人教版七年级数学下册培优

合集下载

七年级数学下册培优辅导讲义(人教版)

七年级数学下册培优辅导讲义(人教版)

1第12讲 与相交有关概念及平行线的判定考点·方法·破译1.了解在平面内,两条直线的两种位置关系:相交与平行.2.掌握对顶角、邻补角、垂直、平行、内错角、中旁内角的定义,并能用图形或几何符号表示它们.3.掌握直线平行的条件,并能根据直线平行的条件说明两条直线的位置关系.经典·考题·赏析【例1】如图,三条直线AB 、CD 、EF 相交于点O ,一共构成哪几对对顶角?一共构成哪几对邻补角? 【解法指导】⑴对顶角和邻补角是两条直线所形成的图角.⑵对顶角:有一个公共顶点,并且一个角的两边是另一个角的两边的反向延长线.⑶邻补角:两个角有一条公共边,另一边互为反向延长线. 有6对对顶角. 12对邻补角.【变式题组】01.如右图所示,直线AB 、CD 、EF 相交于P 、Q 、R ,则:⑴∠ARC 的对顶角是 . 邻补角是 .⑵中有几对对顶角,几对邻补角? 02.当两条直线相交于一点时,共有2对对顶角; 当三条直线相交于一点时,共有6对对顶角; 当四条直线相交于一点时,共有12对对顶角. 问:当有100条直线相交于一点时共有 对顶角.【例2】如图所示,点O 是直线AB 上一点,OE 、OF 分别平分∠BOC 、 ∠AOC .⑴求∠EOF 的度数;⑵写出∠BOE 的余角及补角.【解法指导】解这类求角大小的问题,要根据所涉及的角的定义,以及各角的数量关系,把它们转化为代数式从而求解;【解】⑴∵OE 、OF 平分∠BOC 、∠AOC ∴∠EOC =21∠BOC ,∠FOC =21∠AOC ∴∠EOF =∠EOC +∠FOC =21∠BOC +21∠AOC =()AOC BOC ∠+∠21又∵∠BOC +∠AOC =180° ∴∠EOF =21×180°=90° ⑵∠BOE 的余角是:∠COF 、∠AOF ;∠BOE 的补角是:∠AOE .【变式题组】01.如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,且∠EOC =100°,则∠BOD 的度数是( )A .20°B . 40°C .50°D .80°02.(杭州)已知∠1=∠2=∠3=62°,则∠4= .【例3】如图,直线l 1、l 2相交于点O ,A 、B 分别是l 1、l 2上的点,试用三角尺完成下列作图: ⑴经过点A 画直线l 2的垂线. ⑵画出表示点B 到直线l 1的垂线段.【解法指导】垂线是一条直线,垂线段是一条线段.【变式题组】 01.P 为直线l 外一点,A 、B 、C 是直线l 上三点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离为( ) A .4cm B . 5cm C .不大于4cm D .不小于6cmABC D EF AB C DEF PQ RABCEF E A ACD O (第1题图)1 4 32 (第2题图)l 2202 如图,一辆汽车在直线形的公路AB 上由A 向B 行驶,M 、N 为位于公路两侧的村庄; ⑴设汽车行驶到路AB 上点P 的位置时距离村庄M 最近.行驶到AB 上点Q 的位置时,距离村庄N 最近,请在图中的公路上分别画出点P 、Q 的位置. ⑵当汽车从A 出发向B 行驶的过程中,在 的路上距离M 村越来越近..在 的路上距离村庄N 越来越近,而距离村庄M越来越远. 【例4】如图,直线AB 、CD 相交于点O ,OE ⊥CD ,OF ⊥AB ,∠DOF =65°,求∠BOE 和∠AOC 的度数. 【解法指导】图形的定义现可以作为判定图形的依据,也可以作为该图形具备的性质,由图可得:∠AOF =90°,OF ⊥AB .【变式题组】 01.如图,若EO ⊥AB 于O ,直线CD 过点O ,∠EOD ︰∠EOB =1︰3,求∠AOC 、∠AOE 的度数. 02.如图,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD . ⑴求∠AOC 的度数; ⑵试说明OD 与AB 的位置关系.03.如图,已知AB ⊥BC 于B ,DB ⊥EB 于B ,并且∠CBE ︰∠ABD =1︰2,请作出∠CBE 的对顶角,并求其度数.【例5】如图,指出下列各组角是哪两条直线被哪一条直线所截而得到的,并说出它们的名称: ∠1和∠2:∠1和∠3:∠1和∠6:∠2和∠6: ∠2和∠4: ∠3和∠5:∠3和∠4:【解法指导】正确辩认同位角、内错角、同旁内角的思路是:首先弄清所判断的是哪两个角,其次是找到这两个角公共边所在的直线即截线,其余两条边所在的直线就是被截的两条直线,最后确定它们的名称.F B A O CD E C D B A EO B ACDO A BA E DC F E BAD 1 4 2 3 6 53【变式题组】01.如图,平行直线AB 、CD 与相交直线EF ,GH 相交,图中的同旁内角共有( )A .4对B . 8对C .12对D .16对02.如图,找出图中标出的各角的同位角、内错角和同旁内角.03.如图,按各组角的位置判断错误的是( )A .∠1和∠2是同旁内角B .∠3和∠4是内错角C .∠5和∠6是同旁内角D .∠5和∠7是同旁内角【例6】如图,根据下列条件,可推得哪两条直线平行?并说明理由•⑴∠CBD =∠ADB ; ⑵∠BCD +∠ADC =180°⑶∠ACD =∠BAC【解法指导】图中有即即有同旁内角,有“ ”即有内错角.【解法指导】⑴由∠CBD =∠ADB ,可推得AD ∥BC ;根据内错角相等,两直线平行. ⑵由∠BCD +∠ADC =180°,可推得AD ∥BC ;根据同旁内角互补,两直线平行.⑶由∠ACD =∠BAC 可推得AB ∥DC ;根据内错角相等,两直线平行.【变式题组】01.如图,推理填空.⑴∵∠A =∠ (已知) ∴AC ∥ED ( ) ⑵∵∠C =∠ (已知)∴AC ∥ED ( )⑶∵∠A =∠ (已知) ∴AB ∥DF ( ) 02.如图,AD 平分∠BAC ,EF 平分∠DEC ,且∠1=∠2,试说明DE 与AB 的位置关系. 解:∵AD 是∠BAC 的平分线(已知) ∴∠BAC =2∠1(角平分线定义) 又∵EF 平分∠DEC (已知) ∴ ( ) 又∵∠1=∠2(已知) ∴ ( ) ∴AB ∥DE ( ) 03.如图,已知AE 平分∠CAB ,CE 平分∠ACD .∠CAE +∠ACE =90°,求证:AB ∥CD . ABDCHG EF7 1 5 6 8 4 1 2 乙丙 3 2 3 4 56 1 2 3 4甲 1 A B C 2 3 4 56 7 A B C DOA B D E FCABCDE A B CD EF 1 204.如图,已知∠ABC=∠ACB,BE平分∠ABC,CD平分∠ACB,∠EBF=∠EFB,求证:CD∥EF.【例7】如图⑴,平面内有六条两两不平行的直线,试证:在所有的交角中,至少有一个角小于31°.【解法指导】如图⑵,我们可以将所有的直线移动后,使它们相交于同一点,此时的图形为图⑵.证明:假设图⑵中的12个角中的每一个角都不小于31°则12×31°=372°>360°这与一周角等于360°矛盾所以这12个角中至少有一个角小于31°【变式题组】01.平面内有18条两两不平行的直线,试证:在所有的交角中至少有一个角小于11°.02.在同一平面内有2010条直线a1,a2,…,a2010,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5……那么a1与a2010的位置关系是 .03.已知n(n>2)个点P1,P2,P3…Pn.在同一平面内没有任何三点在同一直线上,设S n表示过这几个点中的任意两个点所作的所有直线的条数,显然:S2=1,S3=3,S4=6,∴S5=10…则Sn= .演练巩固·反馈提高01.如图,∠EAC=∠ADB=90°.下列说法正确的是()A.α的余角只有∠B B.α的邻补角是∠DACC.∠ACF是α的余角D.α与∠ACF互补02.如图,已知直线AB、CD被直线EF所截,则∠EMB的同位角为()A.∠AMF B.∠BMF C.∠ENC D.∠END03.下列语句中正确的是()A.在同一平面内,一条直线只有一条垂线B.过直线上一点的直线只有一条C.过直线上一点且垂直于这条直线的直线有且只有一条D.垂线段就是点到直线的距离04.如图,∠BAC=90°,AD⊥BC于D,则下列结论中,正确的个数有()①AB⊥AC②AD与AC互相垂直③点C到AB的垂线段是线段AB④线段AB的长度是点B到AC的距离⑤垂线段BA是点B到AC的距离⑥AD >BDA.0 B. 2 C.4 D.6ABCD El1l2l3l4l5l6图⑴l1l2l3l4l5l6图⑵AEB C FDABC DFEMNα第1题图第2题图AB D C第4题图4505.点A 、B 、C 是直线l 上的三点,点P 是直线l 外一点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离是( ) A .4cm B .5cm C .小于4cm D .不大于4cm 06.将一副直角三角板按图所示的方法旋转(直角顶点重合),则∠AOB +∠DOC= .07.如图,矩形ABCD 沿EF 对折,且∠DEF =72°,则∠AEG = . 08.在同一平面内,若直线a 1∥a 2,a 2⊥a 3,a 3∥a4,…则a 1 a 10.(a 1与a 10不重合)09.如图所示,直线a 、b 被直线c 所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判断a ∥b 的条件的序号是 .10.在同一平面内两条直线的位置关系有 .11.如图,已知BE 平分∠ABD ,DE 平分∠CDB ,且∠E =∠ABE +∠EDC .试说明AB ∥CD ?12.如图,已知BE 平分∠ABC ,CF 平分∠BCD ,∠1=∠2,那么直线AB 与CD 的位置关系如何?13.如图,推理填空:⑴∵∠A = (已知) ∴AC ∥ED ( ) ⑵∵∠2= (已知) ∴AC ∥ED ( )⑶∵∠A + =180°(已知) ∴AB ∥FD .14.如图,请你填上一个适当的条件 使AD ∥BC .ABCDOABCDEFG H abc第6题图第7题图第9题图1 2 3 4 5 6 7 81A CDEB AB C DEF12AB CD EF第14题图6培优升级·奥赛检测 01.平面图上互不重合的三条直线的交点的个数是( ) A .1,3 B .0,1,3 C .0,2,3 D .0,1,2,3 02.平面上有10条直线,其中4条是互相平行的,那么这10条直线最多能把平面分成( )部分. A .60 B . 55 C .50 D .45 03.平面上有六个点,每两点都连成一条直线,问除了原来的6个点之外,这些直线最多还有( )个交点. A .35 B . 40 C .45 D .55 04.如图,图上有6个点,作两两连线时,圆内最多有__________________交点. 05.如图是某施工队一张破损的图纸,已知a 、b 是一个角的两边,现在要在图纸上画一条与这个角的平分线平行的直线,请你帮助这个施工队画出这条平行线,并证明你的正确性. 06.平面上三条直线相互间的交点的个数是( ) A .3 B .1或3 C .1或2或3 D .不一定是1,2,3 07.请你在平面上画出6条直线(没有三条共点)使得它们中的每条直线都恰好与另三条直线相交,并简单说明画法? 08.平面上有10条直线,无任何三条交于一点,要使它们出现31个交点,怎么安排才能办到?09.如图,在一个正方体的2个面上画了两条对角线AB 、AC ,那么两条对角线的夹角等于( ) A .60° B . 75° C .90°D .135° 10.在同一平面内有9条直线如何安排才能满足下面的两个条件? ⑴任意两条直线都有交点;⑵总共有29个交点.第13讲 平行线的性质及其应用 考点·方法·破译1.掌握平行线的性质,正确理解平行线的判定与性质定理之间的区别和联系; 2.初步了解命题,命题的构成,真假命题、定理; 3.灵活运用平行线的判定和性质解决角的计算与证明,确定两直线的位置关系,感受转化思想在解决数学问题中的灵活应用.经典·考题·赏析 【例1】如图,四边形ABCD 中,AB ∥CD , BC ∥AD 求∠C 的度数. 【解法指导】两条直线平行,同位角相等; 两条直线平行,内错角相等;两条直线平行,同旁内角互补. 平行线的性质是推导角关系的重要依据之一,必须正确识别图形的特征,看清截线,识别角的关系式关键.【解】:∵AB ∥CD BC ∥AD ∴∠A +∠B =180° ∠B +∠C =180°(两条直线平行,同旁内角互补) ∴∠A =∠C ∵∠A =38° ∴∠C =38°a b AB C7【变式题组】01.如图,已知AD ∥BC ,点E 在BD 的延长线上,若∠ADE =155°,则∠DBC的度数为( ) A .155° B .50° C .45° D .25°02.(安徽)如图,直线l 1 ∥ l 2,∠1=55°,∠2=65°,则∠3为( )A . 50°B . 55°C . 60° D .65°03.如图,已知FC ∥AB ∥DE ,∠α:∠D :∠B =2: 3: 4, 试求∠α、∠D 、∠B的度数.【例2】如图,已知AB ∥CD ∥EF ,GC ⊥CF ,∠B =60°,∠EFC =45°,求∠BCG 的度数.【解法指导】平行线的性质与对顶角、邻补角、垂直和角平分线相结合,可求各种位置的角的度数,但注意看清角的位置.【解】∵AB ∥CD ∥EF ∴∠B =∠BCD ∠F =∠FCD (两条直线平行,内错角相等)又∵∠B =60° ∠EFC =45° ∴∠BCD =60° ∠FCD =45° 又∵GC ⊥CF ∴∠GCF =90°(垂直定理) ∴∠GCD =90°-45°=45° ∴∠BCG =60°-45°=15°【变式题组】01.如图,已知AF ∥BC , 且AF 平分∠EAB ,∠B =48°,则∠C 的的度数=_______________02.如图,已知∠ABC +∠ACB =120°,BO 、CO 分别∠ABC 、∠ACB ,DE 过点O 与BC 平行,则∠BOC =___________03.如图,已知AB ∥ MP ∥CD , MN 平分∠AMD ,∠A =40°,∠D =50°,求∠NMP 的度数.【例3】如图,已知∠1=∠2,∠C =∠D . 求证:∠A =∠F . 【解法指导】因果转化,综合运用.逆向思维:要证明∠A =∠F ,即要证明DF ∥AC . 要证明DF ∥AC , 即要证明∠D +∠DBC =180°, 即:∠C +∠DBC =180°;要证明∠C +∠DBC=180°即要证明DB ∥EC . 要证明DB ∥EC 即要证明∠1=∠3.证明:∵∠1=∠2,∠2=∠3(对顶角相等)所以∠1=∠3 ∴DB ∥EC (同位角相等•两直线平行)∴∠DBC +∠C =180°(两直线平行,同旁内角互补)∵∠C =∠D ∴∠DBC +∠D =180° ∴DF ∥AC (同旁内角,互补两直线平行)∴∠A =∠F (两直线平行,内错角相等) AB CDOE FAEBC (第1题图) (第2题图) E A F GDC B BA MCD N P (第3题图)CDABE F 1 328DA2 E1 B C B F E AC D 【变式题组】01.如图,已知AC ∥FG ,∠1=∠2,求证:DE ∥FG02.如图,已知∠1+∠2=180°,∠3=∠B . 求证:∠AED =∠ACB03.如图,两平面镜α、β的夹角θ,入射光线AO 平行 于β入射到α上,经两次反射后的出射光线O′B 平行 于α,则角θ等于_________. 【例4】如图,已知EG ⊥BC ,AD ⊥BC ,∠1=∠3. 求证:AD 平分∠BAC . 【解法指导】抓住题中给出的条件的目的,仔细分析 条件给我们带来的结论,对于不能直接直接得出结论 的条件,要准确把握住这些条件的意图.(题目中的: ∠1=∠3) 证明:∵EG ⊥BC ,AD ⊥BC ∴∠EGC =∠ADC =90° (垂直定义)∴EG ∥AD (同位角相等,两条直线平行) ∵∠1=∠3 ∴∠3=∠BAD (两条直线平行,内错角相等) ∴AD 平分∠BAC (角平分线定义) 【变式题组】 01.如图,若AE ⊥BC 于E ,∠1=∠2,求证:DC ⊥BC .02.如图,在△ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F , AC ∥ED ,CE 平分∠ACB . 求证:∠EDF =∠BDF .AB ∥CD ,∠B =40°,CN 是∠BCE 的平分线. CM ⊥CN ,求:的度数.A D M C N EB GB 3C A 1D 2E F (第1题图) A2 C F3 E D1B(第2题图)3 1 AB G DC E9 α βP B C D A ∠P =α+β3 2 1 γ 4ψDα β E B CAFH F γ Dα β E B C AF D EBC A B C AA ′ lB ′C ′【例5】已知,如图,AB ∥EF ,求证:∠ABC +∠BCF +∠CFE =360° 【解法指导】从考虑360°这个特殊角入手展开联想,分析类比, 联想周角.构造两个“平角”或构造两组“互补”的角. 过点C 作CD ∥AB 即把已知条件AB ∥EF 联系起来,这是关键. 【证明】:过点C 作CD ∥AB ∵CD ∥AB ∴∠1+∠ABC =180° (两直线平行,同旁内角互补) 又∵AB ∥EF ,∴CD ∥EF (平行 于同一条直线的两直线平行) ∴∠2+∠CFE =180°(两直线平行, 同旁内角互补) ∴∠ABC +∠1+∠2+∠CFE =180°+180°=360° 即∠ABC +∠BCF +∠CFE =360° 【变式题组】 01.如图,已知,AB ∥CD ,分别探究下面四个图形中∠APC 和∠PAB 、∠PCD 的关系,请你从所得四个关系中选出任意一个,说明你探究的结论的正确性. 结论:⑴____________________________ ⑵____________________________ ⑶____________________________ ⑷____________________________ 【例6】如图,已知,AB ∥CD ,则∠α、∠β、∠γ、∠ψ之间的关系是 ∠α+∠γ+∠ψ-∠β=180° 【解法指导】基本图形 善于从复杂的图形中找到基本图形,运用基本图形的规律打开思路. 【解】过点E 作EH ∥AB . 过点F 作FG ∥AB . ∵AB ∥EH ∴∠α=∠1(两直线平行,内错角相等)又∵FG ∥AB ∴EH ∥FG (平行于同一条直线的两直线平行)∴∠2=∠3 又∵AB ∥CD ∴FG ∥CD (平行于同一条直线的两直线平行)∴∠ψ+∠4=180°(两直线平行,同旁内角互补)∴∠α+∠γ+∠ψ-∠β=∠1+∠3+∠4-ψ-∠1-∠2=∠4+ψ=180°【变式题组】 01.如图, AB ∥EF ,∠C =90°,则∠α、∠β、∠γ的关系是( )A . ∠β=∠α+∠γB .∠β+∠α+∠γ=180°C . ∠α+∠β-∠γ=90°D .∠β+∠γ-∠α=90° 02.如图,已知,AB ∥CD ,∠ABE 和∠CDE 的平分线相交于点F ,∠E =140°,求∠BFD 的度数.【例7】如图,平移三角形ABC ,设点A 移动到点A /,画出平移后的三角形A /B /C /.【解法指导】抓住平移作图的“四部曲”——定,找,移,连. ⑴定:确定平移的方向和距离. ⑵找:找出图形的关键点. ⑶移:过关键点作平行且相等的线段,得到关键点的对应点. ⑷连: 按原图形顺次连接对应点. 【解】①连接AA / ②过点B 作AA /的平行线l ③在l 截取BB /=AA /,则点B /就是的B 对应点,用同样的方法作出点C 的对应点C /.连接A /B /,B /C /,C /A /就得到平移后的三角形A /B /C /.B AP C A C C D A A P C B D PBPD B D ⑴ ⑵ ⑶ ⑷ FE D 2 1 AB C10西B 30° A北东 南【变式题组】01.如图,把四边形ABCD 按箭头所指的方向平移21cm ,作出平移后的图形.02.如图,三角形ABC 中,∠C =90°, BC =4,AC =4,现将△ABC 沿CB 方向平移到△A /B /C /的位置,若平移距离为3, 求△ABC与△A /B /C /的重叠部分的面积.03.原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移BE 的距离,就得到此图形,求阴影部分的面积.(单位:厘米)演练巩固 反馈提高01.如图,由A 测B 得方向是( )A .南偏东30°B .南偏东60°C .北偏西30°D .北偏西60°02.命题:①对顶角相等;②相等的角是对顶角;③垂直于同一条直线的两直线平行;④平行于同一条直线的两直线垂直.其中的真命题的有( ) A .1个 B .2个 C .3个 D .4个03.一个学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,两次拐弯的角度可能是( ) A .第一次向左拐30°,第二次向右拐30° B .第一次向右拐50°,第二次向左拐130°C .第一次向左拐50°,第二次向右拐130°D .第一次向左拐60°,第二次向左拐120°04.下列命题中,正确的是( )A .对顶角相等B . 同位角相等C .内错角相等D .同旁内角互补05.学习了平行线后,小敏想出过直线外一点画这条直线的平行线的新方法,是通过折一张半透明的纸得到的[如图⑴—⑷]从图中可知,小敏画平行线的依据有( )①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行. A .①② B .②③ C .③④ D .①④06.在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52°.现A 、B 两地要同时开工,若干天后,公路准确对接,则B 地所修公路的走向应该是( )A .北偏东52°B .南偏东52°C .西偏北52°D .北偏西38°B B /AA /C C /150°120°DBCE 湖07.下列几种运动中属于平移的有()①水平运输带上的砖的运动;②笔直的高诉公路上行驶的汽车的运动(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动.A.1种B.2种C.3种D.4种08.如图,网格中的房子图案正好处于网格右下角的位置.平移这个图案,使它正好位于左上角的位置(不能出格)09.观察图,哪个图是由图⑴平移而得到的()10.如图,AD∥BC,AB∥CD,AE⊥BC,现将△ABE进行平移. 平移方向为射线AD的方向. 平移距离为线段BC的长,则平移得到的三角形是图中()图的阴影部分.11.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.⑴对顶角是相等的角;⑵相等的角是对顶角;⑶两个锐角的和是钝角;⑷同旁内角互补,两直线平行.12.把下列命题改写成“如果……那么……”的形式,并指出命题的真假.⑴互补的角是邻补角;⑵两个锐角的和是锐角;⑶直角都相等.13.如图,在湖边修一条公路.如果第一个拐弯处∠A=120°,第二个拐弯处∠B =150°,第三个拐弯处∠C,这时道路CE恰好和道路AD平行,问∠C是多少度?并说明理由.DEAB CE DB CE D AB CED AB CEDA B C43 2 1ABE F CD 4 P 23 1A BEFC D 14.如图,一条河流两岸是平行的,当小船行驶到河中E 点时,与两岸码头B 、D 成64°角. 当小船行驶到河中F 点时,看B 点和D 点的视线FB 、FD 恰好有∠1=∠2,∠3=∠4的关系. 你能说出此时点F 与码头B 、D 所形成的角∠BFD 的度数吗?15.如图,AB ∥CD ,∠1=∠2,试说明∠E 和∠F 的关系.培优升级·奥赛检测01.如图,等边△ABC 各边都被分成五等分,这样在△ABC 内能与△DEF 完成重合的小三角形共有25个,那么在△ABC 内由△DEF 平移得到的三角形共有( )个02.如图,一足球运动员在球场上点A 处看到足球从B 点沿着BO 方向匀速滚来,运动员立即从A 处以匀速直线奔跑前去拦截足球.若足球滚动的速度与该运动员奔跑的速度相同,请标出运动员的平移方向及最快能截住足球的位置.(运动员奔跑于足球滚动视为点的平移) 03.如图,长方体的长AB =4cm ,宽BC =3cm ,高AA 1=2cm . 将AC 平移到A 1C 1的位置上时,平移的距离是___________,平移的方向是___________. 04.如图是图形的操作过程(五个矩形水平方向的边长均为a ,竖直方向的边长为b );将线段A 1A 2向右平移1个单位得到B 1B 2,得到封闭图形A 1A2B 2B 1 [即阴影部分如图⑴];将折现A 1A 2 A 3向右平移1个单位得到B 1B 2B 3,得到封闭图形A 1A 2 A 3B 3B 2B 1[即阴影部分如图⑵];⑴在图⑶中,请你类似地画出一条有两个折点的直线,同样的向右平移1个单位,从而得到1个封闭图形,并画出阴影.⑵请你分别写出上述三个阴影部分的面积S 1=________, S 2=________, S 3=________. ⑶联想与探究:如图⑷,在一矩形草地上,有一条弯曲的柏油小路(小路在任何地方的水平宽度都是1个单位),请你猜想空白部分草地面积是多少?⑶⑷CB 1AA 1C 1D 1BD. AF E B A CG D05.一位模型赛车手遥控一辆赛车,先前进一半,然后原地逆时针旋转α°(0°<α°<180°),被称为一次操作,若5次后发现赛车回到出发点,则α°角为( ) A .720° B .108°或144° C .144° D .720°或144°06.两条直线a 、b 互相平行,直线a 上顺次有10个点A 1、A 2、…、A 10,直线b上顺次有10个点B 1、B 2、…、B 9,将a 上每一点与b 上每一点相连可得线段.若没有三条线段相交于同一点,则这些选段的交点个数是( ) A .90 B .1620 C .6480 D .200607.如图,已知AB ∥CD ,∠B =100°,EF 平分∠BEC ,EG ⊥EF . 求∠BEG 和∠DEG .08.如图,AB ∥CD ,∠BAE =30°,∠DCE =60°,EF 、EG 三等分∠AEC . 问:EF 与EG 中有没有与AB 平行的直线?为什么? 09.如图,已知直线CB ∥OA ,∠C =∠OAB =100°,E 、F 在CB 上,且满足∠FOB =∠AOB ,OE 平分∠COF . ⑴求∠EOB 的度数;⑵若平行移动AB ,那么∠OBC :∠OFC 的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.⑶在平行移动AB 的过程中,是否存在某种情况,使∠OEC =∠OBA ?若存在,求出其度数;若不存在,说明理由.10.平面上有5条直线,其中任意两条都不平行,那么在这5条直线两两相交所成的角中,至少有一个角不超过36°,请说明理由.11.如图,正方形ABCD 的边长为5,把它的对角线AC 分成n 段,以每一小段为对角线作小正方形,这n 个小正方形的周长之和为多少?12.如图将面积为a 2的小正方形和面积为b 2的大正方形放在一起,用添补法如何求出阴影部分面积?FEB AC GD 100° FE BAC O A BCD第06讲 实 数考点·方法·破译 1.平方根与立方根:若2x =a (a ≥0)则x 叫做a 的平方根,记为:a 的平方根为x =a 的平方根为xa 的算术平方根.若x 3=a ,则x 叫做a 的立方根.记为:a 的立方根为x.2.无限不循环小数叫做无理数,有理数和无理数统称实数.实数与数轴上的点一一对应.任何有理数都可以表示为分数pq(p 、q 是两个互质的整数,且q≠0)的形式. 3非负数:实数的绝对值,实数的偶次幂,非负数的算术平方根(或偶次方根)都是非负数.即a >0,2na ≥0(n 为正整数)0(a ≥0) .经典·考题·赏析【例1】若2m -4与3m -1是同一个数的平方根,求m 的值. 【解法指导】一个正数的平方根有两个,并且这两个数互为相反数.∵2m −4与3m −l 是同一个数的平方根,∴2m −4 +3m −l =0,5m =5,m =l .【变式题组】01.一个数的立方根与它的算术平方根相等,则这个数是____. 02.已知m的最大整数,则m 的平方根是____. 03____.04.如图,有一个数值转化器,当输入的x 为64时,输出的y 是____.【例2】(全国竞赛)已知非零实数a 、b 满足24242a b a -+++=,则a +b 等于( ) A .-1 B . 0 C .1 D .2有意义,∵a 、b 为非零实数,∴b 2>0∴a -3≥0a ≥3∵24242a b a -+++=∴24242a b a -+++=,∴20b +=.∴()22030b a b +=⎧⎪⎨-=⎪⎩,∴32a b =⎧⎨=-⎩,故选C .【变式题组】0l3b +=0成立,则a b =____. 02()230b -=,则ab的平方根是____. 03.(天津)若x 、y 为实数,且20x +=,则2009x y ⎛⎫⎪⎝⎭的值为( )A .1B .-1C .2D .-204.已知x1x π-的值是( )A .11π-B .11π+C .11π- D .无法确定【例3】若a 、b都为有理效,且满足1a b -=+a +b 的平方根.【解法指导】任何两个有理数的和、差、积、商(除数不为0)还是有理数,但两个无理数的和、差、积、商(除数不为0)不一定是无理数.∵1a b -+=+∴1a b -=⎧⎪=1a b -=⎧⎪=,∴1312a b =⎧⎨=⎩,a +b =12 +13=25.∴a +b的平方根为:5==±. 【变式题组】01.(西安市竞赛题)已知m 、n2)m +(3-n +7=0求m 、n .02.(希望杯试题)设x 、y 都是有理数,且满足方程(123π+)x +(132π+)y −4−π=0,则x −y =____.【例4】若a−2的整数部分,b −1是9的平方根,且a b b a -=-,求a +b 的值.【解法指导】−2=整数部分+小数部分.整数部分估算可得2,则小数部分−2 −2−4.∵a =2,b −1=±3 ,∴b =-2或4∵a b b a -=-.∴a <b ,∴a =2, b =4,即a +b =6. 【变式题组】01.若3a ,b ,则a +b 的值为____. 02a ,小数部分为ba )·b =____. 演练巩固 反馈提高 0l .下列说法正确的是( )A .-2是(-2)2的算术平方根B .3是-9的算术平方根C . 16的平方根是±4D .27的立方根是±3 02.设a =b = -2,2c =-,则a 、b 、c 的大小关系是( ) A .a <b <c B .a <c <b C . b <a <c D .c <a <b 03.下列各组数中,互为相反数的是( )A .-9与81的平方根B .4与C .4D .304.在实数1.414,,0.1•5•,π,3.1•4•( ) A .2个 B .3个 C .4个 D . 5个05.实数a 、b 在数轴上表示的位置如图所示,则( )A .b >aB .a b >C . -a <bD .-b > a06.现有四个无理数5,6,7,8,其中在2+1与3+1之间的有( )A . 1个B .2个C . 3个D .4个 07.设m 是9的平方根,n =()23.则m ,n 的关系是( )A . m =±nB .m =nC .m =-nD .m n ≠08.(烟台)如图,数轴上 A 、B 两点表示的数分别为-1和3,点B 关于点A的对称点C ,则点C 所表示的数为( )A .-23-B .-13-C .-2 +3D .l +309.点A 在数轴上和原点相距5个单位,点B 在数轴上和原点相距3个单位,且点B 在点A 左边,则A 、B 之间的距离为____. 10.用计算器探索:已知按一定规律排列的一组数:1,12,13…,119,120.如果从中选出若干个数,使它的和大于3,那么至少要选____个数. 11.对于任意不相等的两个数a 、b ,定义一种运算※如下:a ※b =a ba b+-,如3※2=3232+-=5.那么12.※4=____. 12.(长沙中考题)已知a 、b 为两个连续整数,且a <7 <b ,则a +b =____.13.对实数a 、b ,定义运算“*”,如下a *b =()()22a ba b aba b ⎧⎪⎨⎪⎩≥<,已知3*m =36,则实数m =____.14.设a 是大于1的实数.若a ,23a +,213a +在数轴上对应的点分别是A 、B 、C ,则三点在数轴上从左自右的顺序是____.15.如图,直径为1的圆与数轴有唯一的公共点P .点P 表示的实数为-1.如果该圆沿数轴正方向滚动一周后与数轴的公共点为P ′,那么点P ′所表示的数是____.16.已知整数x 、y 满足x +2y =50,求x 、y .17.已知2a −1的平方根是±3,3a +b −1的算术平方根是4,求a +b +1的立方根.18.小颖同学在电脑上做扇形滚动的游戏,如图有一圆心角为60°,半径为1个单位长的扇形放置在数轴上,当扇形在数轴上做无滑动的滚动时,当B 点恰好落在数轴上时,(1)求此时B 点所对的数;(2)求圆心O 移动的路程.19.若b 315a - 153a - +3l ,且a +11的算术平方根为m ,4b +1的立方根为n ,求(mn −2)(3mn +4)的平方根与立方根.20.若x 、y 为实数,且(x −y +1)2533x y --22x y +值.培优升级 奥赛检测 01.(荆州市八年级数学联赛试题)一个正数x 的两个平方根分别是a +1与a −3,则a 值为( )A . 2B .-1C . 1D . 0 02.x 1x -2x -( )A .0B . 12C .1D . 2 0353x +−2的最小值为____.04.设a 、b 为有理数,且a 、b 满足等式a 2+3b +33,则a +b =____. 05.若a b -=1,且3a =4b ,则在数轴上表示a 、b 两数对应点的距离为____. 06.已知实数a 满足20092010a a a --=,则a − 20092=_______.m 满足关系式3523199199x y m x y m x y x y +--+-=-+--,试确定m 的值.08.(全国联赛)若a 、b满足5b =7,S=3b ,求S 的取值范围.09.(北京市初二年级竞赛试题)已知0<a <1,并且123303030a a a ⎡⎤⎡⎤⎡⎤+++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2830a ⎡⎤+++⎢⎥⎣⎦2930a ⎡⎤++⎢⎥⎣⎦18=,求[10a ]的值[其中[x ]表示不超过x 的最大整数] .10.(北京竞赛试题)已知实数a 、b 、x 、y 满足y+21a =-,231x y b -=--,求22x y a b +++的值.第14讲平面直角坐标系(一)考点.方法.破译1.认识有序数对,认识平面直角坐标系.2.了解点与坐标的对应关系.3.会根据点的坐标特点,求图形的面积.经典.考题.赏析【例1】在坐标平面内描出下列各点的位置.A(2,1),B(1,2),C(-1,2),D(-2,-1),E(0,3),F(-3,0)【解法指导】从点的坐标的意义去思考,在描点时要注意点的坐标的有序性.【变式题组】01.第三象限的点P(x,y),满足|x|=5,2x+|y|=1,则点P得坐标是_____________.02.在平面直角坐标系中,如果m.n>0,那么(m, |n|)一定在____________象限.03.指出下列各点所在的象限或坐标轴.A(-3,0),B(-2,-13),C(2,12),D(0,3),E(π-3.14,3.14-π)【例2】若点P(a,b)在第四象限,则点Q(―a,b―1)在()A.第一象限B.第二象限C.第三象限D.第四象限【解法指导】∵P(a,b)在第四象限,∴a>0,b<0,∴-a<0,b-1<0,故选C.【变式题组】01.若点G(a,2-a)是第二象限的点,则a的取值范围是()A.a<0 B.a<2 C.0<a<2 B.a<0或a >202.如果点P(3x-2,2-x)在第四象限,则x的取值范围是____________.03.若点P(x,y)满足xy>0,则点P在第______________象限.04.已知点P(2a-8,2-a)是第三象限的整点,则该点的坐标为___________.【例3】已知A点与点B(-3,4)关于x轴对称,求点A关于y轴对称的点的坐标.【解法指导】关于x轴对称的点的坐标的特点:横坐标(x)相等,纵坐标(y)互为相反数,关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标(y)相等.【变式题组】01.P(-1,3)关于x轴对称的点的坐标为____________.02.P(3,-2)关于y轴对称的点的坐标为____________.03.P(a,b)关于原点对称的点的坐标为____________.04.点A(-3,2m-1) 关于原点对称的点在第四象限,则m的取值范围是____________.05.如果点M(a+b,ab)在第二象限内,那么点N(a,b) 关于y轴对称的点在第______象限.【例4】P(3,-4),则点P到x轴的距离是____________.【解法指导】P(x,y)到x轴的距离是| y|,到y轴的距离是|x|.则P到轴的距离是|-4|=4【变式题组】01.已知点P(3,5),Q(6,-5),则点P、Q到x轴的距离分别是_________,__________.P到y轴的距离是点Q到y轴的距离的________倍.02.若x轴上的点P到y轴的距离是3,则P点的坐标是__________.03.如果点B(m+1,3m-5) 到x轴的距离与它到y轴的距离相等,求m的值.04.若点(5-a,a-3)在一、三象限的角平分线上,求a的值.05.已知两点A(-3,m),B(n,4),AB∥x轴,求m的值,并确定n的取值范围.。

2022年人教版七年级下册数学同步培优第八章二元一次方程组第3节 第1课时销售问题与配套和分配问题

2022年人教版七年级下册数学同步培优第八章二元一次方程组第3节 第1课时销售问题与配套和分配问题

8.3实际问题与二元一次方程组第1课时销售问题与配套和分配问题知识点1销售问题1.小明的妈妈用280元买了甲、乙两种药材,甲种药材每斤20元,乙种药材每斤60元,且甲种药材比乙种药材多买了2斤,则小明的妈妈买了甲、乙两种药材各多少斤?设买了甲种药材x斤,乙种药材y斤,由题意可列方程组为( A )A.{20x+60y=280x-y=2B.{60x+20y=280x-y=2C.{20x+60y=280y-x=2D.{60x+20y=280y-x=22.《九章算术》记载了这样一个问题:今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万,问善田几何?意思是:当下良田1亩,价值300钱;薄田7亩,价值500钱.现在共买1顷,价值10000钱.根据条件,良田买了12.5亩.(1顷=100亩)3.[合肥五十中三模]《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程式是重要的数学成就.书中有一个方程问题:今有醇酒一斗,直钱五十;行酒一斗,直钱一十,今将钱四十得酒二斗,问醇、行酒各得几何?意思是:今有美酒一斗的价格是50钱,普通酒一斗的价格是10钱,现在买两种酒2斗共付40钱,问买美酒、普通酒各多少斗?解:设买美酒x斗,普通酒y斗.根据题意,得{x+y=2,50x+10y=40,解得{x=0.5,y=1.5.答:买美酒0.5斗,普通酒1.5斗.4.某体育用品商店购进了足球和排球共20个,一共花了1360元,进价和售价如表:(1)购进足球和排球各多少个?(2)全部销售完后商店共获利润多少元?解:(1)设购进足球x个,排球y个.根据题意,得{x+y=20,80x+50y=1360,解得{x=12,y=8.答:购进足球12个,购进排球8个.(2)12×(95-80)+8×(60-50)=180+80=260(元).答:全部销售完后商店共获利润260元.知识点2配套和分配问题5.某班同学参加运土劳动,一部分同学抬土,每两人抬一筐;另一部分同学挑土,每人挑两筐.已知全班同学共用土筐59个,扁担36根,则抬土和挑土的同学各有多少人?若设抬土的有x人,挑土的有y人,则可列方程组为( B )A.{2(y+x2)=59x2+y=36B.{x2+2y=59x2+y=36C.{x2+2y=59 2x+y=36D.{x+2y=592x+y=366.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马、大马各有多少匹.若设小马有x匹,大马有y匹,依题意,可列方程组为{x+y=100x3+3y=100.7.学校组织七年级(2)班的11名同学去公园植树,规定男生每人植4棵树,女生每人植3棵树,李老师分给他们40棵树的任务.已知有男生x人,女生y人,列出关于x,y的二元一次方程组为{x+y=114x+3y=40.8.[教材P102习题8.3第7题改编]现有两种酒精溶液,甲种酒精溶液的浓度为30%,乙种酒精溶液的浓度为80%,现要得到浓度为50%的酒精溶液50千克,则甲、乙两种酒精溶液各取多少千克?解:设甲种酒精溶液取x千克,乙种酒精溶液取y千克.根据题意,得{x+y=50,30%x+80%y=50×50%,解得{x=30,y=20.答:甲种酒精溶液取30千克,乙种酒精溶液取20千克.9.甲、乙两人年收入之比为4∶3,支出之比为8∶5,一年间两人各存5000元(设两人剩余的钱都存入银行),则甲、乙两人年收入分别为( C )A .15000元,12000元B .12000元,15000元C .15000元,11250元D .11250元,15000元10.分别以图1中的长方形和正方形纸板为侧面和底面,做成如图2的竖式和横式两种无盖纸盒,现在仓库里有1000张正方形纸板和2000张长方形纸板.若恰好将库存的纸板用完,则可以做 200 个竖式无盖纸盒.11.甲、乙两厂生产同一种水泥,都计划把全年生产的水泥销往A 市,这样两厂的水泥就能占有A 市市场同类水泥的45.然而实际情况并不理想,甲厂仅有12的水泥、乙厂仅有23的水泥销往了A 市,两厂的水泥仅占了A 市市场同类水泥的12,则甲厂该水泥的年产量与乙厂该水泥的年产量的比为 1∶3 .12.某水果店第一次购进400 kg 西瓜,由于天气炎热,很快卖完.该店马上又购进了800 kg 西瓜,进价比第一次每千克少了0.5元.两次进货共花费4400元.(1)第一次购进的西瓜进价为每千克多少元?(2)在销售过程中,两次购进的西瓜售价相同.由于西瓜是易坏水果,从购进到全部售完会有部分损耗.第一次购进的西瓜有4%的损耗,第二次购进的西瓜有6%的损耗,该水果店售完这些西瓜共获利2984元,则每千克西瓜的售价为多少元?解:(1)设第一次购进的西瓜进价为每千克x 元,第二次购进的西瓜进价为每千克y 元. 由题意,得{x =y +0.5,400x +800y =4400,解得{x =4,y =3.5.答:第一次购进的西瓜进价为每千克4元.(2)设每千克西瓜的售价为m 元.由题意,得m [400(1-4%)+800(1-6%)]-4400=2984,解得m=6.5.答:每千克西瓜的售价为6.5元.13.某公司需要粉刷一些相同的房间,经调查,3名师傅一天粉刷8个房间,还剩40 m2刷不完;5名徒弟一天可以粉刷9个房间;每名师傅比徒弟一天多刷30 m2的墙面.(1)求每个房间需要粉刷的面积.(2)该公司现有36个这样的房间需要粉刷,若只聘请1名师傅和2名徒弟一起粉刷,需要几天完成?(3)若来该公司应聘的有3名师傅和10名徒弟,每名师傅和每名徒弟每天的工资分别是240元和200元,该公司要求这36个房间要在2天内粉刷完成,问人工费最低是多少?解:(1)设每个房间需要粉刷的面积为x m2,每名徒弟一天粉刷y m2的墙面,则每名师傅一天粉刷(y+30) m2的墙面.根据题意,得{3(y+30)=8x-40,5y=9x,解得{x=50,y=90.答:每个房间需要粉刷的面积为50 m2.(2)由(1)可知,每名徒弟一天粉刷90 m2的墙面,每名师傅一天粉刷120 m2的墙面,则50×36÷(120+90×2)=6(天).答:需要6天完成.(3)设聘请m名师傅和n名徒弟完成粉刷任务.根据题意,得120m+90n=36×50÷2,则n=10-43m.因为m,n均为非负整数,且0≤m≤3,0≤n≤10,所以{m=0,n=10或{m=3,n=6.所以该公司共有两种聘请方案:方案1:聘请10名徒弟完成粉刷任务,所需人工费为200×10×2=4000(元);方案2:聘请3名师傅和6名徒弟完成粉刷任务,所需人工费为(200×6+240×3)×2=3840(元).因为4000>3840,所以方案2所需人工费最低,最低人工费为3840元.答:人工费最低是3840元.。

人教版 七年级数学下册 第九章一元一次不等式应用题 培优练习包含答案

人教版 七年级数学下册 第九章一元一次不等式应用题 培优练习包含答案

人教版-七年级数学下册-第九章一元一次不等式应用题-培优练习(含答案)1.为了参加西安世界园艺博览会,某公司用几辆载重为8吨的汽车运送一批参展货物.若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不空也不满.请问:共有多少辆汽车运货?2.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零价,其中西红柿与西兰花的批发价格与零售价格如表.(1)第一天该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元.这两种蔬菜当天全部售完后,一共能赚多少钱?(请列方程组求解)(2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?3.六一”儿童节将至,益智玩具店准备购进甲、乙两种玩具,若购进甲种玩具80个,乙种玩具40个,需要800元,若购进甲种玩具50个,乙种玩具30个,需要550元.(1)求益智玩具店购进甲、乙两种玩具每个需要多少元?(2)若益智玩具店准备1000元全部用来购进甲,乙两种玩具,计划销售每个甲种玩具可获利润4元,销售每个乙种玩具可获利润5元,且销售这两种玩具的总利润不低于600元,那么这个玩具店需要最多购进乙种玩具多少个?4.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?5.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?6.公司为了运输的方便,将生产的产品打包成件,运往同一目的地.其中A产品和B产品共320件,A产品比B产品多80件.(1)求打包成件的A产品和B产品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批产品全部运往同一目的地.已知甲种货车最多可装A产品40件和B产品10件,乙种货车最多可装A产品和B产品各20件.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.则公司安排甲、乙两种货车时有几种方案?并说明公司选择哪种方案可使运输费最少?7.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)a200x≤0<200<x≤400 bx>400 0.92(1)已知李叔家四月份用电286度,缴纳电费178.76元;五月份用电316度,缴纳电费198.56元,请你根据以上数据,求出表格中a,b的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?8.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表.已知购进60双甲种运动鞋与50双乙种运动鞋共用10000元运动鞋价格甲乙mm 进价(元/双)﹣20160双) 240售价(元/(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)超过21000元,且不超过22000元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?9.某物流公司承接A.B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?10.少儿部组织学生进行“英语风采大赛”,需购买甲、乙两种奖品.购买甲奖品3个和乙奖品4个,需花64元;购买甲奖品4个和乙奖品5个,需花82元.(1)求甲、乙两种奖品的单价各是多少元?(2)由于临时有变,只买甲、乙一种奖品即可,且甲奖品按原价9折销售,乙奖品购买6个以上超出的部分按原价的6折销售,设购买x个甲奖品需要y元,购买x个乙奖品需要y元,请用x 分别表示出y和y;2211(3)在(2)的条件下,问买哪一种产品更省钱?11.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售20001000每吨获利(元)已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?12.商场某柜台销售每台进价分别为160元、120元的A.B两种型号的电风扇,下表是近两周的销售情况:销售数量销售收入销售时段B种型号 A种型号元台台 4 1200 3 第一周1900元台 5 第二周台 6 =销售收入﹣进货成本)(进价、售价均保持不变,利润 A)求.B 两种型号的电风扇的销售单价;1(种型号的电风扇最多能A台,求50元的金额再采购这两种型号的电风扇共7500)若商场准备用不多于2(.采购多少台?(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.13.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.A型 B型b 台) a 价格(万元/180月)处理污水量(吨/ 240(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.14.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获2次的.利不少于8160元,乙种商品最低售价为每件多少元?15. “五?一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.参考答案1.解:设有x辆汽车,则有(4x+20)吨货物.由题意,可知当每辆汽车装满8吨时,则有(x﹣1)辆是装满的,所以有方程,解得5<x<7.由实际意义知x为整数.所以x=6.. 6答:共有辆汽车运货2.3. 元,y元,乙种玩具每个x)设甲种玩具每个1(【解答】解:根据题意,得:,解得:,答:甲种玩具每个元.5元,乙种玩具每个10 ,(个)2a﹣=200个,则甲种玩具a)设购进乙种玩具2(.根据题意,得:4+5a≥600,解得:a≤66,∵a是正整数,∴a的最大值为66,答:这个玩具店需要最多购进乙种玩具66个.4.解:(1)设单价为8.0元的课外书为x本,得:8x+12=1500﹣418,解得:x=44.5(不符合题意).∵在此题中x不能是小数,∴王老师说他肯定搞错了;(2)设单价为8.0元的课外书为y本,设笔记本的单价为b元,依题意得:0<1500﹣[8y+12+418]<10,解之得:0<4y﹣178<10,即:44.5<y<47,∴y应为45本或46本.当y=45本时,b=1500﹣[8×45+12+418]=2,当y=46本时,b=1500﹣[8×46+12+418]=6,即:笔记本的单价可能2元或6元.5.6.解:(1)设打包成件的A产品有x件,B产品有y件,根据题意得x+y=320,x-y=80,解得x=200,y=120,答:打包成件的A产品有200件,B产品有120件;(2)设租用甲种货车x辆,根据题意得40x+20(8-x)≥200,10x+20(8-x)≥120,解得2≤x≤4,而x为整数,所以x=2、3、4,所以设计方案有3种,分别为:方案甲车乙车运费① 2 6 2×4000+6×3600=296007.,解得:)根据题意得:1(解:.(2)设李叔家六月份最多可用电x度,根据题意得:200×0.61+200×0.66+0.92(x﹣400)≤300,解得:x≤450.答:李叔家六月份最多可用电450度.8.解:(1)依题意得:60m+50(m﹣20)=10000,解得m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,,根据题意得,解不等式①得,x>,解不等式②得,x≤100,所以,不等式组的解集是<x≤100,∵x是正整数,100﹣84+1=17,∴共有17种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)x+16000)a﹣60(= ),100≤x≤(.①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=100时,W有最大值,即此时应购进甲种运动鞋100双,购进乙种运动鞋100双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=84时,W有最大值,即此时应购进甲种运动鞋84双,购进乙种运动鞋116双.9.解:(1)设A种货物运输了x吨,设B种货物运输了y吨,,解之得:.依题意得:答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.10.解:(1)设甲种奖品的单价为x元/个,乙种奖品的单价为y元/个,:.:根据题意得,解得答:甲种奖品的单价为8元/个,乙种奖品的单价为10元/个.(2)根据题意得:y=8×0.9x=7.2x;1当0≤x≤6时,y=10x,当x>6时,y=10×6+10×0.6(x﹣6)=6x+24,22=.∴y2(3)当0≤x≤6时,∵7.2<10,∴此时买甲种产品省钱;当x>6时,令y<y,则7.2x<6x+24,解得:x<20;21令y=y,则7.2x=6x+24,解得:x=20;21令y>y,则7.2x>6x+24,解得:x>20.:当x<20时,选择甲种产品更省钱;21综上所述当x=20时,选择甲、乙两种产品总价相同;当x>20时,选择乙种产品更省钱.11.12.(1)设A型电风扇单价为x元,B型单价y元,则,解得:, 150型单价元;A型电风扇单价为200元,B答:(≤a:得解,7500≤)a﹣50160a+120则,台a购采扇风电型A设)2(.,则最多能采购37台;(3)依题意,得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,则35<a≤,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.13.解:(1)购买A型的价格是a万元,购买B型的设备b万元,A=b+2,2a+6=3b,解得:a=12,b=10.故a的值为12,b的值为10;(2)设购买A型号设备m台,12m+10(10﹣m)≤105,解得:m≤2.5,故所有购买方案为:当A型号为0,B型号为10台;当A型号为1台,B型号为9台;当A型号为2台,B型号为8台;有3种购买方案;(3)由题意可得出:240m+180(10﹣m)≥2040,解得:m≥4,由(1)得A型买的越少越省钱,所以买A型设备4台,B型的6台最省钱.14. 件,根据题意得:y件,乙种商品x)设商场购进甲种商品1解:(.,解得:.答:该商场购进甲种商品200件,乙种商品120件.(2)设乙种商品每件售价z元,根据题意,得120(z﹣100)+2×200×(138﹣120)≥8160,解得:z≥108.答:乙种商品最低售价为每件108元.15.。

2022年人教版七年级下册数学同步培优第六章实数第3节 第2课时实数的运算

2022年人教版七年级下册数学同步培优第六章实数第3节 第2课时实数的运算

能力提升
拓展突破
(2)如图所示,当点C在点B左侧时,则6-x=3(-4-x),
解得x=-9;
当点C在点B右侧时,则6-x=3(x+4),
解得x=-1.5.
综上所述,x的值为-9或-1.5.
-14-
第2课时 实数的运算
基础巩固
能力提升
拓展突破
16.如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数
解:由题意,得 a-4=8,解得 a=12.
∵3< 13<4,∴b=3,
∴a-b=12-3=9,∴a-b 的平方根是±3.
基础巩固
第2课时 实数的运算
能力提升
拓展突破
10.如图,实数-3,x,3,y在数轴上的对应点分别为M,N,P,Q,这
四个数中绝对值最小的数对应的点是( B )
A.M
B.N
C.P
4
点 E,F 所表示的数互为相反数,请求出 t 的值.
第2课时 实数的运算
基础巩固
能力提升
拓展突破
-17-
解:(2)t的值为4.
理由:当正方形ABCD沿数轴负方向运动时,点E,F表示的数均为
负数,不可能互为相反数,不符合题意.
当正方形ABCD沿数轴正方向运动时.
1
1
2
2
1
1
1
1
4
4
2
2
因为 AE= ′= ×2t=t,点 A 表示-1,所以点 E 表示的数为-1+t.
能力提升
拓展突破
-4-
第2课时 实数的运算
基础巩固
8.用计算器计算(结果保留小数点后两位):
(1) 11+2.33-π;

2023年人教版中学七7年级下册数学期末解答题培优及答案

2023年人教版中学七7年级下册数学期末解答题培优及答案

2023年人教版中学七7年级下册数学期末解答题培优及答案一、解答题1.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________;(2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及35-+的点,并比较它们的大小.2.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:2 1.414≈)≈,3 1.7323.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.4.如图用两个边长为18cm的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为3:2,且面积为30cm2请说明理由.5.如图,在3×3的方格中,有一阴影正方形,设每一个小方格的边长为1个单位.请解决下面的问题.(1)阴影正方形的面积是________?(可利用割补法求面积) (2)阴影正方形的边长是________?(3)阴影正方形的边长介于哪两个整数之间?请说明理由.二、解答题6.已知直线AB //CD ,点P 、Q 分别在AB 、CD 上,如图所示,射线PB 按逆时针方向以每秒12°的速度旋转至PA 便立即回转,并不断往返旋转;射线QC 按逆时针方向每秒3°旋转至QD 停止,此时射线PB 也停止旋转.(1)若射线PB 、QC 同时开始旋转,当旋转时间10秒时,PB '与QC '的位置关系为 ; (2)若射线QC 先转15秒,射线PB 才开始转动,当射线PB 旋转的时间为多少秒时,PB ′//QC ′.7.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠=n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.8.(1)(问题)如图1,若//AB CD ,40AEP ∠=︒,130PFD ∠=︒.求EPF ∠的度数; (2)(问题迁移)如图2,//AB CD ,点P 在AB 的上方,问PEA ∠,PFC ∠,EPF ∠之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知EPF α∠=,PEA ∠的平分线和PFC ∠的平分线交于点G ,用含有α的式子表示G ∠的度数.9.汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况.如图1,灯A 射出的光束自AM 顺时针旋转至AN 便立即回转,灯B 射出的光束自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 射出的光束转动的速度是a ︒/秒,灯B 射出的光束转动的速度是b ︒/秒,且a 、b 满足20)34(a b a b -++-=.假定这一带水域两岸河堤是平行的,即//PQ MN ,且45BAN ∠=︒.(1)求a 、b 的值;(2)如图2,两灯同时转动,在灯A 射出的光束到达AN 之前,若两灯射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,若20BCD ∠=︒,求BAC ∠的度数;(3)若灯B 射线先转动30秒,灯A 射出的光束才开始转动,在灯B 射出的光束到达BQ 之前,A 灯转动几秒,两灯的光束互相平行? 10.如图,已知//AB CD ,CN 是BCE ∠的平分线. (1)若CM 平分BCD ∠,求MCN ∠的度数;(2)若CM 在BCD ∠的内部,且CM CN ⊥于C ,求证:CM 平分BCD ∠;(3)在(2)的条件下,过点B 作BP BQ ⊥,分别交CM 、CN 于点P 、Q ,PBQ ∠绕着B 点旋转,但与CM 、CN 始终有交点,问:BPC BQC ∠+∠的值是否发生变化?若不变,求其值;若变化,求其变化范围.三、解答题11.如图,以直角三角形AOC 的直角顶点О为原点,以OC 、OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ,(),0C b 满足220a b b -+-=.(1)C 点的坐标为______;A 点的坐标为______.(2)如图1,已知坐标轴上有两动点P 、Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是()1,2,设运动时间为()0t t >.问:是否存在这样的t ,使ODPODQSS=?若存在,请求出t 的值:若不存在,请说明理由.(3)如图2,过O 作//OG AC ,作AOF AOG ∠=∠交AC 于点F ,点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACEOEC∠+∠∠的值是否会发生变化?若不变,请求出它的值:若变化,请说明理由. 12.如图1,E 点在BC 上,∠A =∠D ,AB ∥CD . (1)直接写出∠ACB 和∠BED 的数量关系 ;(2)如图2,BG 平分∠ABE ,与∠CDE 的邻补角∠EDF 的平分线交于H 点.若∠E 比∠H 大60°,求∠E ;(3)保持(2)中所求的∠E 不变,如图3,BM 平分∠ABE 的邻补角∠EBK ,DN 平分∠CDE ,作BP ∥DN ,则∠PBM 的度数是否改变?若不变,请求值;若改变,请说理由.13.如图1,O 为直线AB 上一点,过点O 作射线,30OC AOC ︒∠=,将一直角三角板(30M ︒∠=)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方,将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON 与OC 重合?(2)如图2,经过t 秒后,//MN AB ,求此时t 的值.(3)若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC 与OM 重合?请画图并说明理由.(4)在(3)的条件下,求经过多长时间OC 平分MOB ∠?请画图并说明理由.14.如图,//AC BD ,BC 平分ABD ∠,设ACB ∠为α,点E 是射线BC 上的一个动点.(1)若30α=︒时,且BAE CAE ∠=∠,求CAE ∠的度数;(2)若点E 运动到1l 上方,且满足100BAE ∠=︒,:5:1BAE CAE ∠∠=,求α的值; (3)若:()1BAE CAE n n ∠∠=>,求CAE ∠的度数(用含n 和α的代数式表示).15.如图1,在平面直角坐标系中,()()02A a C b ,,,,且满足()240a b a b ++-+=,过C 作CB x ⊥轴于B(1)求三角形ABC 的面积.(2)发过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,若,90()CAB ACB a αββ∠=∠=+=︒,求AED ∠的度数.(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在;请说明理由.四、解答题16.在△ABC 中,射线AG 平分∠BAC 交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作DE ∥AC 交AB 于点E .(1)如图1,点D 在线段CG 上运动时,DF 平分∠EDB①若∠BAC =100°,∠C =30°,则∠AFD = ;若∠B =40°,则∠AFD = ; ②试探究∠AFD 与∠B 之间的数量关系?请说明理由;(2)点D 在线段BG 上运动时,∠BDE 的角平分线所在直线与射线AG 交于点F 试探究∠AFD 与∠B 之间的数量关系,并说明理由17.如图,直线m 与直线n 互相垂直,垂足为O 、A 、B 两点同时从点O 出发,点A 沿直线m 向左运动,点B 沿直线n 向上运动.(1)若∠BAO 和∠ABO 的平分线相交于点Q ,在点A ,B 的运动过程中,∠AQB 的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由.(2)若AP 是∠BAO 的邻补角的平分线,BP 是∠ABO 的邻补角的平分线,AP 、BP 相交于点P ,AQ 的延长线交PB 的延长线于点C ,在点A ,B 的运动过程中,∠P 和∠C 的大小是否会发生变化?若不发生变化,请求出∠P 和∠C 的度数;若发生变化,请说明理由.18.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为∠1,反射光线 OB 与水平镜面夹角为∠2,则∠1=∠2 .(现象解释)如图 2,有两块平面镜 OM ,ON ,且 OM ⊥ON ,入射光线 AB 经过两次反射,得到反射光线 CD .求证 AB ∥CD . (尝试探究)如图 3,有两块平面镜 OM ,ON ,且∠MON =55︒ ,入射光线 AB 经过两次反射,得到反射光线 CD ,光线 AB 与 CD 相交于点 E ,求∠BEC 的大小.(深入思考)如图 4,有两块平面镜 OM ,ON ,且∠MON = α ,入射光线 AB 经过两次反射,得到反射光线 CD ,光线 AB 与 CD 所在的直线相交于点 E ,∠BED =β , α 与 β 之间满足的等量关系是 .(直接写出结果)19.如图①,AD 平分BAC ∠,AE ⊥BC ,∠B=450,∠C=730. (1) 求DAE ∠的度数;(2) 如图②,若把“AE ⊥BC ”变成“点F 在DA 的延长线上,FE BC ⊥”,其它条件不变,求DFE ∠ 的度数;(3) 如图③,若把“AE ⊥BC ”变成“AE 平分BEC ∠”,其它条件不变,DAE ∠的大小是否变化,并请说明理由.20.如图1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.(1)求证:∠BED=90°;(2)如图2,延长BE交CD于点H,点F为线段EH上一动点,∠EDF=α,∠ABF的角平分线与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小;(3)如图3,延长BE交CD于点H,点F为线段EH上一动点,∠EBM的角平分线与∠FDN的角平分线交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论:.【参考答案】一、解答题1.(1);(2)①见解析;②见解析,【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②解析:(12,22)①见解析;②见解析,350.5-+<-【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(15-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a,∵a2=2,∴a=222(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b , ∴b 2=5, ∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为-3+5,看图可知,表示-0.5的N 点在M 点的右方,∴比较大小:350.5-+<-. 【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.2.(1)6分米;(2)满足. 【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a 分米、3a 分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可. 【详解】 解:(解析:(1)6分米;(2)满足. 【分析】(136(2)设长方形的长宽分别为4a 分米、3a 分米,根据面积得出方程,求出a ,求出长方形的长和宽和6比较即可. 【详解】解:(1366分米; (2)设长方形的长为4a 分米,则宽为3a 分米. 则4324a a ⋅=, 解得:2a =∴长为4 5.6566a≈<a≈<,宽为3 4.242 6.∴满足要求.【点睛】本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题.3.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴a2=400又∵a>0∴a=20又∵要裁出的长方形面积为300cm2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm,则宽为2x cm∴6x 2=300∴x 2=50又∵x>0∴x=∴长方形纸片的长为又∵(2=450>202即:>20∴小丽不能用这块纸片裁出符合要求的纸片4.不能截得长宽之比为,且面积为cm2的长方形纸片,见解析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.【详解】解:不能,因为大正方形纸解析:不能截得长宽之比为3:2,且面积为30cm2的长方形纸片,见解析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.【详解】解:不能,2+2=36(cm2),所以大正方形的边长为6cm,设截出的长方形的长为3b cm,宽为2b cm,则6b2=30,所以b所以3b所以不能截得长宽之比为3:2,且面积为30cm2的长方形纸片.【点睛】本题考查了算术平方根,理解算术平方根的意义是正确解答的关键.5.(1)5;(2);(3)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解.【详解】(1)阴影正方形的解析:(1)5;(23)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解.【详解】(1)阴影正方形的面积是3×3-4×121 2⨯⨯=5故答案为:5;(2)设阴影正方形的边长为x,则x2=5∴x(3)∵∴253<<∴阴影正方形的边长介于2与3两个整数之间.【点睛】本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法.通过观察可知阴影部分的面积是5个小正方形的面积和.会利用估算的方法比较无理数的大小.二、解答题6.(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根解析:(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根据平行线的性质求得∠POE和∠QOE的度数,进而得结论;(2)分三种情况:①当0<t≤15时,②当15<t≤30时,③当30<t<45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】解:(1)如图1,当旋转时间30秒时,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,过O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0<t≤15时,如图,则∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③当30<t≤45时,如图,则∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.7.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n =3.【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN ,∵MN //GHl∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180°∴∠NAO +∠AOB +∠OBH =360°∵∠NAO =116°,∠OBH =144°∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒,∴58NAC ∠=︒,又∵MN //GH ,∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒∵BD 平分OBG ∠,∴18DBF ∠=︒,又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒;∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒;(3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601n BKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.8.(1)90°;(2)∠PFC=∠PEA+∠P ;(3)∠G=α【分析】(1)根据平行线的性质与判定可求解;(2)过P 点作PN ∥AB ,则PN ∥CD ,可得∠FPN=∠PEA+∠FPE ,进而可得∠PF 解析:(1)90°;(2)∠PFC =∠PEA +∠P ;(3)∠G =12α【分析】(1)根据平行线的性质与判定可求解;(2)过P 点作PN ∥AB ,则PN ∥CD ,可得∠FPN =∠PEA +∠FPE ,进而可得∠PFC =∠PEA +∠FPE ,即可求解;(3)令AB 与PF 交点为O ,连接EF ,根据三角形的内角和定理可得∠GEF +∠GFE =12∠PEA +12∠PFC +∠OEF +∠OFE ,由(2)得∠PEA =∠PFC -α,由∠OFE +∠OEF =180°-∠FOE=180°-∠PFC可求解.【详解】解:(1)如图1,过点P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令AB与PF交点为O,连接EF,如图3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=12∠PEA+∠OEF,∠GFE=12∠PFC+∠OFE,∴∠GEF+∠GFE=12∠PEA+12∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE +∠OEF =180°-∠FOE =180°-∠PFC ,∴∠GEF +∠GFE =12(∠PFC −α)+12∠PFC +180°−∠PFC =180°−12α,∴∠G =180°−(∠GEF +∠GFE )=180°−180°+12α=12α.【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键. 9.(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t 的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t 的值,进而求出的度数;(3)根据灯B 的解析:(1)3a =,1b =;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子()2340a b a b -++-=即可;(2)根据//PQ MN ,用含t 的式子表示出BCA ∠,根据(2)中给出的条件得出方程式 ()()9090180229020⎡⎤∠=︒-∠=︒-︒-︒=︒-︒=︒⎣⎦BCD BCA t t ,求出 t 的值,进而求出BAC ∠的度数;(3)根据灯B 的要求,t <150,在这个时间段内A 可以转3次,分情况讨论.【详解】解:(1)2|3|(4)0a b a b -++-=.又|3|0a b -≥,2(4)0a b +-≥.3a ∴=,1b =;(2)设A 灯转动时间为t 秒,如图,作//CE PQ ,而//,PQ MN////,PQ CE MN ∴1803ACE CAN t ∴∠=∠=︒-︒,BCE CBD t ∠=∠=︒,()()18031802∴∠=∠+∠=︒+︒-︒=︒-︒BCA CBD CAN t t t ,90ACD ∠=︒,[]9090180(2)(2)9020∴∠=︒-∠=︒-︒-︒=︒-︒=︒BCD BCA t t ,55∴=t()1803∠=︒-︒CAN t ,()()451803313516513530∴∠=︒-︒-︒=︒-︒=︒-︒=︒⎡⎤⎣⎦BAC t t(3)设A 灯转动t 秒,两灯的光束互相平行.依题意得0150t <<①当060t <<时,两河岸平行,所以()233t ∠=∠=︒ 两光线平行,所以2130t ∠=∠=+︒所以,13∠=∠即:330=+t t ,解得15t =;②当60120t <<时,两光束平行,所以()2330t ∠=∠=+︒两河岸平行,所以12180∠+∠=︒13180t ∠=-︒所以,318030180-++=t t ,解得82.5t =;③当120150t <<时,图大概如①所示336030t t -=+,解得195150t =>(不合题意)综上所述,当15t =秒或82.5秒时,两灯的光束互相平行.【点睛】这道题考察的是平行线的性质和一元一次方程的应用.根据平行线的性质找到对应角列出方程是解题的关键.10.(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3),过,分别作,,根据解析:(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3)180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,根据平行线的性质及平角的定义即可得解.【详解】解(1)CN ,CM 分别平分BCE ∠和BCD ∠, 12BCN BCE ∴=∠,12BCM BCD ∠=∠, 180BCE BCD ∠+∠=︒,111()90222MCN BCN BCM BCE BCD BCE BCD ∴∠=∠+∠=∠+∠=∠+∠=︒; (2)CM CN ⊥,90MCN ∴∠=︒,即90BCN BCM ∠+∠=︒,22180BCN BCM ∴∠+∠=︒,CN 是BCE ∠的平分线,2BCE BCN ∴∠=∠,2180BCE BCM ∴∠+∠=︒,又180BCE BCD ∠+∠=︒,2BCD BCM ∴∠=∠,又CM 在BCD ∠的内部,CM ∴平分BCD ∠;(3)如图,不发生变化,180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,则有//////QG AB PH CD ,BQG ABQ ∴∠=∠,CQG ECQ ∠=∠,BPH FBP ∠=∠,CPH DCP ∠=∠,⊥BP BQ ,CP CQ ⊥,90PBQ PCQ ∴∠=∠=︒,180ABQ PBQ FBP ∠+∠+=︒,180ECQ PCQ DCP ∠+∠+∠=︒,180ABQ FBP ECQ DCP ∴∠+∠+∠+∠=︒,BPC BQC BPH CPH BQG CQG ∴∠+∠=∠+∠+∠+∠180ABQ FBP ECQ DCP =∠+∠+∠+∠=︒,180BPC BQC ∴∠+∠=︒不变.【点睛】此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键.三、解答题11.(1),;(2)1;(3)不变,值为2【分析】(1)根据绝对值和算术平方根的非负性,求得a ,b 的值,再利用中点坐标公式即可得出答案;(2)先得出CP=t ,OP=2-t ,OQ=2t ,AQ=4-解析:(1)()2,0C ,()0,4A ;(2)1;(3)不变,值为2【分析】(1)根据绝对值和算术平方根的非负性,求得a ,b 的值,再利用中点坐标公式即可得出答案;(2)先得出CP =t ,OP =2-t ,OQ =2t ,AQ =4-2t ,再根据S △ODP =S △ODQ ,列出关于t 的方程,求得t 的值即可;(3)过H 点作AC 的平行线,交x 轴于P ,先判定OG ∥AC ,再根据角的和差关系以及平行线的性质,得出∠PHO =∠GOF =∠1+∠2,∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,最后代入OHC ACE OEC∠+∠∠进行计算即可. 【详解】解:(1)∵2a b -+|b -2|=0, ∴a -2b =0,b -2=0, 解得a =4,b =2,∴A (0,4),C (2,0).(2)存在, 理由:如图1中,D (1,2),由条件可知:P 点从C 点运动到O 点时间为2秒,Q 点从O 点运动到A 点时间为2秒, ∴0<t ≤2时,点Q 在线段AO 上, 即 CP =t ,OP =2-t ,OQ =2t ,AQ =4-2t ,∴S △DOP =12•OP •y D =12(2-t )×2=2-t ,S △DOQ =12•OQ •x D =12×2t ×1=t ,∵S △ODP =S △ODQ ,∴2-t =t ,∴t =1.(3)结论:OHC ACE OEC∠+∠∠的值不变,其值为2.理由如下:如图2中,∵∠2+∠3=90°, 又∵∠1=∠2,∠3=∠FCO ,∴∠GOC +∠ACO =180°,∴OG ∥AC ,∴∠1=∠CAO ,∴∠OEC =∠CAO +∠4=∠1+∠4,如图,过H 点作AC 的平行线,交x 轴于P ,则∠4=∠PHC ,PH ∥OG ,∴∠PHO =∠GOF =∠1+∠2,∴∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,∴124414OHC ACE OEC ∠+∠∠+∠+∠+∠=∠∠+∠=2. 【点睛】本题主要考查三角形综合题、非负数的性质、三角形的面积、平行线的性质等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.12.(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如图1,延长DE 交AB 于点F ,根据ABCD 可得∠DFB=∠D ,则∠DFB=∠A ,可得ACDF ,根据平行线的性质得∠A解析:(1)∠ACB +∠BED =180°;(2)100°;(3)40°【分析】(1)如图1,延长DE 交AB 于点F ,根据AB //CD 可得∠DFB =∠D ,则∠DFB =∠A ,可得AC //DF ,根据平行线的性质得∠ACB +∠CEF =180°,由对顶角相等可得结论;(2)如图2,作EM //CD ,HN //CD ,根据AB //CD ,可得AB //EM //HN //CD ,根据平行线的性质得角之间的关系,再根据∠DEB 比∠DHB 大60°,列出等式即可求∠DEB 的度数; (3)如图3,过点E 作ES //CD ,设直线DF 和直线BP 相交于点G ,根据平行线的性质和角平分线定义可求∠PBM 的度数.【详解】解:(1)如图1,延长DE 交AB 于点F ,//AB CD ,DFB D ∴∠=∠,A D ∠=∠,A DFB ∴∠=∠,//AC DF ∴,180ACB CEF ∴∠+∠=︒,180ACB BED ∴∠+∠=︒,故答案为:180ACB BED ∠+∠=︒;(2)如图2,作//EM CD ,//HN CD ,//AB CD ,//////AB EM HN CD ∴,1180EDF ∴∠+∠=︒,MEB ABE ∠=∠, BG 平分ABE ∠,12ABG ABE ∴∠=∠, //AB HN ,2ABG ∴∠=∠,//CF HN ,23β∴∠+∠=∠, ∴132ABE β∠+∠=∠, DH 平分EDF ∠,132EDF ∴∠=∠, ∴1122ABE EDF β∠+∠=∠,1()2EDF ABE β∴∠=∠-∠, 2EDF ABE β∴∠-∠=∠,设DEB α∠=∠,1180180()1802MEB EDF ABE EDF ABE αβ∠=∠+∠=︒-∠+∠=︒-∠-∠=︒-∠,DEB ∠比DHB ∠大60︒,60αβ∴∠-︒=∠,1802(60)αα∴∠=︒-∠-︒,解得100α∠=︒.DEB ∴∠的度数为100︒;(3)PBM ∠的度数不变,理由如下:如图3,过点E 作//ES CD ,设直线DF 和直线BP 相交于点G ,BM 平分EBK ∠,DN 平分CDE ∠,12EBM MBK EBK ∴∠=∠=∠,12CDN EDN CDE ∠=∠=∠,//ES CD ,//AB CD ,////ES AB CD ∴,DES CDE ∴∠=∠,180BES ABE EBK ∠=∠=︒-∠,G PBK ∠=∠,由(2)可知:100DEB ∠=︒,180100CDE EBK ∴∠+︒-∠=︒,80EBK CDE ∴∠-∠=︒,//BP DN ,CDN G ∴∠=∠,12PBK G CDN CDE ∴∠=∠=∠=∠,PBM MBK PBK ∴∠=∠-∠1122EBK CDE =∠-∠1()2EBK CDE =∠-∠1802=⨯︒40=︒.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.13.(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出∠AON=60°,结合旋转速度可得时间t;(3)设∠AON=3解析:(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)703秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出∠AON=60°,结合旋转速度可得时间t;(3)设∠AON=3t,则∠AOC=30°+6t,由题意列出方程,解方程即可;(4)根据转动速度关系和OC平分∠MOB,由题意列出方程,解方程即可.【详解】解:(1)∵30÷3=10,∴10秒后ON与OC重合;(2)∵MN∥AB∴∠BOM=∠M=30°,∵∠AON+∠BOM=90°,∴∠AON=60°,∴t=60÷3=20∴经过t秒后,MN∥AB,t=20秒.(3)如图3所示:∵∠AON+∠BOM=90°,∠BOC=∠BOM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON=3t,则∠AOC=30°+6t,∵OC与OM重合,∵∠AOC+∠BOC=180°,可得:(30°+6t)+(90°-3t)=180°,解得:t=20秒;即经过20秒时间OC与OM重合;(4)如图4所示:∵∠AON+∠BOM=90°,∠BOC=∠COM ,∵三角板绕点O 以每秒3°的速度,射线OC 也绕O 点以每秒6°的速度旋转,设∠AON=3t ,∠AOC=30°+6t ,∵∠BOM+∠AON=90°,∴∠BOC=∠COM=12∠BOM=12(90°-3t ),由题意得:180°-(30°+6t )=12( 90°-3t ), 解得:t=703秒, 即经过703秒OC 平分∠MOB . 【点睛】 此题考查了平行线的判定与性质,角的计算以及方程的应用,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.14.(1)60°;(2)50°;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先解析:(1)60°;(2)50°;(3)18021n α︒--或18021n α︒-+ 【分析】(1)根据平行线的性质可得CBD ∠的度数,再根据角平分线的性质可得ABE 的度数,应用三角形内角和计算BAC ∠的度数,由已知条件BAE CAE ∠=∠,可计算出CAE ∠的度数; (2)根据题意画出图形,先根据:5:1BAE CAE ∠∠=可计算出CAE ∠的度数,由100BAE ∠=︒可计算出BAC ∠的度数,再根据平行线的性质和角平分线的性质,计算出CBD ∠的度数,即可得出结论;(3)根据题意可分两种情况,①若点E 运动到1l 上方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再:BAE CAE n ∠∠=,BAE BAC CAE ∠=∠+∠,列出等量关系求解即可等处结论;②若点E 运动到1l 下方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再:BAE CAE n ∠∠=,BAE BAC CAE ∠=∠-∠列出等量关系求解即可等处结论.【详解】解:(1)30α=︒,//AC BD ,30CBD ∴∠=︒, BC 平分ABD ∠,30ABE CBD ∴∠=∠=︒,1801803030120BAC ABE α∴∠=︒-∠-=︒-︒-︒=︒,又BAE CAE ∠=∠, 111206022CAE BAC ∴∠=∠=⨯︒=︒; (2)根据题意画图,如图1所示,100BAE ∠=︒,:5:1BAE CAE ∠∠=,20CAE ∴∠=︒,1002080BAC BAE CAE ∴∠=∠-∠=︒-︒=︒,//AC BD ,180100ABD BAC ∴∠=︒-∠=︒,又BC 平分ABD ∠,111005022CBD ABD ∴∠=∠=⨯︒=︒, 50CBD α∴=∠=︒;(3)①如图2所示,//AC BD ,CBD ACB α∴∠=∠=,BC 平分ABD ∠,22ABD CBD α∴∠=∠=,1801802BAC ABD α∴∠=︒-∠=︒-,又:BAE CAE n ∠∠=,():BAC CAE CAE n ∴∠+∠∠=,(1802):CAE CAE n α︒-+∠∠=,解得18021CAE n α︒-∠=-;②如图3所示,//AC BD ,CBD ACB α∴∠=∠=, BC 平分ABD ∠,22ABD CBD α∴∠=∠=,1801802BAC ABD α∴∠=︒-∠=︒-,又:BAE CAE n ∠∠=,():BAC CAE CAE n ∴∠-∠∠=,(1802):CAE CAE n α︒--∠∠=, 解得18021CAE n α︒-∠=+.综上CAE ∠的度数为18021n α︒--或18021n α︒-+. 【点睛】 本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补. 两直线平行,内错角相等.合理应用平行线的性质是解决本题的关键. 15.(1)4;(2)45°;(3)P (0,-1)或(0,3)【分析】(1)根据非负数的性质得到a =−b ,a−b +4=0,解得a =−2,b =2,则A (−2,0),B (2,0),C (2,2),即可计算出解析:(1)4;(2)45°;(3)P (0,-1)或(0,3)【分析】(1)根据非负数的性质得到a =−b ,a−b +4=0,解得a =−2,b =2,则A (−2,0),B (2,0),C (2,2),即可计算出三角形ABC 的面积=4;(2)由于CB ∥y 轴,BD ∥AC ,则∠CAB =∠ABD ,即∠3+∠4+∠5+∠6=90°,过E 作EF ∥AC ,则BD ∥AC ∥EF ,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED =∠1+∠2=12×90°=45°;(3)先根据待定系数法确定直线AC 的解析式为y =12x +1,则G 点坐标为(0,1),然后利用S △PAC =S △APG +S △CPG 进行计算.【详解】解:(1)由题意知:a =−b ,a−b +4=0,解得:a =−2,b =2,∴ A (−2,0),B (2,0),C (2,2),∴S △ABC =1AB BC=42⋅; (2)∵CB ∥y 轴,BD ∥AC ,∴∠CAB =∠ABD ,∴∠3+∠4+∠5+∠6=90°,过E 作EF ∥AC ,∵BD ∥AC ,∴BD ∥AC ∥EF ,∵AE ,DE 分别平分∠CAB ,∠ODB ,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED =∠1+∠2=12×90°=45°;(3)存在.理由如下:设P 点坐标为(0,t ),直线AC 的解析式为y =kx +b ,把A (−2,0)、C (2,2)代入得: -2k+b=02k+b=2⎧⎨⎩,解得1k=2b=1⎧⎪⎨⎪⎩, ∴直线AC 的解析式为y =12x +1,∴G 点坐标为(0,1),∴S △PAC =S △APG +S △CPG =12|t−1|•2+12|t−1|•2=4,解得t =3或−1,∴P 点坐标为(0,3)或(0,−1).【点睛】本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.四、解答题16.(1)①115°;110°;②;理由见解析;(2);理由见解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②1902AFD B ∠=︒+∠;理由见解析;(2)1902AFD B ∠=︒-∠;理由见解析 【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出12BAG BAC ∠=∠,12FDG EDB ∠=∠,由三角形的外角性质即可得出结果;②由①得:∠EDB=∠C ,1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=∠B+∠BAG ,再由三角形的外角性质即可得出结论; (2)由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠,由三角形的外角性质和三角形内角和定理即可得出结论.【详解】(1)①若∠BAC=100°,∠C=30°,则∠B=180°-100°-30°=50°,∵DE ∥AC ,∴∠EDB=∠C=30°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,则∠BAC+∠C=180°-40°=140°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ 1401402=︒+⨯︒ 4070110=︒+︒=︒。

最新人教版七年级下册数学培优第七章 用坐标表示平移

最新人教版七年级下册数学培优第七章 用坐标表示平移

6.(教材 P80 习题 T10 变式)如图,已知长方形 ABCD 四个顶点的坐标分别是 A(2, -2 2 ),B(5,-2 2 ),C(5,- 2 ),D(2,- 2 ).将长方形 ABCD 向上平移 2 个单位长度,求所得的四边形 A′B′C′D′的四个顶点的坐标.
【解析】∵将长方形 ABCD 向上平移 2 个单位长度,∴所得的四边形 A′B′C′D′的 四个顶点的坐标分别为:A′(2,- 2 ),B′(5,- 2 ),C′(5,0),D′(2,0).
7.将某图形的各顶点的纵坐标都减去3,横坐标保持不变,则该图形( D ) A.沿x轴向右平移3个单位 B.沿x轴向左平移3个单位 C.沿y轴向上平移3个单位 D.沿y轴向下平移3个单位
8.如图,在平面直角坐标系中,点A(-3b,0)为x轴负半轴上一点,点B(0,4b) 为y轴正半轴上一点,其中b满足方程3(b+1)=6. (1)求点A,B的坐标; (2)点C为y负半轴上一点,且△ABC的面积为12,求点C的坐标.
将线段PQ平移使点P,Q分别落在两条坐标轴上,则点P平移后的对应点的
坐标是( D )
A.(0,2)
B.(0,-3)
C.(0,-2)或(3,0)
D.(0,2)或(-3,0)
3.若点P(2-m,-1),将P点向右平移2个单位长度后落在y轴上,则m= ___4___. 4.(教材P78习题T1变式)编队飞行(即平行飞行)的两架飞机A,B在坐标系中的 坐标分别为A(-1,2),B(-3,3),当飞机A飞到指定位置的坐标是(3,-1) 时,飞机B的坐标是____(_1_,__0_) _.
5.(教材P79习题T8变式)已知,三角形ABC在平面直角坐标系中的位置如图所 示. (1)写出A,B,C三点的坐标. (2)三角形ABC中任意一点P(x0,y0)经平移后 对应点为P1(x0+4,y0-3).将三角形ABC作 同样的平移得到△A1B1C1,写出B1,C1的坐标. (3)求△ABC的面积.

2022年人教版七年级下册数学同步培优第八章二元一次方程组第4节 三元一次方程组的解法

2022年人教版七年级下册数学同步培优第八章二元一次方程组第4节 三元一次方程组的解法

*8.4 三元一次方程组的解法知识点1 三元一次方程组的概念及解法 1.下列方程组中,是三元一次方程组的是( C )A .{x +y =0y +z =1z +w =5B .{x +y =2y +z =5z +w =9C .{3x +4z =72x +3y =9-z 5x -9y +7z =8D .{x 2-2y =0y +z =3x +y +z =12.方程组{x +y +z =6,y +z =3,x +y -z =4的解是 {x =3y =2z =1.知识点2 三元一次方程组的简单应用3.某农场有300名职工耕种51公顷土地,计划种植水稻、棉花和蔬菜.已知种植农作物每公顷所需的劳动力人数及投入的设备资金如表:已知该农场计划在设备上投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工有工作,而且投入的资金正好够用?解:设种植水稻x 公顷,棉花y 公顷,蔬菜z 公顷.根据题意,得{x +y +2z =67,4x +8y +5z =300,x +y +z =51,解得{x =15,y =20,z =16.答:种植水稻15公顷,棉花20公顷,蔬菜16公顷才能使所有职工有工作,而且投入的资金正好够用.4.方程组{x ∶y ∶z =1∶2∶3,x +y +z =36的解是( D )A.{x =2y =6z =9B.{x =6y =9z =12C.{x =1y =2z =3D.{x =6y =12z =185.如果方程组{x =y +5,2x -y =5的解是方程2x -3y +a =5的解,那么a 的值是 -10 .6.有甲、乙、丙三人,若甲、乙的年龄之和为15岁,乙、丙的年龄之和为16岁,丙、甲的年龄之和为17岁,则甲、乙、丙三人的年龄分别为多少岁? 解:设甲的年龄为x 岁,乙的年龄为y 岁,丙的年龄为z 岁.依题意,得{x +y =15,y +z =16,x +z =17,解得{x =8,y =7,z =9.答:甲的年龄为8岁,乙的年龄为7岁,丙的年龄为9岁.7.[拓展视野]某数学兴趣小组讨论一道吃仙果的趣味数学问题,题目如下: 三种仙果红紫白,八戒共吃十一对; 白果占紫三分一,紫果正是红二倍; 三种仙果各多少?看谁算得快又对.(1)小明分析:如果设红果x 个,紫果y 个,则白果有(22-x -y )个,根据题意,可列二元一次方程组为 {22-x -y =13yy =2x;(2)小敏分析:如果设红果x 个,紫果y 个,白果z 个,根据题意,可列三元一次方程组为 {x +y +z =22z =13y y =2x;(3)请你先填出上述小题中相应的方程组,然后选一种分析思路求解本题. 解:(3)二元一次方程组:设红果x 个,紫果y 个,则白果(22-x -y )个.根据题意,得{22-x -y =13y ,y =2x ,解得{x =6,y =12.则有红果6个,紫果12个,白果4个.三元一次方程组:设红果x 个,紫果y 个,白果z 个.根据题意,得{x +y +z =22,z =13y ,y =2x ,解得{x =6,y =12,z =4.则有红果6个,紫果12个,白果4个.(任选一种分析思路即可)。

最新人教版七年级(下册)实数数学试卷培优试题

最新人教版七年级(下册)实数数学试卷培优试题

一、选择题1.定义一种新运算“*”,即()*23m n m n =+⨯-,例如()2*322339=+⨯-=.则()6*3-的值为( ) A .12 B .24 C .27 D .30 2.若29x =,|y |=7,且0x y ->,则x +y 的值为( ) A .﹣4或10B .﹣4或﹣10C .4或10D .4或﹣10 3.若9﹣13的整数部分为a ,小数部分为b ,则2a +b 等于( ) A .12﹣13B .13﹣13C .14﹣13D .15﹣134.如示意图,小宇利用两个面积为1 dm 2的正方形拼成了一个面积为2 dm 2的大正方形,并通过测量大正方形的边长感受了2dm 的大小. 为了感知更多无理数的大小,小宇利用类似拼正方形的方法进行了很多尝试,下列做法不能实现的是( )A .利用两个边长为2dm 的正方形感知8dm 的大小B .利用四个直角边为3dm 的等腰直角三角形感知18dm 的大小C .利用一个边长为2dm 的正方形以及一个直角边为2dm 的等腰直角三角形感知6dm 的大小D .利用四个直角边分别为1 dm 和3 dm 的直角三角形以及一个边长为2 dm 的正方形感知10dm 的大小5.已知n 是正整数,并且n -1<326+<n ,则n 的值为( ) A .7B .8C .9D .106.有下列说法:①在1和2之间的无理数有且只有2,3这两个;②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④B .①②④C .②④D .②7.如图,点A 表示的数可能是( )A 21B 6C 11D 178.有一个数阵排列如下:1 2 4 7 11 16 22 3 5 8 12 17 23 6 9 13 18 24 10 14 19 2515 20 2621 2728则第20行从左至右第10个数为( ) A .425B .426C .427D .4289.如图,数轴上的点E ,F ,M ,N 表示的实数分别为﹣2,2,x ,y ,下列四个式子中结果一定为负数是( )A .x +yB .2+yC .x ﹣2D .2+x10.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间二、填空题11.对于任意有理数a ,b ,规定一种新的运算a ⊙b =a (a +b )﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____ 12.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕=__________.13.按一定规律排列的一列数依次为:2-,5,10-,17,26-,,按此规律排列下去,这列数中第9个数及第n 个数(n 为正整数)分别是__________.14.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.15.如图所示为一个按某种规律排列的数阵:根据数阵的规律,第7行倒数第二个数是_____.16.我们可以用符号f (a )表示代数式.当a 是正整数时,我们规定如果a 为偶数,f (a )=0.5a ;如果a 为奇数,f (a )=5a +1.例如:f (20)=10,f (5)=26.设a 1=6,a 2=f (a 1),a 3=f (a 2)…;依此规律进行下去,得到一列数:a 1,a 2,a 3,a 4…(n 为正整数),则2a 1﹣a 2+a 3﹣a 4+a 5﹣a 6+…+a 2013﹣a 2014+a 2015=_____.17.220a b a --=,则2+a b 的值是__________; 18.1x -(y +1)2=0,则(x +y )3=_____. 19.材料:一般地,n 个相同因数a 相乘:n a a a a a⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 20.规定:用符号[x ]表示一个不大于实数x 的最大整数,例如:[3.69]=3,3=2,[﹣2.56]=﹣3,[3=﹣2.按这个规定,[131]=_____.三、解答题21.观察下来等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, ……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”. (1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”: 52×_____=______×25;(2)设这类等式左边的两位数中,个位数字为a ,十位数字为b ,且2≤a +b≤9,则用含a ,b 的式子表示这类“数字对称等式”的规律是_______. 22.新定义:对非负数x“四舍五入”到个位的值记为<x>, 即当n 为非负数时,若1122n x n -≤<+,则<x>=n . 例如<0>=<0.49>=0,<0.5>=<(1)49>=1,<2>=2,<(3)5>=<(4)23>=4,… 试回答下列问题:(1)填空:<9.6>=_________;如果<x>=2,实数x 的取值范围是________________.(2)若关于x 的不等式组24130x x m x -⎧≤-⎪⎨⎪->⎩的整数解恰有4个,求<m>的值;(3)求满足65x x =的所有非负实数x 的值. 23.数学中有很多的可逆的推理.如果10b n =,那么利用可逆推理,已知n 可求b 的运算,记为()b f n =,如210100=, 则42(100);1010000f ==,则4(10000)f =.①根据定义,填空:(10)f =_________,()310f =__________.②若有如下运算性质:()()(),()()n f mn f m f n f f n f m m⎛⎫=+=- ⎪⎝⎭. 根据运算性质填空,填空:若(2)0.3010f =,则(4)f =__________;(5)f =___________; ③下表中与数x 对应的()f x 有且只有两个是错误的,请直接找出错误并改正.24.11,将这个数减去其整数部分,差∵23223<<,即23<<,∴的整数部分为2,小数部分为)2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12讲 与相交有关概念及平行线得判定考点·方法·破译1.了解在平面内,两条直线得两种位置关系:相交与平行、2.掌握对顶角、邻补角、垂直、平行、内错角、中旁内角得定义,并能用图形或几何符号表示它们、3.掌握直线平行得条件,并能根据直线平行得条件说明两条直线得位置关系、 经典·考题·赏析【例1】如图,三条直线AB 、CD 、EF 相交于点O ,一共构成哪 几对对顶角?一共构成哪几对邻补角?【解法指导】⑴对顶角与邻补角就是两条直线所形成得图角、⑵对顶角:有一个公共顶点,并且一个角得两边就是另一个角得两边得反向延长线、⑶邻补角:两个角有一条公共边,另一边互为反向延长线、有6对对顶角、 12对邻补角、 【变式题组】01.如右图所示,直线AB 、CD 、EF 相交于P 、Q 、R ,则:⑴∠ARC 得对顶角就是 、 邻补角就是 、⑵中有几对对顶角,几对邻补角?02.当两条直线相交于一点时,共有2对对顶角; 当三条直线相交于一点时,共有6对对顶角; 当四条直线相交于一点时,共有12对对顶角、 问:当有100条直线相交于一点时共有 对顶角、【例2】如图所示,点O 就是直线AB 上一点,OE 、OF 分别平分∠BOC 、 ∠AOC.⑴求∠EOF 得度数;⑵写出∠BOE 得余角及补角、【解法指导】解这类求角大小得问题,要根据所涉及得角得定义,以及各角得数量关系,把它们转化为代数式从而求解;【解】⑴∵OE 、OF 平分∠BOC 、∠AOC ∴∠EOC =21∠BOC ,∠FOC =21∠AOC ∴∠EOF =∠EOC +∠FOC =21∠BOC +21∠AOC =()AOC BOC ∠+∠21又∵∠BOC +∠AOC =180° ∴∠EOF =21×180°=90° ⑵∠BOE 得余角就是:∠COF 、∠AOF ;∠BOE 得补角就是:∠AOE 、【变式题组】01.如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,且∠EOC =100°,则∠BOD 得度数就是( )A .20° B . 40° C .50° D .80°02.(杭州)已知∠1=∠2=∠3=62°,则∠4= 、【例3】如图,直线l 1、l 2相交于点O ,A 、B 分别就是l 1、l 2上得点,试用三角尺完成下列作图:⑴经过点A 画直线l 2得垂线、 ⑵画出表示点B 到直线l 1得垂线段、【解法指导】垂线就是一条直线,垂线段就是一条线段、 【变式题组】A CDE FAB C DE F PQ RA BCEFEA ACD O (第1题图)01.P 为直线l 外一点,A 、B 、C 就是直线l 上三点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 得距离为( )A .4cm B . 5cm C .不大于4cm D .不小于6cm02 如图,一辆汽车在直线形得公路AB 上由A 向B 行驶,M 、N 为位于公路两侧得村庄;⑴设汽车行驶到路AB 上点P 得位置时距离村庄M 最近、行驶到AB 上点Q 得位置时,距离村庄N 最近,请在图中得公路上分别画出点P 、Q 得位置、⑵当汽车从A 出发向B 行驶得过程中,在 得路上距离M 村越来越近、、在 得路上距离村庄N 越来越近,而距离村庄M越来越远、 【例4】如图,直线AB 、CD 相交于点O ,OE ⊥CD ,OF ⊥AB ,∠DOF =65°,求∠BOE 与∠AOC 得度数、【解法指导】图形得定义现可以作为判定图形得依据,也可以作为该图形具备得性质,由图可得:∠AOF =90°,OF ⊥AB. 【变式题组】 01.如图,若EO ⊥AB 于O ,直线CD 过点O ,∠EOD ︰∠EOB =1︰3,求∠AOC 、∠AOE 得度数、02.如图,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD. ⑴求∠AOC 得度数;⑵试说明OD 与AB 得位置关系、 03.如图,已知AB ⊥BC 于B ,DB ⊥EB 于B ,并且∠CBE ︰∠ABD =1︰2,请作出∠CBE 得对顶角,并求其度数、【例5】如图,指出下列各组角就是哪两条直线被哪一条直线所截而得到得,并说出它们得名称:∠1与∠2:∠1与∠3:∠1与∠6:∠2与∠6: ∠2与∠4:∠3与∠5: ∠3与∠4:【解法指导】正确辩认同位角、内错角、同旁内角得思路就是:首先弄清所判断得就是哪两个角,其次就是找到这两个角公共边所在得直线即截线,其余两条边所在得直线就就是被截得两条直线,最后确定它们得名称、【变式题组】01.如图,平行直线AB 、CD 与相交直线EF ,GH 相交,图中得同旁内角共有( )A .4对B . 8对C .12对D .16对 02.如图,找出图中标出得各角得同位角、内错角与同旁内角、03.如图,按各组角得位置判断错误得就是( )A .∠1与∠2就是同旁内角F BA O C D E C DB AE O B A C DO AB A E D CF EB A D 1 4 2 3 6 5 AB DC H GEF7 1 5 6 84 12 乙丙 3 2 3 4 56 1 2 3 4甲B .∠3与∠4就是内错角C .∠5与∠6就是同旁内角D .∠5与∠7就是同旁内角【例6】如图,根据下列条件,可推得哪两条直线平行?并说明理由• ⑴∠CBD =∠ADB ;⑵∠BCD +∠ADC =180° ⑶∠ACD =∠BAC 【解法指导】图中有即即有同旁内 角,有“”即有内错角、【解法指导】⑴由∠CBD =∠ADB ,可推得AD ∥BC ;根据内错角相等,两直线平行、⑵由∠BCD +∠ADC =180°,可推得AD ∥BC ;根据同旁内角互补,两直线平行、 ⑶由∠ACD =∠BAC 可推得AB ∥DC ;根据内错角相等,两直线平行、 【变式题组】01.如图,推理填空、⑴∵∠A =∠ (已知)∴AC ∥ED ( ) ⑵∵∠C =∠ (已知)∴AC ∥ED ( ) ⑶∵∠A =∠ (已知) ∴AB ∥DF ( )02.如图,AD 平分∠BAC ,EF 平分∠DEC ,且∠1=∠2,试说明DE 与AB 得位置关系、 解:∵AD 就是∠BAC 得平分线(已知)∴∠BAC =2∠1(角平分线定义)又∵EF 平分∠DEC (已知)∴ ( )又∵∠1=∠2(已知)∴ ( )∴AB ∥DE ( )03.如图,已知AE 平分∠CAB ,CE 平分∠ACD.∠CAE +∠ACE =90°,求证:AB ∥CD.04.如图,已知∠ABC =∠ACB ,BE 平分∠ABC ,CD 平分∠ACB ,∠EBF =∠EFB ,求证:CD ∥EF 、【例7】如图⑴,平面内有六条两两不平行得直线,试证:在所有得交角中,至少有一个角小于31°、【解法指导】如图⑵,我们可以将所有得直线移动后,使它们相交于同一点,此时得图形为图⑵、证明:假设图⑵中得12个角中得每一个角都不小于31° 则12×31°=372°>360°1 A B C23 456 7 ABCD OA BD E FC ABCDEA B CD EF1 2 A B CD E Fl 1l 2l 3 l 4l 5l 6图⑴ l 1l 2 l 3l 4 l 5 l 6图⑵这与一周角等于360°矛盾所以这12个角中至少有一个角小于31° 【变式题组】01.平面内有18条两两不平行得直线,试证:在所有得交角中至少有一个角小于11°、02.在同一平面内有2010条直线a 1,a 2,…,a 2010,如果a 1⊥a 2,a 2∥a 3,a 3⊥a 4,a 4∥a 5……那么a 1与a 2010得位置关系就是 、03.已知n (n >2)个点P 1,P 2,P 3…Pn 、在同一平面内没有任何三点在同一直线上,设S n 表示过这几个点中得任意两个点所作得所有直线得条数,显然:S 2=1,S 3=3,S 4=6,∴S 5=10…则Sn = 、演练巩固·反馈提高01.如图,∠EAC =∠ADB =90°、下列说法正确得就是( )A .α得余角只有∠B B .α得邻补角就是∠DAC C .∠ACF 就是α得余角D .α与∠ACF 互补 02.如图,已知直线AB 、CD被直线EF 所截,则∠EMB 得同位角为( )A .∠AMF B .∠BMF C .∠ENC D .∠END03.下列语句中正确得就是( )A .在同一平面内,一条直线只有一条垂线B .过直线上一点得直线只有一条C .过直线上一点且垂直于这条直线得直线有且只有一条D .垂线段就就是点到直线得距离04.如图,∠BAC =90°,AD ⊥BC 于D ,则下列结论中,正确得个数有( )①AB ⊥AC ②AD 与AC 互相垂直 ③点C 到AB 得垂线段就是线段AB ④线段AB 得长度就是点B 到AC 得距离 ⑤垂线段BA 就是点B 到AC 得距离 ⑥AD >BD A .0 B . 2 C .4 D .605.点A 、B 、C 就是直线l 上得三点,点P 就是直线l 外一点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 得距离就是( )A .4cm B .5cm C .小于4cm D .不大于4cm06.将一副直角三角板按图所示得方法旋转(直角顶点重合),则∠AOB +∠DOC = 、07.如图,矩形ABCD 沿EF 对折,且∠DEF =72°,则∠AEG = 、08.在同一平面内,若直线a 1∥a 2,a 2⊥a 3,a 3∥a4,…则a 1 a 10、(a 1与a 10不重合)UDZkzHi 。

rcCJJwl 。

09.如图所示,直线a 、b 被直线c 所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判断a ∥b 得条件得序号就是 、10.在同一平面内两条直线得位置关系有 、ABCDOABCDEFG H abc第6题图第7题图第9题图1 2 3 4 5 6 7 81A EBCFDA BC DFE M Nα第1题图第2题图AB DC第4题图11.如图,已知BE 平分∠ABD ,DE 平分∠CDB ,且∠E =∠ABE +∠EDC.试说明AB ∥CD ?12.如图,已知BE 平分∠ABC ,CF 平分∠BCD ,∠1=∠2,那么直线AB 与CD 得位置关系如何?13.如图,推理填空:⑴∵∠A = (已知)∴AC ∥ED ( ) ⑵∵∠2= (已知) ∴AC ∥ED ( )⑶∵∠A + =180°(已知) ∴AB ∥FD.14.如图,请您填上一个适当得条件 使AD ∥BC.培优升级·奥赛检测01.平面图上互不重合得三条直线得交点得个数就是( ) A .1,3 B .0,1,3 C .0,2,3D .0,1,2,302.平面上有10条直线,其中4条就是互相平行得,那么这10条直线最多能把平面分成( )部分、A .60 B . 55 C .50 D .4503.平面上有六个点,每两点都连成一条直线,问除了原来得6个点之外,这些直线最多还有( )个交点、A .35 B . 40 C .45 D .5504.如图,图上有6个点,作两两连线时,圆内最多有__________________交点、05.如图就是某施工队一张破损得图纸,已知a 、b 就是一个角得两边,现在要在图纸上画一条与这个角得平分线平行得直线,请您帮助这个施工队画出这条平行线,并证明您得正确性、06.平面上三条直线相互间得交点得个数就是( )A .3B .1或3C .1或2或3D .不一定就是1,2,307.请您在平面上画出6条直线(没有三条共点)使得它们中得每条直线都恰好与另三条直线相交,并简单说明画法? 08.平面上有10条直线,无任何三条交于一点,要使它们出现31个交点,怎么安排才能办到?09.如图,在一个正方体得2个面上画了两条对角线AB 、AC ,那么两条对角线得夹角等于( )A .60°B . 75°C .90°D .135°10.在同一平面内有9条直线如何安排才能满足下面得两个条件?⑴任意两条直线都有交点; ⑵总共有29个交点、第13讲 平行线得性质及其应用 考点·方法·破译1.掌握平行线得性质,正确理解平行线得判定与性质定理之间得区别与联系;AC D E B A B C D EF12AB C D E F第14题图a b ABC2.初步了解命题,命题得构成,真假命题、定理;3.灵活运用平行线得判定与性质解决角得计算与证明,确定两直线得位置关系,感受转化思想在解决数学问题中得灵活应用、经典·考题·赏析【例1】如图,四边形ABCD 中,AB ∥CD , BC ∥AD ,∠A =38°,【解法指导】两条直线平行,同位角相等;两条直线平行,内错角相等; 两条直线平行,同旁内角互补、平行线得性质就是推导角关系得重要依据之一,必须正确识别图形得特征,瞧清截线,识别角得关系式关键、【解】:∵AB ∥CD BC ∥AD∴∠A +∠B =180° ∠B +∠C =180°(两条直线平行,同旁内角互补) ∴∠A =∠C ∵∠A =38° ∴∠C =38° 【变式题组】01.如图,已知AD ∥BC ,点E 在BD 得延长线上,若∠ADE =155°,则∠DBC 得度数为( )A .155° B .50° C .45° D .25°02.(安徽)如图,直线l 1 ∥ l 2,∠1=55°,∠2=65°,则∠3为( )A. 50°B. 55°C. 60°D.65°03.如图,已知FC ∥AB ∥DE ,∠α:∠D :∠B =2: 3: 4, 试求∠α、∠D 、∠B 得度数、【例2】如图,已知AB ∥CD ∥EF ,GC ⊥CF ,∠B =60°,∠EFC =45°,求∠BCG得度数、【解法指导】平行线得性质与对顶角、邻补角、垂直与角平分线相结合,可求各种位置得角得度数,但注意瞧清角得位置、【解】∵AB ∥CD ∥EF ∴∠B =∠BCD ∠F =∠FCD (两条直线平行,内错角相等)又∵∠B =60° ∠EFC =45° ∴∠BCD =60° ∠FCD =45° 又∵GC ⊥CF ∴∠GCF =90°(垂直定理) ∴∠GCD =90°-45°=45° ∴∠BCG =60°-45°=15°【变式题组】01.如图,已知AF ∥BC , 且AF 平分∠EAB ,∠B =48°,则∠C 得得度数=_______________02、如图,已知∠ABC +∠ACB =120°,BO 、CO 分别∠ABC 、∠ACB ,DE 过点O 与BC 平行,则∠BOC =___________03.如图,已知AB ∥ MP ∥CD , MN 平分∠AMD ,∠A =40°,∠D =50°,求∠NMP 得度数、AB CDOE FAEBC (第1题图) (第2题图) E A F GD C BBA MCD N P (第3题图)DA2 E1 B CB FE AC D 【例3】如图,已知∠1=∠2,∠C =∠D. 求证:∠A =∠F 、 【解法指导】因果转化,综合运用、逆向思维:要证明∠A =∠F ,即要证明DF ∥AC. 要证明DF ∥AC , 即要证明∠D +∠DBC =180°, 即:∠C +∠DBC =180°;要证明∠C +∠DBC =180°即要证明DB ∥EC. 要证明DB ∥EC 即要 证明∠1=∠3、证明:∵∠1=∠2,∠2=∠3(对顶角相等)所以∠1=∠3 ∴DB ∥EC (同位角相等•两直线平行)∴∠DBC +∠C =180°(两直线平行,同旁内角互补)∵∠C =∠D ∴∠DBC +∠D =180° ∴DF ∥AC (同旁内角,互补两直线平行)∴∠A =∠F (两直线平行,内错角相等)【变式题组】01.如图,已知AC ∥FG ,∠1 02.如图,已知∠1+∠2=18003.如图,两平面镜α、β于β入射到α上,于α,则角θ等于【例4】如图,已知EG ⊥求证:AD 平分∠BAC.条件给我们带来得结论,得条件,∠1=∠3)证明:∵EG ⊥BC ,AD ⊥BC (垂直定义)∴EG ∥AD (∵∠1=∠3 ∴∠3=∠∴AD 平分∠BAC (角平分线定义) 【变式题组】01.如图,若AE ⊥BC 于E ,∠1=∠2,求证:DC ⊥BC.02.如图,在△ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F , AC ∥ED ,CE平分∠ACB. 求证:∠EDF =∠BDF 、3.已知如图,AB ∥CD ,∠B =40°,CN 就是∠BCE 得平分线、 CM ⊥CN ,求:∠BCM 得度数、【例5】已知,如图,AB ∥EF ,求证:∠ABC +∠BCF +∠CFE =360°【解法指导】从考虑360°这个特殊角入手展开联想,分析类比,联想周角、构造两个“平角”或构造两组“互补”得角、过点C 作CD ∥AB 即把已知条件AB ∥EF 联系起来,这就是关键、 【证明】:过点C 作CD ∥AB ∵CD ∥AB ∴∠1+∠ABC =180° (两直线平行,同旁内角互补) 又∵AB ∥EF ,∴CD ∥EF (平行 于同一条直线得两直线平行) ∴∠2+∠CFE =180°(两直线平行,同旁内角互补) ∴∠ABC +∠1+∠2+∠CFE =180°+180°=360° 即∠ABC +∠BCF +∠CFE =360° 【变式题组】01.如图,已知,AB ∥CD ,分别探究下面四个图形中∠APC 与∠PAB 、∠PCD 得关系,请您从所得四个关系中选出任意一个,说明您探究得结论得正确性、A D M CN E B F ED 21 AB Cα β P B C D A∠P =α+β3 21 γ 4ψ D α βE B C AFH F γ D α β E B CAF D EBC A B CA A ′ lB ′C ′结论:⑴____________________________ ⑵____________________________⑶____________________________ ⑷____________________________【例6】如图,已知,AB ∥CD ,则∠α、∠β、∠γ、∠ψ之间得关系就是 ∠α+∠γ+∠ψ-∠β=180° 【解法指导】基本图形善于从复杂得图形中找到基本图形,运用基本图形得规律打开思路、【解】过点E 作EH ∥AB. 过点F 作FG ∥AB. ∵AB ∥EH ∴∠α=∠1(两直线平行,内错角相等)又∵FG ∥AB ∴EH ∥FG (平行于同一条直线得两直线平行)∴∠2=∠3 又∵AB ∥CD ∴FG ∥CD (平行于同一条直线得两直线平行)∴∠ψ+∠4=180°(两直线平行,同旁内角互补)∴∠α+∠γ+∠ψ-∠β=∠1+∠3+∠4-ψ-∠1-∠2=∠4+ψ=180°【变式题组】01.如图, AB ∥EF ,∠C =90°,则∠α、∠β、∠γ得关系就是( )A . ∠β=∠α+∠γB .∠β+∠α+∠γ=180°C . ∠α+∠β-∠γ=90°D .∠β+∠γ-∠α=90°02.如图,已知,AB ∥CD ,∠ABE 与∠CDE 得平分线相交于点F ,∠E =140°,求∠BFD 得度数、 【例7】如图,平移三角形ABC ,设点A 移动到点A /,画出平移后得三角形A /B /C /、 【解法指导】抓住平移作图得“四部曲”——定,找,移,连、 ⑴定:确定平移得方向与距离、 ⑵找:找出图形得关键点、 ⑶移:过关键点作平行且相等得线段,得到关键点得对应点、 ⑷连: 按原图形顺次连接对应点、 【解】①连接AA / ②过点B 作AA /得平行线l ③在l 截取BB /=AA /,则点B /就就是得B 对应点,用同样得方法作出点C 得对应点C /、连接A /B /,B /C /,C /A /就得到平移后得三角形A /B /C /、【变式题组】01.如图,把四边形ABCD 按箭头所指得方向平移21cm ,作出平移后得图形、02.如图,已知三角形ABC 中,∠C =90°, BC =4,AC =4,现将△ABC 沿CB A /B /C /得位置,若平移距离为3, 求△ABC 与△A /B /C /03.原来就是重叠得两个直角三角形,将其中一个三角形沿着BC 方向平移BE 得距离,就得到此图形,求阴影部分得面积、(单位:厘米)BAPCAC CDAA PCBD PBPD BD ⑴⑵⑶⑷B B /AA /C C /西 B 30°A北东 南演练巩固 反馈提高01.如图,由A 测B 得方向就是( ) A .南偏东30° B .南偏东60°C .北偏西30°D .北偏西60°02.命题:①对顶角相等;②相等得角就是对顶角;③垂直于同一条直线得两直线平行;④平行于同一条直线得两直线垂直、其中得真命题得有( )A .1个 B .2个 C .3个 D .4个03.一个学员在广场上练习驾驶汽车,两次拐弯后,行驶得方向与原来得方向相同,两次拐弯得角度可能就是( )A .第一次向左拐30°,第二次向右拐30° B .第一次向右拐50°,第二次向左拐130° C .第一次向左拐50°,第二次向右拐130° D .第一次向左拐60°,第二次向左拐120° 04.下列命题中,正确得就是( )A .对顶角相等B . 同位角相等C .内错角相等D .同旁内角互补05.学习了平行线后,小敏想出过直线外一点画这条直线得平行线得新方法,就是通过折一张半透明得纸得到得[如图⑴—⑷]从图中可知,小敏画平行线得依据有( )①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行、A .①② B .②③ C .③④ D .①④06.在A 、B 两座工厂之间要修建一条笔直得公路,从A 地测得B 地得走向就是南偏东52°、现A 、B 两地要同时开工,若干天后,公路准确对接,则B 地所修公路得走向应该就是( )A .北偏东52° B .南偏东52° C .西偏北52° D .北偏西38° 07.下列几种运动中属于平移得有( )①水平运输带上得砖得运动;②笔直得高诉公路上行驶得汽车得运动(忽略车轮得转动);③升降机上下做机械运动;④足球场上足球得运动、A .1种 B .2种 C .3种 D .4种08.如图,网格中得房子图案正好处于网格右下角得位置、平移这个图案,使它正好位于左上角得位置(不能出格)150° 120° D B C E 湖4 3 2 1 AB E FCD 4 P 23 1A B E FCD09.观察图,哪个图就是由图⑴平移而得到得( )10.如图,AD ∥BC ,AB ∥CD ,AE ⊥BC ,现将△ABE 进行平移、 平移方向为射线AD 得方向、 平移距离为线段BC 得长,则平移得到得三角形就是图中( )图得阴影部分、 11.判断下列命题就是真命题还就是假命题,如果就是假命题,举出一个反例、⑴对顶角就是相等得角;⑵相等得角就是对顶角;⑶两个锐角得与就是钝角;⑷同旁内角互补,两直线平行、12.把下列命题改写成“如果……那么……”得形式,并指出命题得真假、⑴互补得角就是邻补角; ⑵两个锐角得与就是锐角; ⑶直角都相等、13.如图,在湖边修一条公路、如果第一个拐弯处∠A =120°,第二个拐弯处∠B =150°,第三个拐弯处∠C ,这时道路CE 恰好与道路AD 平行,问∠C 就是多少度?并说明理由、 VsV5EKu 。

相关文档
最新文档