解得1,x =或14x =则()()1010,4x x f x f x '当或时,单调递增,()1104x f x <<<'当时,,()f x 单调递减.∴所以当 y 时函数()f x 取得极小值,且极小值为()13f =-.(2)()()()226ln 1f x x m x x m x =+-=-由得,0x >又,所以ln 1x m x=-,()()22261,e ,f x x m x ⎡⎤=+-⎣⎦要使方程在区间上有唯一解只需2ln 11,e x m x ⎡⎤=+⎣⎦在区间上有唯一解.令()ln 1(0)x g x x x =+>,则()21ln x g x x -'=,由()0g x '≥,得1x e ≤≤;由()0g x '≤,得2e x e ≤≤∴()g x 在区间[]1,e 上是增函数,在区间2,e e ⎡⎤⎣⎦上是减函数.∴当x e =时函数()g x 有最大值,且最大值为()11g e e =+,又()()2222ln 211,11e g g ee e ==+=+,∴当11m e =+或2211m e ≤<+时,ln 1x m x =+在区间21,e ⎡⎤⎣⎦上有唯一解,∴实数m 的取值范围为222{|11,=1}m m m e e≤<++或.【点睛】研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数的大致图象,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的展现.。
陕西师范大学附属中学2022-2023学年高三上学期期中理科数学试题含解析

A. B. C.2D.
【答案】B
【解析】
【分析】将 代入双曲线方程求出点 的坐标,通过解直角三角形列出三参数 , , 的关系,求出离心率的值.
【详解】由于 轴,且 在第一象限,设
所以将 代入双曲线的方程得 即 ,
7.侏罗纪蜘蛛网是一种非常有规律的蜘蛛网,如图是由无数个正方形环绕而成的,且每一个正方形的四个顶点都恰好在它的外边最近一个正方形四条边的三等分点上,设外围第1个正方形的边长是m,侏罗纪蜘蛛网的长度(蜘蛛网中正方形的周长之和)为Sn,则()
A.Sn无限大B.Sn<3(3+ )m
C.Sn=3(3+ )mD.Sn可以取100m
17.已知 中,角A,B,C的对边分别为a,b,c, .
(1)若 ,求 的值;
(2)若 的平分线交AB于点D,且 ,求 的最小值;
【答案】(1) ;(2)4
【解析】
【分析】(1)由 ,利用正弦定理将边转化为角得到 ,再根据 ,有 ,然后利用两角差的正弦公式展开求解.
(2)根据 的平分线交AB于点D,且 ,由 ,可得 ,化简得到 ,则 ,再利用基本不等式求解.
【详解】设 , ,
则 , ,
如图所示,
连接 交 于点 ,连接 、 ,
因为 平面 , 平面 ,
所以 ,而 ,所以四边形 是直角梯形,
则有 ,
, ,
所以有 ,
故 ,
因为 平面 , 平面 ,
所以 ,又因为 为正方形,所以 ,
而 平面 ,
所以 平面 ,即 平面 ,
,
所以 , ,
故答案为:③④.
福建省部分达标高中2024-2025学年高三上学期11月期中考试 数学含答案

高三半期考数学试卷(答案在最后)注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.本试卷主要考试内容:集合与常用逻辑用语、等式与不等式、函数与导数、三角函数与解三角形、平面向量与复数。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{13}A x x =-<≤∣,{}1,2,3,4B =,则A B = ()A .{}2,3B .{}1,2C .{}1,2,3D .{}12.函数41tan 3y x π⎛⎫=-⎪⎝⎭的最小正周期为()A .4B .22πC .8D .24π3.在中国传统的十二生肖中,马、牛、羊、鸡、狗、猪为六畜,则“甲的生肖不是马”是“甲的生肖不属于六畜”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知复数()32z =-+,则z 的虚部为()A .-B .C .10-D .105.在梯形ABCD 中,5BC AD = ,AC 与BD 交于点E ,则ED =()A .1166AD AB-B .1177AD AB-C .1166AB AD-D .1177AB AD-6.将函数()cos y x ϕ=+图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()y f x =的图象.若()y f x =的图象关于点7,03π⎛⎫- ⎪⎝⎭对称,则ϕ的最小值为()A .3πB .23πC .6πD .56π7.已知22111x y+=,则221169x y --的最大值为()A .35-B .49-C .42-D .48-8.若2sin cos 2tan3sin cos 1tan 3αααααα-=+-,则α的值可以为()A .12π-B .20π-C .10πD .5π二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若()f x 与()g x 分别为定义在R 上的偶函数、奇函数,则函数()()()h x f x g x =的部分图象可能为()A .B .C .D .10.如图,在ABC 中,3AB AC ==,2BC =,点D ,G 分别边AC ,BC 上,点E ,F 均在边AB 上,设DG x =,矩形DEFG 的面积为S ,且S 关于x 的函数为()S x ,则()A .ABC 的面积为B .()13S =C .()S x 先增后减D .()S x 11.已知向量a ,b ,c 满足6a = ,1b = ,,3a b π= ,()()3c a c b -⋅-= ,则()A .a b -=B .cC .a c - 的最小值为2D .a c - 的最大值为62三、填空题:本题共3小题,每小题5分,共15分.12.log =________.13.已知14ω>,函数()sin 4f x x π⎛⎫=- ⎪⎝⎭在[]0,ωπ上单调递增,则ω的最大值为________.14.已知函数()e x x f x m =-,()2exg x m =-,若()f x 与()g x 的零点构成的集合的元素个数为3,则m 的取值范围是________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin cos sin sin c A B a B C =.(1)求角B ;(2)若3a =,ABC 的面积为92,求b .16.(15分)已知函数()3f x x x =--.(1)求曲线()y f x =在点()()4,4f 处的切线方程;(2)若()ln f x m >恒成立,求m 的取值范围.17.(15分)已知函数()14sin sin 3f x x x π⎛⎫=--⎪⎝⎭.(1)将()f x 化成()()sin 0,0,2f x A x B A πωϕωϕ⎛⎫=++>><⎪⎝⎭的形式;(2)求()f x 在0,4π⎡⎤⎢⎥⎣⎦上的值域;(3)将()f x 的图象向左平移6π个单位长度后得到函数()h x 的图象,求不等式()0h x ≥的解集.18.(17分)已知函数()f x ,()g x 满足()2e exxf x ax -=-+,()()()2212e 1e 2e 2e x x f x g x a -⎛⎫+=-+-+ ⎪⎝⎭.(1)若()f x 为R 上的增函数,求a 的取值范围.(2)证明:()f x 与()g x 的图象关于一条直线对称.(3)若a ≥-,且关于x 的方程()()()e 22xf x f mg x +-=-在[]1,1-内有解,求m 的取值范围.19.(17分)若存在有限个0x ,使得()()00f x f x -=,且()f x 不是偶函数,则称()f x 为“缺陷偶函数”,0x 称为()f x 的偶点.(1)证明:()5h x x x =+为“缺陷偶函数”,且偶点唯一.(2)对任意,x y ∈R ,函数()f x ,()g x 都满足()()()()22f x f y g x g y x y++-=+①若()g x y x=是“缺陷偶函数”,证明:函数()()F x xg x =有2个极值点.②若()32g =1x >时,()()21ln 12g x x >-.参考数据:1ln0.4812+≈ 2.236≈.高三半期考数学试卷参考答案1.C因为{13}A x x =-<≤∣,{}1,2,3,4B =,所以{}1,2,3A B = .2.D 函数41tan 3y x π⎛⎫=- ⎪⎝⎭的最小正周期244T πππ==.3.B若甲的生肖不是马,则甲的生肖未必不属于六畜;若甲的生肖不属于六畜,则甲的生肖一定不是马.故“甲的生肖不是马”是“甲的生肖不属于六畜”的必要不充分条件.4.A因为()()()321210z =-+=--+=+,所以z的虚部为-.5.A 因为5BC AD = ,所以AD BC ,且15DE AD BE BC ==,所以()11116666ED BD AD AB AD AB ==-=- .6.A 依题意可得()1cos 2f x x ϕ⎛⎫=+⎪⎝⎭.因为()y f x =的图象关于点7,03π⎛⎫- ⎪⎝⎭对称,所以()17232k k ππϕπ⎛⎫⨯-+=+∈ ⎪⎝⎭Z ,即()53k k πϕπ=+∈Z ,所以ϕ的最小值为5233πππ-=.7.D因为22111x y+=,所以()2222222222119161691692525249y x x y x y xy x y ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当2222916y x x y=,即274x =,273y =时,等号成立.故221169x y --的最大值为14948-=-.8.B因为sin cos tan 1tan sin cos tan 14αααπαααα--⎛⎫==-⎪++⎝⎭,22tan3tan61tan 3ααα=-,且2sin cos 2tan3sin cos 1tan 3αααααα-=+-,所以()64k k πααπ-=+∈Z ,所以()205k k ππα=--∈Z ,所以α的值可以为20π-.9.AC因为()f x 与()g x 分别为定义在R 上的偶函数、奇函数,所以()()f x f x -=,()()g x g x -=-,所以()()()()h x f x g x h x -=--=-,则()h x 为奇函数,其图象关于原点对称,故选AC .10.ACD取BC 的中点N ,连接AN ,则AN BC ⊥,且AN ==,所以ABC的面积为122⨯⨯=,A 正确.过C 作CH AB ⊥,垂足为H ,设CH 与DG 交于点M ,由等面积法可得1 2AB CH⋅=3CH=.由CM DGCH AB=,得9CH DGCMAB⋅==,则3MH CH CM=-=9-,所以()()2233992S x DG DE DG MH x x x⎛⎫=⋅=⋅=-=--+<⎪⎝⎭3)x<,则()19S=,则() S x在30,2⎛⎫⎪⎝⎭上单调递增,在3,32⎡⎫⎪⎢⎣⎭上单调递减,所以()S x,B错误,C,D均正确.11.BC a b-==A错误.建立平面直角坐标系xOy,不妨假设()6,0a OA==,1,22b OB⎛⎫== ⎪⎪⎝⎭,设(),c OC x y==,则()6,c a x y-=-,1,22c b x y⎛-=--⎝⎭,代入()()3c a c b-⋅-=,整理得221343444x y⎛⎛⎫-+-=⎪⎝⎭⎝⎭,所以点C在以13,44M⎛⎫⎪⎪⎝⎭为圆心,2为半径的圆上.因为该圆经过坐标原点,所以cB正确.因为22133143604444⎛⎛⎫-+-=<⎪⎝⎭⎝⎭,所以点A在圆M内,因为a c AC-=,2AM=,所以a c-的最小值为43312,a c-的最大值为43312+,C正确,D错误.12.1525221515log log8log8222===.13.34因为[]0,x ωπ∈,所以,444x πππωπ⎡⎤-∈--⎢⎣⎦,又14ω>,所以04πωπ->,所以42ππωπ-≤,解得34ω≤,则ω的最大值为34.14.222210,,e e e ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ 令()0f x =,得e x x m =,令()0g x =,得2e xm =.设()e x x h x =,()1exxh x -=',则()h x 在()0,1上单调递增,在()1,+∞上单调递减,所以()()max11e h x h ==.当0x >时,()0h x >,所以结合()h x ,()2exk x =的图象(图略)及()()22122e e h k ==<,得m 的取值范围是222210,,e e e ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭.15.解:(1)因为sin cos sin sin c A B a B C =,所以sin sin cos sin sin sin C A B A B C =,2分因为sin 0A >,sin 0C >,所以cos sin B B =,4分所以tan 1B =.6分又()0,B π∈,所以4B π=.7分(2)因为193sin 242c π⨯=,所以c =,9分所以2222cos 918292b ac ac B =+-=+-⨯=,12分解得3b =.13分16.解:(1)()231f x x=--'2分所以()4481146f =--='.3分因为()4644852f =--=,所以曲线()y f x =在点()()4,4f 处的切线方程为()52464y x -=-,即46132y x =-.6分(2)()231f x x=--'()0,+∞上单调递增.8分因为()10f '=,9分所以当()0,1x ∈时,()0f x '<,()f x 单调递减,当()1,x ∈+∞时,()0f x '>,()f x 单调递增,11分所以()()min ln 14m f x f <==-,13分解得410e m <<,故m 的取值范围为410,e ⎛⎫ ⎪⎝⎭.15分17.解:(1)()2114sin 4sin 12sin cos 22f x x x x x x x ⎛⎫=-⨯-⨯=-+ ⎪ ⎪⎝⎭1分1cos212cos22sin 226xx x x x π-⎛⎫=-⨯+=+=+ ⎪⎝⎭.4分(2)由0,4x π⎡⎤∈⎢⎥⎣⎦,得22,663x πππ⎡⎤+∈⎢⎥⎣⎦.5分当266x ππ+=时,()f x 取得最小值,最小值为2sin 16π=;6分当262x ππ+=时,()f x 取得最大值,最大值为2sin 22π=.7分故()f x 在0,4π⎡⎤⎢⎥⎣⎦上的值域为[]1,2.8分(3)由题意可得()2sin 22sin 22cos26662h x f x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=+=++=+= ⎪ ⎪ ⎪⎢⎝⎭⎝⎭⎝⎭⎣⎦,11分则不等式()0h x ≥即为2cos20x ≥,得()22222k x k k ππππ-+≤≤+∈Z ,13分解得()44k x k k ππππ-+≤≤+∈Z ,即不等式()0h x ≥的解集为(),44k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z .15分18.(1)解:因为()f x 为R 上的增函数,所以()2e e 0x x f x a -=++≥'恒成立,2分因为()f x a a ≥=',3分当且仅当2e e xx-=,即1ln22x =-时,等号成立,4分所以0a ≥,即a ≥-,a 的取值范围为)⎡-+∞⎣.5分(2)证明:因为()2e exxf x ax -=-+,()()()2212e 1e 2e 2e x x f x g x a -⎛⎫+=-+-+ ⎪⎝⎭,所以()222e e 2x x g x a ax --=-+-,7分所以()()()()222ee 22x xg x a x f x ---=-+-=-,9分则()f x 与()g x 的图象关于直线1x =对称.10分(3)解:因为()()()e 22xf x f mg x +-=-,所以由(2)知()()()e 2xf x f m f x +-=,即()()e xf m f x -=.12分由(1)知,当a ≥-时,()f x 为R 上的增函数,所以e xm x -=,即e x m x =-.13分设()()e 11x h x x x =--≤≤,则()()e 111x h x x '=--≤≤,当10x -≤<时,()0h x '<,当01x <≤时,()0h x '>,14分所以()()min 01h x h ==,又()111eh -=+,()()11e 1h h =-+>-,所以()()max 1e 1h x h ==-.16分故m 的取值范围是[]1,e 1-.17分19.证明:(1)由()()h x h x -=,得()55x x x x -+-=+,则()()542210x xx x +=+=,1分解得0x =,所以()h x 只有1个偶点,且偶点为0,所以()5h x x x =+为“缺陷偶函数”,且偶点唯一.3分(2)由题意得()()()()22f x g x x f y g y y +-=-++对,x y ∈R 恒成立,4分所以存在常数a ,使得()()()()22f x g x x f y g y y a +-=-++=.5分令y x =,得()()()()2,2,f x g x x a f x g x x a ⎧+-=⎪⎨-++=⎪⎩解得()223x x a g x -+=.6分①()21333g x x a y xx ==+-,由()()g x g x x x -=-,得2033x ax+=,即()220x a x =-≠,则20a ->,即0a <.7分()()3223x x ax F x xg x -+==,()23223x x aF x -+=',因为4240a ∆=->,所以()0F x '=必有两根1x ,2x (设12x x <),8分当1x x <或2x x >时,()0F x '>,当12x x x <<时,()0F x '<,所以函数()()F x xg x =有2个极值点1x ,2x .9分②若()62323ag +==,则0a =,()23x x g x -=,10分当1x >时,要证()()21ln 12g x x >-,只需证()223ln 12x x x ->-,因为()()223420x x x x ---=-≥,所以234x x x -≥-,所以只需证()2334ln 12x x ->-.12分设函数()()()2334ln 112p x x x x =--->,则()()()()22231631121x x xp x x x x '--=-=>--,当112x <<时,()0p x '<,当12x +>时,()0p x '>,14分所以()min12p x p ⎛+= ⎝⎭,211122⎛++-= ⎝⎭,所以()min 3353153 2.236534ln 0.4810.132522222p x ++⨯-=--≈-⨯=,16分所以()min 0p x >,从而()()2334ln 102p x x x =--->,故当1x >时,()()21ln 12g x x >-.17分。
江苏省镇江市2024-2025学年高三上学期期中质量检测数学试卷(含解析)

镇江市2024~2025学年度第一学期高三期中质量检测数学试卷2024.11注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将答题卡交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则的元素个数为A.1B.2C.3D.42.设复数,则的虚部是A.1B.C.i D.3.等比数列的各项均为正数,若,,则A.588B.448C.896D.2244.已知向量,,则向量在上的投影向量为A.B.C.D.5.已知,函数在上没有零点,则实数的取值范围A.B.C.D.6.已知为第一象限角,且,则A.9B.3C.D.7.设无穷等差数列的公差为,其前项和为.若,则“有最小值”是“”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.在中,角,,的对边分别为,,若,则的最小值为AB.CD.{}1,2,3,4A=(){}2|log12B x x=-≤A B21i izi--=+z1-i-{}na1237a a a++=4322a a a=+789a a a++= a=()1,1b=-a b+=ab11,22⎛⎫- ⎪⎝⎭()2,2-()2,2-11,22⎛⎫-⎪⎝⎭a∈R()()e,0,ln1,0x a xf xx a x⎧-≤⎪=⎨-+->⎪⎩R a()0,+∞()1,+∞[){}1,0+∞(){}1,0+∞θtan tan03⎛⎫++=⎪⎝⎭πθθ1cos21cos2+=-θθ1319{}na d nnS1a<nS0d≥ABC△A B C a b c22BC BC AB=⋅cos A1213二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数,则A .是偶函数B .的最小正周期为C .的最大值为D .在上单调递增10.已知函数的导函数为A .只有两个零点B .C .是的极小值点D .当时,恒成立11.如图,圆锥的底面直径和母线长均为,其轴截面为,为底面半圆弧上一点,且,,,则A .存在,使得B .当时,存在,使得平面C .当,时,四面体D .当时,三、填空题:本题共3小题,每小题5分,共15分.12.镇江的慈寿塔是金山寺的标志性建筑,创建于1400余年前的齐梁时期.某同学为了测量慈寿塔的高,他在山下处测得塔尖点的仰角为,再沿正对塔方向前进20米到达山脚点,测得塔尖点的仰角为,塔底点的仰角为,则慈寿塔高约为________米.,答案保留整数)()cos sin f x x x =⋅()f x ()f x π()f x 12()f x 0,2⎡⎤⎢⎥⎣⎦π()()2(1)44f x x x =--+()f x '()f x ()()4f x f x -'='1x =()f x 0x ≥()0f x ≥SO SAB △C AB 2AC CB =SM SC = λ(01,01)SN SB =<<<<μλμ()0,1∈λBC AM ⊥23=μ()0,1∈λ//AM ONC 13=λ23=μSAMN AN SC ⊥57=μED A D 45︒ED B D 60︒E 30︒ 1.7≈13.已知数列是单调递增数列,其前项和为(,为常数),写出一个有序数对________,使得数列是等差数列.14.定义在上的函数满足是奇函数,则的对称中心为________;若,则数列的通项公式为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)在锐角三角形中,角,,所对的边分别是,,,已知.(1)求的值;(2)若,求的值.16.(15分)已知函数,.(1)求证:直线既是曲线的切线,也是曲线的切线;(2)请在以下三个函数:①;②;③中选择一个函数,记为,使得该函数有最大值,并求的最大值.17.(15分)已知,数列前项和为,且满足;数列满足,.(1)求数列的通项公式;(2)是否存在实数,使得数列是等差数列?如果存在,求出实数的值;如果不存在,请说明理由;(3)求使得不等式成立的的最大值.18.(17分)在四棱锥中,,,平面,,分别为,的中点,.{}n a n 2n S An Bn =+A B (),A B =R ()g x ()212y g x =+-()g x ()*123211111n n a g g g g n n n n n +⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+∈ ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭N {}n a ABC △A B C a b c cos 3cos22A A +=-cos A 23b c =sin C ()21f x x x =+-()e x g x =1y x =+()y f x =()y g x =()()f x g x +()()f x g x ⋅()()f xg x ()yh x =()h x *n ∈N {}n a n n S 21n n S a =-{}n b 12b =112n nb b +=-{}n a λ1n b ⎧⎫⎨⎬-⎩⎭λλ2n n nb a ≥n P ABCD -90ABC ACD ∠=∠=︒30BCA CDA ∠=∠=︒PA ⊥ABCD E F PD PC 1AB =(1)求证:平面平面;(2)若,求点到平面的距离;(3)若二面角.19.(17分)已知函数.(1)当时,讨论的单调性;(2)当时,,求的取值范围;(3)设,证明:.PAC ⊥AEF 2PA =F ACE A PD C --PA ()ln f x ax x x =-1a =()f x 1x >()1f x <-a *n ∈N ()111ln 11nni i n i ==>+>+∑镇江市2024~2025学年度第一学期高三期中质量检测数学试卷答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】C 【解析】,共3个元素,选C .2.【答案】B 【解析】,虚部为,选B .3.【答案】B 【解析】,∴,∴或(舍),选B .4.【答案】D 【解析】,∴在上的投影向量,选D .5.【答案】D 【解析】时,无解,∴或;时,无解,∴则,选D .6.【答案】C 【解析】,∴,,选C .7.【答案】A 【解析】“有最小值”“”,∴“有最小值”是“”的充分不必要条件选A .8.【答案】A 【解析】,∴,∴,∴ ,选A .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.【答案】AC 【解析】为偶函数,A 对.,∴为奇函数,B 错.,C 对.,,在单调递增,单调递减,D 错.10.【答案】ABD 【解析】,或3,在单调递减,单调递{|15}B x x =<≤{}2,3,4A B = 21(1)2122i i i z ii ---====-+1-4322a a a =+22q q =+2q =1-()6678912372448a a a a a a q ++=++=⨯=222282212a b a a b b a b +=+⋅+=+⋅+= 1a b ⋅=a b 2111,222||a b b b b ⋅⎛⎫⋅=⋅=- ⎪⎝⎭0x ≤e x a =0a ≤1a >0x >()ln 1x a +=-0a ≥(){}1,0a ∈+ ∞tan tan 03⎛⎫++= ⎪⎝⎭πθθ3=πθ111cos21211cos2312-+==-+θθn S ⇔0d >n S 0d ≥22BC BC AB =⋅ 22cos a BC AB B =-⋅222222222a c b a ac a c b ac +-=-⋅=--+2222a b c =-22222222211132222cos 222b c b c b c b c a A bc bc bc ⎛⎫+--+ ⎪+-⎝⎭===≥=()f x ()()()()cos sin cos sin |f x x x x x f x +=++=-=-πππ()f x ()11sin cos sin222f x x x x ≤=≤0,2x ⎡⎤∈⎢⎥⎣⎦π()1sin cos sin22f x x x x ==()f x 0,4⎡⎤⎢⎥⎣⎦π,42⎡⎤⎢⎥⎣⎦ππ()()()3130f x x x =--='1x =()f x (),1-∞()1,3增,单调递减,,,∴有且仅有两个零点,A 对.关于对称,B 对.是极大值点,C 错.时,,恒成立,D 对.11.【答案】BCD 【解析】,则与不可能垂直,若,则面,则,则面矛盾,A 错.对于B ,取中点,则,过作交于点,此时为中点,则面平面,∴平面,对.对于D ,如图建系,,,, ,,,,∴,∴,D 对.时,,时,到平面的距离是到平面距离的,其中表示到平面的距离,是到平面距离,,C 对,选BCD .三、填空题:本题共3小题,每小题5分,共15分.12.【答案】31 【解析】如图,,,,设,则,,,,∴.13.【答案】(1,0)【解析】,为等差数列,即可以是.()3,+∞()()14f x f ==极大值()()30f x f ==极小值()f x ()f x '2x =1x =0x ≥()00f =()0f x ≥BC AC ⊥BC AM BC AM ⊥BC ⊥SAC BC SA ⊥BC ⊥SAB SN P //AP ON P //PM CN SC M M SC //APM ONC //AM ONC B ()0,A -()B ()0,0,6S (),66N -μ()6AN =+-μ()C 6)SC =- 0AN SC ⋅=6636360+-+=μμ57=μ23=μ23ASN SAB S S =△△13=λM SAB C SAB 1311213333M SAN SAN SAB V S h S h -='=⋅⋅△△h 'M SAB h C SAB 22122113627939932M SAN ABS SAB S ABC V S h S h --==⋅==⨯⨯⨯⨯=△△45DAC ∠=︒60DBC ∠=︒30EBC ∠=︒20AB =BC x =CE x =DC DC AC =20x =+x =31DE ==1A =0B =n =(),A B ()1,014.【答案】 【解析】关于对称,则∴,则关于对称,(第一空),∴,则.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【解析】(1),∴,而为锐角三角形,,∴.(2),∴,∴,.16.【解析】(1)设与切于,,∴∴切线方程为,令 此时在处的切线方程为,即是的切线 联立,∴,∴在处的切线为∴也是的切线.(2)①中时,,显然无最大值.若选②,,,在上单调递减;上单调递增,上单调递减,时,且,,,∴.若选③, 在上单调递增;上单调递减;上单调递增 时,且,,,∴.17.【解析】(1)①,②,②-①,∴,而,∴∴成首项为1,公比为2的等比数列,∴.(2)假设存在,∴42n a n =+()212y g x =+-()0,0()()2122120g x g x -+-++-=()()12124g x g x -++=()g x ()1,21221111n n a g g g n n n +⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭2121111n n n a g g g n n n +⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭()212444421n n a n +=++⋅⋅⋅+=+共个42n a n =+()2cos 32cos 12A A +-=-26cos cos 10A A +-=()()2cos 13cos 10A A +-=ABC △cos 0A >1cos 3A =()12sin 3sin 2sin 3sin 2sin 3sin 3B C A C C C C C ⎫=⇒+=⇒⋅+=⎪⎪⎭7sin C C =tan C =sin C =1y x =+()e x g x =()00,e x P x ()e x g x '=0e x k =()000e e x x y x x =-+00e 10x x =⇒=()e x g x =0x =1y x =+1y x =+()g x 211y x y x x =+⎧⎪⎨=+-⎪⎩200x x =⇒=()f x 0x =1y x =+1y x =+()f x x →+∞()h x →+∞()h x ()()21e x h x x x =+-()()()()()22121e 2e 21e x x x h x x x x x x x x =-++-=--+=-+-'()h x (),2--∞()2,1-()1,+∞x →-∞()0h x <()0h x →()1e h =e 0>max ()e h x =()21e xx x h x +-=()()()22212e 1e 3e e x x x x x x x x x h x -='-+--=()h x (),0-∞()0,3()3,+∞x →+∞()0h x <()0h x →()01h =10>max ()1h x =21n n S a =-1121n n S a ++=-1122n n n a a a ++⇒=-12n n a a +=1121a a =-110a =≠{}n a 12n n a -=()1111111212n n n n n n nb b b b b b b --=-=---------λλλλλλ为常数,∴ 解得,∴存在使成等差数列,且公差为1.(3)由(2)知,∴ ∴令, ∴在上单调递减,注意到,,∴时,,∴.18.【解析】(1)证明:∵平面,∴,又∵,∴ ,∴平面,又∵,分别为,的中点 ∴,∴平面,∵平面,∴平面平面(2)如图建系∵,,,∴,,,∴,,,,∴,,,,设平面的一个法向量,∴,∴到平面的距离.(3)仿(2)建系,设,∴,,,,设平面和平面的一个法向量分别为,∴,显然二面角平面角为锐角,∴∴,即.()()()()()2221212121n n n n n n n n n b b b b b b b b b ---+-+==⎡⎤⎡⎤------⎣⎦⎣⎦λλλλλλ()121221==--+λλλλ1=λ1=λ11n b ⎧⎫⎨⎬-⎩⎭()11111n n n b =+-⋅=-11n b n =+122112121212n n n n n n n ---+⎛⎫+≥⇒+≥⇒≥ ⎪⎝⎭212n n n c -+=1121210222n n n n n n n n c c +---++--=-=<{}n c *n ∈N 4514c =>5618c =<5n ≥51n c c ≤<max 4n =PA ⊥ABCD PA CD ⊥90ACD ∠=︒CD AC ⊥PA AC A = CD ⊥PAC E F PD PC //EF CD EF ⊥PAC EF ⊂AEF AEF ⊥APC 1AB =30BCA CDA ∠=∠=︒90ABC ACD ∠=∠=︒2AC =BC =4AD =CD =()0,2,0A ()0,0,0C ()D ()0,2,2P )E()0,1,1F ()0,2,0CA =)CE =ACE (,,)n x y z = (201,0,0y n y z =⎧⇒=++= ()0,1,1CF = F ACE CF n d n⋅==PA m =(0,2,)P m (0,0,)AP m =()2,PD m =-- ()CD = APD PDC ()1111,,n x y z =()2222,,n x y z = ()11111020mz n y mz =⎧⎪⇒=⎨--=⎪⎩ ()22222200,,20z mz n m ⎧--=⎪⇒=-⎨=⎪⎩A PD C --1212cos n n n n ⋅=== θ2m =2PA =19.【解析】(1)时,,,令当时,,单调递减;当时,,单调递增.(2)对恒成立对恒成立而,,当时,,∴.(3)先证右边,证只需证:,由(1)知当时,(当且仅当时取“=”)∴,令,∴此时右边得证再证左边:易知时,,∴∴,∴,左边得证!综上:不等式得证!1a =()ln f x x x x =-()lnf x x '=()01f x x ='⇒=01x <<()0f x '<()f x 1x >()0f x '>()f x ()1f x <-1x ∀>1ln 1ln x ax x x a x x -⇒-<-⇒<1x ∀>10ln x x x->1x >x →+∞10ln x x x-→0a ≤⇔()()()11ln 1ln ln ln 1ln 2ln11ni n n n n i =<+-+--+⋅⋅⋅+-+∑()11ln 1ln ln1n n n n n +<+-=+1a =()ln 1f x x x x =-≥-1x =1ln 1x x ≥-11n x n +=>11ln 111n n n n n +>-=++()()11ln2ln1ln3ln2ln 1ln ln 11ni n n n i =<-+-+⋅⋅⋅++-=++∑1x >11ln 2x x x ⎛⎫<- ⎪⎝⎭1122<=1ln n n +<()ln 1ln n n >+-()()1ln2ln1ln3ln2ln 1ln ln 1ni n n n =>-+-+⋅⋅⋅++-=+。
北京市朝阳区2024-2025学年高三上学期期中检测数学试卷含答案

【解析】
【分析】根据函数的奇偶性以及单调性,结合基本初等函数的性质,即可逐一判断.
【详解】对于 A,函数 y 2x 为指数函数,不具备奇偶性,故 A 错误;
对于 B,函数 y ln | x | 的定义域为{x | x 0},
由于 f (x) ln | x | ln | x | f (x) 为偶函数,故 B 错误;
所以 A B x 1 x 2 .
故选:A.
2. 若函数 f (x) x 4 (x 0) 在 x a 处取得最小值,则 a ( ) x
A. 1
B. 2
C. 2
D. 4
【答案】C
【解析】
【分析】因为 x 0 ,所以用基本不等式求得最小值,并找到最小值点为 x 2 ,得出结果 a 2 . 【详解】∵ x 0 ,∴ 4 0 ,
对于 C,函数 y tan x ,由正切函数的性质可知 y tan x 为奇函数,
且在
π 2
kπ,
π 2
kπ
,
k
Z
单调递增,故
C
错误;
对于 D,函数 y x 2 的定义域为{x | x 0}, x
由
f
(x)
x
2 x
x
2 x
(x
2) x
f
(x)
,故函数
y
x
2 x
为奇函数,
因为
f (x) 1
然后得出 u 的值.
【详解】如图,棱 OA , OB , OC 两两垂直, 可以 O 为坐标原点, AO 为 x 轴, OB 为 y 轴, OC 为 z 轴,建立空间直角坐标系.
b2 c2 1
设 P a,b, c ,由题意可得: a2 c2 4 ,∴ a2 b2 c2 9 ,
湖北省宜昌市协作体2024-2025学年高三上学期期中考试 数学含答案

湖北省宜昌市协作体2024-2025学年高三上学期期中考试数学试题(答案在最后)考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:集合与常用逻辑用语、不等式,函数,三角函数,平面向量,复数,解三角形,数列.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“2,420x x x ∃∈++>R ”的否定为A.2,420x x x ∀∈++>R B.2,420x x x ∀∈++R C.2,420x x x ∃∈++R D.2,420x x x ∃∈++<R2.设集合{{2}M x y N x x =∈==Z ∣∣ ,则M N ⋂=A.{0,1}B.{1,1}- C.{1,0,1}- D.{1,0,1,2}-3.已知复数z 满足(1i)5i z z +=-,则|1|z +=B.2C. D.4.已知x ,y 为实数,则“0xy >”是“||||||x y x y +=+”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件5.记n S 为等差数列{}n a 的前n 项和,若45624,48a a S +==,则17S =A.510B.408C.62D.166.荀子《劝学》:“不积跬步,无以至千里;不积小流,无以成江海.”这告诉我们中学生要不断学习才能有巨大的进步.假设学生甲和学生乙刚开始的“日学习能力值”相同,学生甲的“日学习能力值”都在前一天的基础上提高1%,而学生乙的“日学习能力值”与前一天相同,那么当学生甲的“日学习能力值”是学生乙的2倍时,大约经过了(参考数据:lg101 2.0043,lg20.3010≈≈)A.60天B.65天C.70天D.75天7.已知n S 为数列{}n a 的前n 项和,且22n n S a =-,若22log 3n n a a λ+ 对任意正整数n 恒成立,则实数λ的最小值为A.4B.72 C.3 D.528.在平行四边形ABCD 中,1,2,AB AD AB AD ==⊥,点P 为平行四边形ABCD 所在平面内一点,且34PB PC ⋅=- ,则AP AC ⋅ 的取值范围是A.535,44⎣⎦B.553,322⎡-+⎢⎣⎦C.[3-+D.535,22⎣⎦二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知a ,b ,m 都是负数,且a b <,则A.11a b< B.b a a b< C.a m b m+>+ D.b m ba m a+>+10.已知函数21()2sin 22f x x x =-+,则下列说法正确的是A.函数()f x 的最小正周期为πB.函数()f x 的图象的一条对称轴方程为π3x =C.函数()f x 的图象可由sin 2y x =的图象向左平移π12个单位长度得到D.函数()f x 在区间π0,3⎛⎫⎪⎝⎭上单调递增11.已知函数()f x 及其导函数()f x '的定义域均为R ,若(31)f x +是偶函数,且(2)(2)f x f x +--=x ,令()()g x f x '=,则下列说法正确的是A.函数1(2)2y x f x =-+是奇函数 B.(1)0g =C.函数()g x 的图象关于点(3,1)对称D.26i 1325(i)2g ==∑三、填空题:本题共3小题,每小题5分,共15分.12.在ABC 中,已知3,DC BD P = 为线段AD 的中点,若BP BA BC λμ=+ ,则11λμ+=_________.13.已知函数π()2sin 216f x x ⎛⎫=+- ⎪⎝⎭在[0,m ]上有且仅有3个零点,则m 的最小值为_________.14.设函数31()221x f x =-+,正实数a ,b 满足()(1)2f a f b +-=,则2212b a a b +++的最小值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知向量(1,3),(,2)a b x =-= ,且(2)a b a -⊥.(1)求||a b +;(2)求a b - 与a的夹角.16.(本小题满分15分)已知ππ3π,sin 445αα⎛⎫<<+= ⎪⎝⎭.(1)求cos α的值;(2)若ππ50,cos 4413ββ⎛⎫<<+= ⎪⎝⎭,求cos()αβ+的值.17.(本小题满分15分)已知函数11()33xx f x a -=⋅+是定义域为R 的偶函数.(1)求a 的值;(2)若2()99()1xxg x mf x m -=+++-,求函数()g x 的最小值.18.(本小题满分17分)已知ABC 中,角A B C ,,所对的边分别为a ,b ,c ,其中2,sin sin 2sin a B C A =+=.(1)若4cos 5A =,求ABC 的面积;(2)若ABC 是锐角三角形,D 为BC 的中点,求AD 长的取值范围.19.(本小题满分17分)设任意一个无穷数列{}n a 的前n 项之积为n T ,若{}*,n n n T a ∀∈∈N ,则称{}n a 是T 数列.(1)若{}n a 是首项为-2,公差为1的等差数列,请判断{}n a 是否为T 数列?并说明理由;(2)证明:若{}n a 的通项公式为2nn a n =⋅,则{}n a 不是T 数列;(3)设{}n a 是无穷等比数列,其首项15a =,公比为(0)q q >,若{}n a 是T 数列,求q 的值.宜昌市协作体高三期中考试⋅数学参考答案、提示及评分细则1.B 存在量词命题改写为否定形式的格式为存在量词改为全称量词,结论改为原结论的反面,故原命题的否定为x ∀∈2,420x x ++R .故选B.2.C因为{{1,0,1}M x y =∈==-Z ∣,所以{1,0,1}M N ⋂=-.故选C.3.D由(1i)5i z z +=-,得(2i)5i z +=,所以5i 5i (2i)12i 2i 5z ⋅-===++,所以|1||(12i)1|z +=++=.故选D.4.A 当0xy >时,x ,y 同号,所以||||||x y x y +=+,所以“0xy >”是“||||||x y x y +=+”的充分条件;若0x =时,||||||x y x y +=+,此时0xy =,所以“0xy >”不是“||||||x y x y +=+”的必要条件,所以“0xy >”是“||||||x y x y +=+”的充分不必要条件.故选A.5.A 设等差数列{}n a 的公差为d ,则451612724,61548,a a a d S a d +=+=⎧⎨=+=⎩解得12,4,a d =-⎧⎨=⎩所以9117824830,a a d S =+=-+⨯==()117917175102a a a +==.故选A.6.C 不妨设经过x 天后,学生甲的“学习能力值”是学生乙的2倍,则(11%)2x+=,所以1.01lg 2log 2lg1.01x ===lg 20.301070lg101lg100 2.00432≈=--.故选C.7.D由22n n S a =-,令1n =,解得12a =,当2n 时,由1122,22n n n n S a S a --=-⎧⎨=-⎩得1122n n n n n a S S a a --=-=-,即12(n n a n a -= 2),所以数列{}n a 是以2为首项,2为公比的等比数列,所以22.2log 3n n n n a a a λ=+ ,即232n n λ+恒成立,令nc =232n n +,则()11max 12,02n n n n nc c c λ+++-=-< ,所以1n n c c +<,即数列{}n c 单调递减,故()1max 52n c c ==,所以52λ .故选D.8.B 以A 为坐标原点,AB ,AD 所在的直线分别为x ,y 轴,建立平面直角坐标系,如图所示.设(,)P x y ,则(0,0)A ,(1,0),(1,2)B C ,所以(1,)(1,2)PB PC x y x y ⋅=--⋅-- 23(1)(2)4x y y =-+-=-,所以22(1)(1)x y -+-14=,记111cos ,1sin 22x y θθ-=-=,所以11cos 1,sin 122x y θθ=+=+,所以AP AC ⋅= 11cos 1,sin 1(1,2)22θθ⎛⎫++⋅ ⎪⎝⎭1cos 1sin 22θθ=+++sin()32θϕ=++,其中sin 5ϕ=,25cos 5ϕ=,又1sin()1θϕ-+,所以322AP AC ⎡⋅∈-+⎢⎥⎣⎦ ,即AP AC ⋅ 的取值范围是55322⎡-+⎢⎥⎣⎦.故选B.9.BD 由0a b <<,得11a b >,故A 错误;由0a b <<,得22a b >,不等式两边同时除以ab ,可得22a b ab ab>,即b aa b<,故B 正确;由不等式的可加性可知,由a b <,可得a m b m +<+,故C 错误;()()()0()()()b m b a b m b a m m a b a m a a a m a a m a a m +++--=-=>++++,所以b m b a m a+>+,故D 正确.故选BD.10.AC231()sin 2sin 22f x x x =-+31cos21sin 2222x x -=-+31sin 2cos222x x =+πsin 26x ⎛⎫=+ ⎪⎝⎭,函数()f x 的最小正周期为2ππ2T ==,故A 正确;由ππ2π()62x k k +=+∈Z ,得ππ()62k x k =+∈Z ,故B 错误;由sin 2y x =的图象向左平移π12个单位长度,得ππsin 2sin 2126y x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,故C 正确;因为πππ5π0,,2,3666x x ⎛⎫⎛⎫∈+∈ ⎪ ⎪⎝⎭⎝⎭,函数sin y t =在π5π,66⎛⎫ ⎪⎝⎭上不单调,故D 错误.故选AC.11.BCD因为(2)(2)f x f x x +--=,所以11(2)(2)22x f x x f x ---=-+,所以函数1(2)2y x f x =-+是偶函数,故A 错误;因为(31)y f x =+为偶函数,所以(31)(31)f x f x +=-+,即(1)(1)f x f x +=-,所以(1)f x '+=(1)f x '--,即(1)(1)g x g x +=--,令0x =,得(1)(1)g g =-,所以(1)0g =,故B 正确;因为(2)(2)f x f x +--x =,所以(2)(2)1f x f x ''++-=,即(2)(2)1g x g x ++-=,又(1)(1)g x g x +=--,所以()(2)g x g x =--,所以(2)()1g x g x +=+,所以(4)1(2)1g x g x +-+-=,即(4)(2)2g x g x ++-=,所以函数()g x 的图象关于点(3,1)对称,故C 正确;因为(2)(2)1g x g x ++-=,令0x =,得(2)(2)2(2)1g g g +==,所以1(2)2g =,又(2)()1g x g x +=+,所以3(3)(1)11,(4)(2)1,2g g g g =+==+= ,所以2611261325()01222i g i =-=++++=∑ ,故D 正确.故选BCD.12.10由3DC BD =,得14BD BC = ,又P 为线段AD 的中点,所以1()2BP BA BD =+ 111242BA BC BA ⎛⎫=+=+ ⎪⎝⎭ 18BC BA BC λμ=+ ,即11,28λμ==,所以112810λμ+=+=.13.π由[0,]x m ∈,得πππ2,2666x m ⎡⎤+∈+⎢⎥⎣⎦,因为π()2sin 216f x x ⎛⎫=+- ⎪⎝⎭在区间[0,m ]上有且仅有3个零点,即π1sin 262x ⎛⎫+= ⎪⎝⎭在区间[0,m ]上有且仅有3个解.结合sin y x =与12y =的图象,知13ππ17π2666m +< ,解得πm 4π3<,即m 的最小值为π.14.14根据已知得()()2f x f x -+=,所以函数()f x 的图象关于点(0,1)对称,易知()f x 在R 上为增函数,所以由()f a (1)2f b +-=得,1a b =-,所以1a b +=,所以(1)(2)4a b +++=,所以221[(1)(2)]124b a a b a b +=+++++2212b a a b ⎛⎫+= ⎪++⎝⎭22221(2)(1)412b b a a a b a b ⎡⎤+++++⎢⎥++⎣⎦()2221112()444a ab b a b ++=+= ,当且仅当32,55a b ==时取等号.15.解:(1)因为向量(1,3),(,2)a b x =-= ,所以2(12,1)a b x -=---,由(2)a b a -⊥ 得1230x +-=,解得1x =,所以(1,2)b =.……………………………………3分又(0,5)a b +=,所以||5a b +== .………………………………………………………6分(2)设向量a b - 与向量a的夹角为θ,因为(1,3),(2,1)a a b =--=- ,所以()cos 2||||a b a a b a θ-⋅===-⋅ .…………………………………………………………10分又0180θ︒︒ ,所以45θ︒=,即向量a b - 与向量a 的夹角是45︒.……………………………………………………………………13分16.解:(1)因为ππ4α<<,所以ππ5π,424α⎛⎫+∈ ⎪⎝⎭,又π3sin 45α⎛⎫+=⎪⎝⎭,所以π4cos 45α⎛⎫+=- ⎪⎝⎭.…………………………………………………………3分所以ππππππcos cos cos cos sin sin 44444410αααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.………………6分(2)由(1),得sin 10α==,………………………………………………………8分又π04β<<,所以πππ,442β⎛⎫+∈ ⎪⎝⎭,又π5cos 413β⎛⎫+= ⎪⎝⎭,所以π12sin 413β⎛⎫+= ⎪⎝⎭,………10分所以ππππππcos cos cos cos sin sin 44444426ββββ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, (12)分sin 26β=.…………………………………………………………………………13分所以2172727233cos()cos cos sin sin 1026102665αβαβαβ⎛+=-=-⨯-⨯- ⎝⎭.…………15分17.解:(1)由偶函数定义知()()f x f x -=,即1133333333xx x x x x a a a -----⋅+=⋅+⋅=⋅+⋅,所以()(3)330x xa ---=对x ∀∈R 成立,所以3a =.………………………………………………6分(2)由题意知222211()99()1333313xxx x x x g x mf x m m m ---⎛⎫=+++-=++⋅++- ⎪⎝⎭,令33,2xxu u -=+ ,所以()222233332xx x x u --=+=++,所以222332x x u -+=-,…………8分所以2222()23133,2y g x u mu m u mu m u ==-++-=++- .……………………………………10分当322m -,即43m - 时,2233y u mu m =++-在[2,)+∞上单调递增,所以222min 232361y m m m m =+⨯+-=++,即2min ()61g x m m =++;………………………12分当322m ->,即43m <-时,2233y u mu m =++-在32,2m ⎛⎫- ⎪⎝⎭上单调递减,在3,2m ⎛⎫-+∞ ⎪⎝⎭上单调递增,所以222min335333224m m y m m m ⎛⎫⎛⎫=-+⨯-+-=-- ⎪ ⎝⎭⎝⎭,即2min 5()34g x m =--.……………14分综上,2min2543,,43()461,3m m g x m m m ⎧--<-⎪⎪=⎨⎪++-⎪⎩…………………………………………………………………15分18.解:根据正弦定理由sin sin 2sin B C A +=,得24b c a +==.………………………………………1分(1)由余弦定理得22222cos ()22cos a b c bc A b c bc bc A =+-=+--,即841625bc bc =--,所以103bc =,…………………………………………………………………4分又3sin 5A ==,…………………………………………………………………………………5分所以ABC 的面积为1sin 12S bc A ==.……………………………………………………………………7分(2)由4b c +=,得4c b =-,因为ABC 是锐角三角形,所以2222222222(4)4,4(4)4,4(4),b c b b c b b b c b ⎧+=+->⎪+=-+>⎨⎪+>=-⎩解得3252b <<,…………………………………………………………9分故22(4)4(2)4bc b b b b b =-=-+=--+,所以1544bc < .…………………………………………12分因为1()2AD AB AC =+ ,所以||AD ====……………………………………………………15分13||2AD < ,即AD长的取值范围为2⎪⎣⎭.…………………………………………17分19.(1)解:{}n a 是T 数列.…………………………………………………………………………………1分理由:因为{}{2,1,0,1,2,3,}n a =-- ,所以{}{}11212,2n n T a a T a a a =∈==∈,当3n时,{}0n n T a =∈,所以{}n a 是T 数列.…………………………………………………………2分(2)证明:假设{}n a 是T 数列,则对任意正整数,n n T 总是{}n a 中的某一项,即对任意正整数n ,存在正整数m 满足:(1)2!22n n m n m +⋅=⋅,显然1n =时,存在1m =,满足(1)2!22n n m n m +⋅=⋅,……………………………………………………4分取2n =,得3222mm ⨯=⋅,所以4m ,可以验证:当1,2,3,4m =时,3222mm ⨯=⋅都不成立,故{}n a 不是T 数列.…………………………………………………………………………………………6分(3)解:已知{}n a 是等比数列,其首项15a =,公比0q >,所以()11*15n n n a a q q n --=⋅=∈N ,所以(1)12(1)21255n n nn nn n T a a a qq-+++-=== ,由题意知对任意正整数n ,总存在正整数m ,使得n m T a =,即对任意正整数n ,总存在正整数m ,使得(1)1255n n nm q q --=,即对任意正整数n ,总存在正整数m ,使得(1)(1)125n n m n q----=,………………………………………8分①令()*(1)(1)(1)2n n m k n k ---=--∈N ,得m ∈Z ,且2(21)12n k n m k -+=++,因为222*2121(21),22k k n k n n n ++⎛⎫⎛⎫-+=--∈ ⎪ ⎝⎭⎝⎭N ,所以当n k =时,2(21)n k n -+取到最小值2(21)k k k -+,所以222(21)(21)2111222n k n k k k k k m k k -+-+-++=++++= ,所以1k ,又*k ∈N ,所以1k =,所以(1)15n n q ---=,即15q =;…………………………………………………12分②令()*(1)(1)(1)2n n m k n k ---=-∈N ,得m ∈Z ,且22(21)1(21)11122n k n k m k k +-+-=+-+-= ,所以15k q =,……………………………16分综上,()1*5kq k =∈N 或15.…………………………………………………………………………17分。
黑龙江省哈尔滨市2024-2025学年高三上学期期中考试 数学含答案

哈尔滨市2024—2025学年度高三上学期期中考试数学学科试卷(答案在最后)满分150分,考试时间120分钟一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合35,122M x x N x x ⎧⎫⎧⎫=>-=∈-<<⎨⎬⎨⎬⎩⎭⎩⎭Z ,则M N = ()A.312x x ⎧⎫-<<⎨⎬⎩⎭B.{}2,1,0-- C.{}1,0- D.{}0,12.若复数z 满足2025i 2i z =-,则z 的实部与虚部之和为()A.12i-+ B.12i-- C.1D.3-3.已知等差数列{}n a 的前6项和为60,且12315a a a ++=,则5a =()A.5B.10C.15D.204.在平面直角坐标系中,若α∠的终边经过点()2,1P ,则πcos 4α⎛⎫+ ⎪⎝⎭的值为()A.31010-B.10-C.1010D.105.如图,四边形O A C B ''''表示水平放置的四边形OACB 根据斜二测画法得到的直观图,2O A ''=,4B C ''=,O B ''=//O A B C '''',则AC =()A.B. C.6D.6.若曲线e x y a =+的一条切线方程是1y x =-,则a =()A.2- B.1C.1- D.e7.已知圆锥的侧面展开图是一个半径为43,面积为4π3的扇形,则该圆锥的外接球的表面积为()A.256π63B.4πC.9π2D.9π8.在学习完“错位相减法”后,善于观察的同学发现对于“等差×等比数列”此类数列求和,也可以使用“裂项相消法”求解.例如()()()112122nnn n a n n n +=+⋅=-+⋅--⋅,故数列{}n a 的前n 项和()()()()()1223112302121222122n n n n S a a a a n n +=++++=⨯--⨯+-⨯--⨯++-+⋅--⋅ 12n n +=⋅.记数列2{}2n n 的前n 项和为n T ,利用上述方法求306T -=()A.305132 B.305132-C.295132 D.295132-二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知平面向量1e ,2e 的夹角为π3,且121e e == ,若122a e e =- ,12b e e =+ ,则下列结论正确的是()A.a b⊥B.a与b 可以作为平面内向量的一组基底C.a =D.a在b 上的投影向量为12b- 10.在ABC V 中,内角,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 4:5:6A B C =,D 为线段AC 上一点,则下列判断正确的是()A.ABC V 为钝角三角形B.ABC V 的最大内角是最小内角的2倍C.若D 为AC 中点,则:BD AC =D .若ABD CBD ∠=∠,则:5BD AC =11.设数列的前n 项和为n S ,若nn S b n=,则称数列是数列的“均值数列”.已知数列是数列的“均值数列”,且21232482nn b b b b n n ++++=+ ,则下列结论正确的是()A.72364a =-B.设数列的前n 项积为n T ,则n T 有最大值,无最小值C.数列{}n S 中没有最大项D.若对任意*n ∈N ,2504n m m S --≥成立,则1m ≤-或94m ≥三、填空题:本题共3小题,每小题5分,共15分.12.若3sin 5α=,且α为第二象限角,则sin 2α=___________.13.已知函数2()()(2)f x x a x x =--在x a =处取得极大值,则a =_________.14.已知数列满足12,2,n n n a n a a n +⎧=⎨+⎩为奇数为偶数,10a =,则10a =______;设数列的前n 项和为n S ,则2024S =______.(第二个空结果用指数幂表示)四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()21cos sin cos 2f x x x x =+-.(1)求()f x 的最小正周期;(2)将()f x 的图象向左平移π4个单位长度,得到函数()y g x =的图象,求不等式()0g x 的解集.16.数列{}n a 满足1111,202n n n n a a a a a ++=+-=.(1)求数列{}n a 通项公式.(2)设()cos 1π2n nn b a +=+,求数列{}n b 的前n 项和n S .17.在ABC V 中,角,,A B C 的对边分别是,,a b c ,已知2cos ,3cos b c Ca a A-==.(1)求角A ;(2)若点D 在边AC 上,且1233BD BA BC =+,求BCD △面积的最大值.18.南宋的数学家杨辉“善于把已知形状、大小的几何图形的求面积,体积的连续量问题转化为求离散变量的垛积问题”.在他的专著《详解九章算法·商功》中,杨辉将堆垛与相应立体图形作类比,推导出了三角垛、方垛、刍薨垛、刍童垛等的公式.如图,“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球……第1n +层球数是第n 层球数与1n +的和,设各层球数构成一个数列.(1)求数列的通项公式;(2)证明:当0x >时,()ln 11x x x+>+(3)若数列满足2ln(2)2ln n n n b a n=-,对于*n ∈N ,证明:11232n n b b b b n +++++<⨯ .19.定义:如果函数()f x 在定义域内,存在极大值()1f x 和极小值()2f x ,且存在一个常数k ,使()()()1212f x f x k x x -=-成立,则称函数()f x 为极值可差比函数,常数k 称为该函数的极值差比系数.已知函数()1ln f x x a x x=--.(1)当52a =时,判断()f x 是否为极值可差比函数,若是求极值差比系数,若不是说明理由;(2)是否存在a 使()f x 的极值差比系数为2a -?若存在,求出a 的值;若不存在,请说明理由;(3)若522a ≤≤,求()f x 的极值差比系数的取值范围.哈尔滨市2024—2025学年度高三上学期期中考试数学学科试卷满分150分,考试时间120分钟一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】C【2题答案】【答案】D【3题答案】【答案】C【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】A【8题答案】【答案】D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BD【10题答案】【答案】BCD【11题答案】【答案】AD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】2425-##0.96-【13题答案】【答案】0【14题答案】【答案】①.60②.()1013322026-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)π(2)3πππ,π,Z 88k k k ⎡⎤-++∈⎢⎥⎣⎦【16题答案】【答案】(1)12n a n=(2)31,,n n n S n n +⎧=⎨⎩为奇数为偶数【17题答案】【答案】(1)π3(2)334【18题答案】【答案】(1)()12n n n a +=(2)证明见解析(3)证明见解析【19题答案】【答案】(1)()f x 是极值可差比函数,102ln 23k =-;(2)不存在,理由见解析;(3)102ln 2,23ln 23⎡⎤--⎢⎥⎣⎦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴ ≥
当且仅当 ,即 时取等号. ---------------------10分
∵ ,∴ 时取等号.
即 ,解得 或 .当 或 时, 取最小值4. ---------12分
19.(本小题满分12分)
解:(Ⅰ) =
=
= ---------------------4分
的最小正周期为 ,故 --------------------6分
(Ⅱ)由(Ⅰ)知:
在 的图象上任取一点 ,它关于 的对称点 .
由题设条件,点 在 的图象上,从而
=
= -------------------8分
当 时, ,
因此当 时, 在区间 上取得最小值为:
---------------------12分
(Ⅲபைடு நூலகம்求证: .
青岛市高三教学质量检测
高中数学(理科)答案.11
一、选择题:本大题共12小题.每小题5分,共60分
BCCDB BCDDD BA
二、填空题:本大题共4小题,每小题4分,共16分.
13. ; 14. ; 15. 或7; 16.
三、解答题:本大题共6小题,共74分.
17.(本小题满分12分)
A.①②B.②③C.①③D.③④
4.设 均为非零实数,不等式 和 的解集分别为集合 和 ,那么“ ”是“ ”
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件
5.函数 的值域是
A. B. C. D.
6.函数 在闭区间 上的最大值、最小值分别是
A. B. C. D.
7.设 ,则 的值为
三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤.
17.(本小题满分12分)
在 中, .
(Ⅰ)求 的值;
(Ⅱ)求 的值.
18.(本小题满分12分)
已知 ,若方程 在 上有两个不相等的实数根.
(Ⅰ)确定 的值;
(Ⅱ)求 的最小值及对应的 值.
19.(本小题满分12分)
由题意知:对于任意的 , 恒成立,
所以, ,∴ -------------------10分
(Ⅲ)令 此时 ,所以 ,
由(Ⅰ)知 在 上单调递增,∴当 时 ,即 ,∴ 对一切 成立,-----------------12分
∵ ,则有 ,∴
…………………14分
解:(Ⅰ)在 中,
………………2分
………………4分
根据正弦定理,
于是 = ………………6分
(Ⅱ)在 中,根据余弦定理,得 …8分
于是
从而
……………10分
所以 ……………12分
18.(本小题满分12分)
解:(Ⅰ)设
由题设有 -------------4分
,又 ∴ --------------------6分
A. B. C. D.
8.已知 ,则 的值为
A. B. C. D.
9.设 ,则以下不等式中不一定成立的是
A. B.
C. D.
10.函数 的图象如图,其中 、 为常数,则下列结论正确的是
A. B.
C. D.
11.某纯净水制造厂在净化水过程中,每增加一次过滤可减少水中杂质 ,要使水中杂质减少到原来的 以下,则至少需过滤的次数为(参考数据 )
(Ⅰ)在建立加工企业后,要使从事传统农业的所有农民的年总收入不低于加工企业建立前的农民的年总收入,试求 的取值范围;
(Ⅱ)在(Ⅰ)的条件下,当地政府应该如何引导农民(即 多大时),能使这 万农民的人均年收入达到最大.
22.(本小题满分14分)
已知函数 .
(Ⅰ)求函数 的单调区间;
(Ⅱ)若函数 的图象在点 处的切线的倾斜角为 ,对于任意的 ,函数 在区间 上总不是单调函数,求 的取值范围;
22.(本小题满分14分)
(Ⅰ) --------------------2分
当 时, 的单调增区间为 ,减区间为 ;
当 时, 的单调增区间为 ,减区间为 ;
当 时, 不是单调函数--------------------4分
(Ⅱ) 得 ,
∴ ,∴ -------------------6分
∵ 在区间 上总不是单调函数,且 ∴ ----------8分
设函数 ,若 的最小正周期为 。
(Ⅰ)求 的值;
(Ⅱ)若函数 与 的图象关于直线 对称,求当 时 的最小值.
20.(本小题满分12分)
已知数列 的前 项和 与通项 满足 .
(Ⅰ)求数列 的通项公式;
(Ⅱ)求证: ;
(Ⅲ)设函数 , ,求 .
21.(本小题满分12分)
据调查,某地区 万从事传统农业的农民,人均年收入 元,为了增加农民的收入,当地政府积极引进资金,建立各种加工企业,对当地的农产品进行深加工,同时吸收当地部分农民进入加工企业工作,据估计,如果有 万人进企业工作,那么剩下从事传统农业的农民的人均年收入有望提高 ,而进入企业工作的农民的人均年收入为 元 .
青岛市高三教学质量检测
高中数学(理科).11
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.
注意事项:
1.答卷前,考生务必用2B铅笔和0.5毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上.
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.
3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带。不按以上要求作答的答案无效.
第Ⅰ卷(选择题共60分)
一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
∵
∴ -----12分
21.(本小题满分12分)
解:(I)由题意得 ……………3分
即
解得
又∵ ,∴ ……………………………………………………5分
(II)设这300万农民的人均年收入为 元,则
……………………8分
………………………………10分
所以函数 在 上是增函数.
∴当 时,
万元…………………………………12分
1.若全集 ,集合 , ,则 =
A. B. C. D.
2.已知 且 ,则 是
A.第一象限角B.第二象限角C.第三象限角D.第四象限角
3.有下列四个命题
①“若 ,则 互为相反数”的逆命题;
②“全等三角形的面积相等”的否命题;
③“若 ,则 有实根”的逆否命题;
④“不等边三角形的三个内角相等”的逆命题.
其中真命题为
A. B. C. D.
12.数列 满足 , ( ),则 的前 项和为
A. B. C. D.
网
第Ⅱ卷(非选择题共90分)
二、填空:本大题共4小题,每小题4分,共16分.
13.已知 , ,则 ;
14. ;
15.设 是各项均不为零的等差数列 的前 项和,且 ,则 的值为;
16.已知函数 ,则不等式 的解集是____________.
20.(本小题满分12分)
解:(Ⅰ)当 时
,
∴ ---------------------2分
由 得
∴数列 是首项 、公比为 的等比数列,∴ ---4分
(Ⅱ)由 得 --------------------5分
,∴
∴ -------------------------8分
(Ⅲ)
=
= -------------------10分