第31课时 矩形、菱形、正方形学案 基训题目

合集下载

八年级数学下册矩形菱形与正方形矩形矩形的判定练习新版华东师大版

八年级数学下册矩形菱形与正方形矩形矩形的判定练习新版华东师大版

课时作业(三十一)[19.1 2. 第1课时矩形的判定]一、选择题1.如图K-31-1,要使平行四边形ABCD是矩形,可添加的条件是链接听课例3归纳总结( )图K-31-1A.OA=OC,OB=OD B.AC=BDC.AB=BC D.AC⊥BD2.下列说法:①两条对角线相等的四边形是矩形;②有一组对边相等,一组对角是直角的四边形是矩形;③有一个角为直角,两条对角线相等的四边形是矩形;④四个角都相等的四边形是矩形;⑤相邻两边都互相垂直的四边形是矩形.其中正确的说法有( ) A.2个B.3个C.4个D.5个3.如图K-31-2,过四边形ABCD的四个顶点分别作对角线AC,BD的平行线,若所围成的四边形EFGH是矩形,则四边形ABCD必须满足的条件是( )A.AD⊥CD B.AD=CDC.AC⊥BD D.AC=BDK-31-2K-31-34.如图K-31-3,在锐角三角形ABC中,O是AC边上的一个动点,过点O作直线MN ∥BC,设MN交∠ACB的平分线于点E,交∠ACB处的外角平分线于点F,下列结论中正确的是( )①OE=OF;②CE=CF;③若CE=12,CF=5,则OC的长为6;④当AO=CO时,四边形AECF是矩形.A.①②B.①④C.①③④ D.②③④二、填空题5.如图K-31-4,在平行四边形ABCD中,延长AD到点E,使DE=AD,连结EB,EC,DB.请你添加一个条件:__________,使四边形DBCE是矩形.图K-31-4图K-31-56.如图K-31-5所示是由四根木棍钉成的平行四边形框架,AB=8 cm,AD=6 cm,现固定AB,转动AD,当∠DAB=________时,▱ABCD的面积最大,此时四边形ABCD是________,面积是__________.链接听课例1归纳总结图K-31-67.如图K-31-6,Rt△ABC中,∠C=90°,AC=BC=6 cm,E是斜边AB上任意一点,则点E到两直角边的距离之和为________cm.三、解答题8.如图K-31-7,矩形ABCD的对角线AC,BD相交于点O,E,F,G,H分别是OA,OB,OC,OD的中点.求证:四边形EFGH是矩形.图K-31-79.如图K-31-8,在Rt△ABC中,∠C=90°,O是斜边AB上的点,∠A=∠ABF,EF ∥BC.求证:四边形BCEF是矩形.链接听课例2归纳总结图K-31-810.如图K-31-9,在四边形ABCD中,AD∥BC,∠D=90°,∠B和∠BCD互补,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4 cm,四边形ABCD的周长为32 cm,求AE的长.图K-31-911.2020·徐州如图K-31-10,在平行四边形ABCD中,O是边BC的中点,连结DO并延长,交AB的延长线于点E,连结BD,EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=50°,则当∠BOD=________°时,四边形BECD是矩形.链接听课例1归纳总结图K-31-1012.·青岛如图K-31-11,在▱ABCD中,对角线AC与BD相交于点E,G为AD的中点,连结CG,CG的延长线交BA的延长线于点F,连结FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.图K-31-11动点探究如图K-31-12所示,在矩形ABCD中,AB=20 cm,点P从点A开始沿折线ABCD以4 cm/s的速度移动,点Q从点C开始沿CD边以1 cm/s的速度移动.如果点P和Q 分别从点A和点C同时出发,当其中一点到达点D时,另一点也随之停止运动,设运动时间为t(s),当t为何值时,四边形APQD为矩形?图K-31-12详解详析【课时作业】 [课堂达标] 1.[答案] B 2.[答案] B3.[答案] C 4.[答案] B 5.[答案] EB =DC(答案不唯一) 6.[答案] 90° 矩形 48 cm 27.[答案] 68.证明:∵E 是OA 的中点,G 为OC 的中点, ∴OE =12OA ,OG =12OC.∵在矩形ABCD 中,OA =OC ,∴OE =OG. 同理OF =OH ,∴四边形EFGH 是平行四边形. ∵OE =12OA ,OG =12OC ,∴EG =OE +OG =12AC.同理FH =12BD.又在矩形ABCD 中,AC =BD ,∴EG =FH , ∴四边形EFGH 是矩形.9.证明:∵EF ∥BC ,∴∠AEO =∠C =90°, ∴∠CEF =90°.∵∠A =∠ABF ,∴BF ∥AC , ∴∠CBF =180°-∠C =90°, ∴四边形BCEF 是矩形.10.解:∵AD ∥BC ,∠D =90°,∴∠BCD =90°. ∵∠B 和∠BCD 互补,∴∠B =90°, ∴四边形ABCD 是矩形,∴∠A =90°. ∵EF ⊥CE ,∴∠FEC =90°, ∴∠AEF +∠DEC =90°.而∠DCE +∠DEC =90°,∴∠AEF =∠DCE. 又∵∠A =∠D =90°,EF =CE ,∴△AEF≌△DCE,∴AE=CD.∵四边形ABCD的周长为32 cm,AD=AE+DE,∴2(AE+AE+4)=32,解得AE=6(cm).11.[解析] (1)先根据A.A.S.证明△EBO≌△DCO,再根据对角线互相平分的四边形是平行四边形进行判定;(2)若四边形BECD为矩形,则BC=DE,BD⊥AE,又AD=BC,∴AD=DE.根据等腰三角形的性质,可知∠ADB=∠EDB=40°,故∠BOD=180°-∠ADE=100°.解:(1)证明:∵四边形ABCD是平行四边形,∴AE∥DC,∴∠EBO=∠DCO,∠BEO=∠CDO.∵O是边BC的中点,∴BO=CO,∴△EBO≌△DCO,∴EO=DO.又∵BO=CO,∴四边形BECD是平行四边形.(2)10012.解:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠FAD=∠CDG.∵G为AD的中点,∴AG=DG.又∵∠AGF=∠DGC,∴△AGF≌△DGC,∴AF=CD.又∵AB=CD,∴AB=AF.(2)四边形ACDF为矩形.证明:∵∠BCD=120°,∴∠BAD=120°,∴∠FAG=60°.又∵AG=AB,AB=AF,∴AG=AF,∴△AGF为等边三角形,∴AG=FG.∵AF∥CD,AF=CD,∴四边形ACDF为平行四边形,∴AD=2AG,CF=2FG,∴AD=CF,∴四边形ACDF为矩形.[素养提升][解析] 若四边形APQD为矩形,已有∠A=90°,需满足四边形APQD为平行四边形,只需AP=DQ.解:根据题意,当AP=DQ时,由AB∥CD,可得四边形APQD为平行四边形.又∵∠A=90°,∴四边形APQD为矩形.∵CQ=t,∴DQ=20-t.又∵AP=4t,∴4t=20-t,解得t=4,∴当t为4 s时,四边形APQD为矩形.。

矩形、菱形、正方形培优习题培训课件

矩形、菱形、正方形培优习题培训课件

DC B AEPB D A (P )C矩形、菱形、正方形习题汇编一、填空题1.在矩形ABCD 中,∠AOD=130°,则∠ACB=__ _2.已知矩形的一条对角线长是8cm ,两条对角线的一个交角为60°,则矩形的周长为______3.矩形ABCD 被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86cm , 对角线是13cm ,那么矩形的周长是____________4.如图所示,矩形ABCD 中,AE ⊥BD 于E ,∠BAE=30°,BE=1cm ,那么DE 的长为_____ 5、直角三角形斜边上的高与中线分别是5cm 和6cm ,则它的面积为___6、已知,在Rt △ABC 中,BD 为斜边AC 上的中线,若∠A=35°,那么∠DBC= 。

7.已知菱形两条对角线的长分别为5cm 和8cm ,则这个菱形的面积是______cm .8.若菱形的周长为24 cm ,一个内角为60°,则菱形的面积为______ cm 2。

9 .已知:菱形的周长为40cm ,两条对角线长的比是3:4。

求两对角线长分别是 。

10、已知菱形的面积等于80cm2,高等于8cm ,则菱形的周长为 . 11、如图,P 为菱形ABCD 的对角线上 一 点,PE ⊥AB 于点E ,PF ⊥AD 于点 F ,PF=3cm ,则P 点到AB 的距离是_____ cm12、如图,菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB 、BC 的中点,则PM +PN 的最小值是_______.13、□ABCD 的对角线AC 与BD 相交于点O ,(1)若AB=AD ,则□ABCD 是 形; (2)若AC=BD ,则□ABCD 是 形;(3)若∠ABC 是直角,则□ABCD 是 形; (4)若∠BAO=∠DAO ,则□ABCD 是 形。

九年级数学 《矩形、菱形、正方形》学案

九年级数学 《矩形、菱形、正方形》学案

山东省滨州市无棣县埕口中学九年级数学《矩形、菱形、正方形》学案一、动动手来动动脑,自主学习有必要!1.矩形、菱形、正方形的概念:(1)矩形:有的平行四边形是矩形;(2)菱形:有的平行四边形是菱形;(3)正方形:有的平行四边形是正方形.2.矩形、菱形、正方形的重要性质:矩形的性质:(1)边:矩形的对边;(2)角:矩形的四个角都是;(3)对角线:矩形的对角线;(4)直角三角形等于斜边的一半.菱形的性质:(1)边:菱形的四条边;(2)角:菱形的对角;(3)对角线:菱形的对角线;并且 .正方形的性质:(1)边:正方形的四条边;(2)角:正方形的四个角都是;(3)对角线:正方形的对角线;并且 .2.矩形、菱形、正方形的判定定理:矩形的判定定理:对角线的平行四边形是矩形.菱形的判定定理:(1)的四边形是菱形;(2)对角线的平行四边形是菱形.正方形的判定:既是,又是的四边形是正方形.二、名师点拨不可少,关键环节要记牢!1、理解矩形、菱形、正方形的概念例1 一组对边平行且相等的四边形:①一定是平行四边形;②可能是矩形;③不一定是菱形;④不一定不是正方形,其中正确的是()A.①②B.①③C.①②③④D.①②③关键点提示:对于条件“一组对边平行且相等的四边形”,根据平行四边形的概念一定可以得出平行四边形的结论,而根据矩形、菱形、正方形的概念,矩形、菱形、正方形的结论都是有可能的.2、掌握矩形、菱形、正方形的性质例2 如图,矩形ABCD中,对角线AC、BD相较于点O,∠AOB=600,且AB=4,求AC和BC的长.关键点提示:根据矩形对角线的性质可知,OA=O B=OC=OD,由∠AOB=600,可判断出△AOB的形状,进而求得AC 的长,最后根据勾股定理可求BC 的长.例3 如图,菱形ABCD 中,对角线AC 、BD 相较于点O ,AC=10cm,BD=24cm,求菱形的周长.关键点提示:由菱形的对角线互相平分可求得OA 、OB 的长,由AC ⊥BD ,根据勾股定理可求菱形的边长.菱形的四条边相等,菱形的周长为边长的4倍.例4 如图,正方形ABCD 中,点E 、F 分别是BC 、CD 的中点,连接AE 、BF ,求证:AE ⊥BF.关键点提示:本题要抓住正方形的四条边相等,四个角相等这个性质,找到全等三角形,再根据三角形的内角和定理可求得一个角等于900.例5 如图,正方形ABCD 中,点E 在对角线AC 上,且AE=AB,求∠AEB 的度数.关键点提示:由于正方形的四个角都是直角并且每条对角线平分一组对角,因此可求得∠CAB=450,再运用等角三角形的性质即可求解.3、掌握矩形、菱形、正方形的判定例6 如图,点E 是△ABC 的边BC 上任一点,过点E 作ED ∥AC 交AB 于E ,作EF ∥AB 交AC 于F ,在△ABC 中添加一个什么条件可得到四边形ADEF 是矩形,并给予证明.关键点提示:由条件ED ∥AC 和EF ∥AB 可判断四边形ADEF 是平行四边形,因此根据矩形的定义,要得到四边形ADEF 是矩形,只需在△ABC 中添加∠A=900.例7 如图,在△ABC 中,AD 平分∠BAC,AD 的垂直平分线EF 交AB 于点E ,交AC 于点F.求证:四边形AEDF 是菱形.关键点提示:要证四边形AEDF 是菱形,可证四条边相等.由线段垂直平分线的性质可得AE=DE,AF=DF,再通过证△AOE 与△AOF 全等,得AE=AF ,易证AE=ED=DF=FA. AB C DOAB CD OC FDA B C E D A D B EC F AEB DC F O例8 如图,在Rt △ABC 中,∠C=900,点D 是斜边的中点,过点分别作DE ⊥AC 于E,DF ⊥BC 于F ,若AC=BC,试判断四边形AEDF 的形状,并证明你的结论.关键点提示:根据正方形的概念,要证明一个四边形是正方形,就要证明它既是矩形,又是菱形.本文例题参考答案: 例1、答案:C.例2、∵矩形ABCD ,∴OA=OB=OC=OD,∵∠AOB=600,∴△AOB 是等边三角形,∴AC=2OA=2AB=8. 在Rt △ABC 中,由勾股定理得BC=34482222=-=-AB AC .例3、∵菱形ABCD ,∴AC ⊥BD ,OA=21AC=5cm,OB=21BD=12cm, 在Rt △AOB 中,由勾股定理得AB=131252222=+=+OB OA (cm ), ∴菱形ABCD 的周长为4×13=52(cm).例4、∵正方形ABCD ,∴AB=BC=CD,∠ABC=∠BCF=900, ∵点E 、F 分别是BC 、CD 的中点,∴BE=21BC,CF=21CD, ∴BE=CF, ∴△ABE ≌△BCF, ∴∠AEB=∠BFC,∵∠FBC+∠BFC=900, ∴∠FBC+∠AEB=900,∴∠BOE=900, ∴AE ⊥BF.例5、∵正方形ABCD ,∴AC 平分∠DAB,∵∠DAB=900, ∴∠CAB=450,∵AE=AB, ∴∠AEB=24518000-=67.50例6、在△ABC 中添加∠A=900.理由:∵ED ∥AC ,EF ∥AB ,∴四边形ADEF 是平行四边形,∵∠A=900,∴四边形ADEF 是矩形.例7、∵EF 是AD 的垂直平分线,∴AE=DE,AF=DF, ∵AD 平分∠BAC, ∴∠EAO=∠FAO,∵∠AOE=∠AOF=900,AO=AO, ∴△AOE ≌△AOF,∴AE=AF, ∴AE=ED=DF=FA, ∴四边形AEDF 是菱形. 例8、四边形AEDF 是正方形.理由:∵DE ⊥AC ,DF ⊥BC ,AC ⊥BC,∴四边形AEDF 是矩形,∵AC=BC, ∴∠A=∠B, ∵AD=BD, ∠AED=∠BFD=900, ∴△ADE ≌△BDF, ∴DE=DF, ∴四边形AEDF 是正方形. 三、归纳小结细梳理,适当做些练习题!C E AD B F1、体系梳理:2、练习推荐:请同学们自主完成本期辅导第二版的《同步训练》.。

(完整版)矩形、菱形与正方形-专题训练(含答案)

(完整版)矩形、菱形与正方形-专题训练(含答案)

矩形、菱形与正方形专题训练(含答案)班级________姓名________成绩________一、选择题(每小题3分,共30分)1.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )A.12 B.24 C.12 3 D.16 3第1题图第2题图第3题图第4题图2.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( ) A.14 B.15 C.16 D.173.如图,将矩形ABCD沿对角线BD折叠,使点C与点C′重合.若AB=2,则C′D的长为( ) A.1 B.2 C.3 D.44.如图,在△ABC中,AC=BC,点D,E分别是边AB,AC的中点.将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是( )A.矩形B.菱形C.正方形D.梯形5.由菱形的两条对角线的交点向各边引垂线,以各垂足为顶点的四边形是( )A.平行四边形B.矩形C.菱形D.正方形6.如图,▱ABCD的周长为16 cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE的周长为( )A.4 cm B.6 cm C.8 cm D.10 cm第6题图第9题图第10题图7.菱形的周长为8 cm,高为1 cm,则菱形两邻角度数比为( )A.3∶1 B.4∶1 C.5∶1 D.6∶18.用两块完全相同的直角三角形拼下列图形:①平行四边形,②矩形,③菱形,④正方形,⑤等腰三角形,⑥等边三角形,一定能拼成的图形是( )A.①④⑤B.②⑤⑥C.①②③D.①②⑤9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为( )A.16 B.17 C.18 D.1910.如图,F为正方形ABCD的边AD上一点,CE⊥CF交AB的延长线于点E,若正方形ABCD 的面积为64,△CEF的面积为50,则△CBE的面积为( )A.20 B.24 C.25 D.26二、填空题(每小题3分,共24分)11.如图所示,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为点E,连结CP,则∠CPB=____度.第11题图第12题图第14题图第15题图12.如图,四边形ABCD的两条对角线AC,BD互相垂直,A1,B1,C1,D1分别是四边形ABCD 各边中点,如果AC=8,BD=10,则四边形A1B1C1D1的面积为___.13.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20 cm,则其对角线长为____________-_,矩形的面积为_______________.14.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4 cm,BD=8 cm,则这个菱形的面积是____cm2.15.如图,矩形ABCD中,点E,F分别是AB,CD的中点,连结DE和BF,分别取DE,BF的中点M,N,连结AM,CN,MN,若AB=22,BC=23,则图中阴影部分的面积为____________.,第16题图第17题第18题图16.如图,▱ABCD的对角线相交于点O,请你添加一个条件______________,使▱ABCD是矩形.17.如图,正方形ABCD中,对角线AC,BD交于点O,E点在BC上,EG⊥OB,EF⊥OC,垂足分别为点G,F,AC=10,则EG+EF=____.18.如图,在平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为_______________________________.三、解答题(共66分)19.(6分)如图,已知矩形ABCD中,E是AD上一点,F是AB上一点,EF⊥EC且EF=EC,DE =4 cm,矩形ABCD的周长为32 cm,求AE的长.20.(8分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连结BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.21.(8分)如图所示,矩形ABCD中,AE⊥BD于点E,∠DAE∶∠BAE=3∶1,求∠BAE和∠EAO 的度数.22.(10分)如图,已知菱形ABCD中,AB=AC,E,F分别是BC,AD的中点,连结AE,CF.(1)证明:四边形AECF是矩形;(2)若AB=8,求菱形ABCD的面积.23.(12分)如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是点E,F,并且DE=DF,求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.24.(10分)在四边形ABCD中,AB=CD,M,N,P,Q分别是AD,BC,BD,AC的中点,求证:MN与PQ互相垂直平分.参考答案一、选择题(每小题3分,共30分)1.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( D )A.12 B.24 C.12 D.16第1题图第2题图第3题图第4题图2.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( C ) A.14 B.15 C.16 D.173.如图,将矩形ABCD沿对角线BD折叠,使点C与点C′重合.若AB=2,则C′D的长为( B ) A.1 B.2 C.3 D.44.如图,在△ABC中,AC=BC,点D,E分别是边AB,AC的中点.将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是( A )A.矩形B.菱形C.正方形D.梯形5.由菱形的两条对角线的交点向各边引垂线,以各垂足为顶点的四边形是( B )A.平行四边形B.矩形C.菱形D.正方形6.如图,▱ABCD的周长为16 cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE的周长为( C )A.4 cm B.6 cm C.8 cm D.10 cm第6题图第9题图第10题图7.菱形的周长为8 cm,高为1 cm,则菱形两邻角度数比为( C )A.3∶1 B.4∶1 C.5∶1 D.6∶18.用两块完全相同的直角三角形拼下列图形:①平行四边形,②矩形,③菱形,④正方形,⑤等腰三角形,⑥等边三角形,一定能拼成的图形是( D )A.①④⑤B.②⑤⑥C.①②③D.①②⑤9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为( B )A.16 B.17 C.18 D.1910.如图,F为正方形ABCD的边AD上一点,CE⊥CF交AB的延长线于点E,若正方形ABCD 的面积为64,△CEF的面积为50,则△CBE的面积为( B )A.20 B.24 C.25 D.26二、填空题(每小题3分,共24分)11.如图所示,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为点E,连结CP,则∠CPB=__72__度.第11题图第12题图第14题图第15题图12.如图,四边形ABCD的两条对角线AC,BD互相垂直,A1,B1,C1,D1分别是四边形ABCD 各边中点,如果AC=8,BD=10,则四边形A1B1C1D1的面积为__20__.13.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20 cm,则其对角线长为__40_cm__,矩形的面积为__400_cm2__.14.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4 cm,BD=8 cm,则这个菱形的面积是__16__cm2.15.如图,矩形ABCD中,点E,F分别是AB,CD的中点,连结DE和BF,分别取DE,BF的中点M,N,连结AM,CN,MN,若AB=2,BC=2,则图中阴影部分的面积为__2__.,第16题图第17题第18题图16.如图,▱ABCD的对角线相交于点O,请你添加一个条件__AO=BO(答案不唯一)__,使▱ABCD 是矩形.17.如图,正方形ABCD中,对角线AC,BD交于点O,E点在BC上,EG⊥OB,EF⊥OC,垂足分别为点G,F,AC=10,则EG+EF=__5__.18.如图,在平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为__(8,4),(3,4)或(2,4)__.三、解答题(共66分)19.(6分)如图,已知矩形ABCD中,E是AD上一点,F是AB上一点,EF⊥EC且EF=EC,DE =4 cm,矩形ABCD的周长为32 cm,求AE的长.解:∵∠AFE +∠AEF =∠AEF +∠CED =90°,∴∠AFE =∠DEC .又∵∠A =∠D =90°,EF =EC ,∴△AEF ≌△DCE ,∴AE =CD .设AE =x ,则CD =x ,∴AD +CD =21×32,即x +4+x =16,∴x =6.即AE =6 cm20.(8分)如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BD 相交于点O ,与BC 相交于点N ,连结BM ,DN .(1)求证:四边形BMDN 是菱形;(2)若AB =4,AD =8,求MD 的长.解:(1)∵MN 是BD 的垂直平分线,∴BO =DO ,∠BON =∠DOM =90°.∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠BNO =∠DMO ,∴△BON ≌△DOM (AAS ),∴OM =ON .∵OB =OD ,∴四边形BMDN 是平行四边形.∵MN ⊥BD ,∴▱BMDN 是菱形(2)设MD =x ,则MB =x ,MA =8-x ,在Rt △ABM 中,∵BM 2=AM 2+AB 2,∴x 2=(8-x )2+42,解得x =5.∴MD 的长为521.(8分)如图所示,矩形ABCD 中,AE ⊥BD 于点E ,∠DAE ∶∠BAE =3∶1,求∠BAE 和∠EAO 的度数.解:提示:由∠DAE ∶∠BAE =3∶1,求出∠BAE =22.5°,而∠ABD =90°-∠BAE =90°-22.5°=67.5°,∵∠BAO =∠ABD =67.5°,∴∠EAO =∠BAO -∠BAE =67.5°-22.5°=45°22.(10分)如图,已知菱形ABCD 中,AB =AC ,E ,F 分别是BC ,AD 的中点,连结AE ,CF .(1)证明:四边形AECF 是矩形;(2)若AB =8,求菱形ABCD 的面积.解:(1)∵四边形ABCD 是菱形,∴AB =BC ,又∵AB =AC ,∴△ABC 是等边三角形.∵E 是BC 的中点,∴AE ⊥BC (等边三角形三线合一),∠AEC =90°.同理,CF ⊥AD .∵E ,F 分别是BC ,AD 的中点,∴AF =21AD ,EC =21BC .∵四边形ABCD 是菱形,∴AD 綊BC ,∴AF 綊EC ,∴四边形AECF 是平行四边形(一组对边平行且相等的四边形是平行四边形).又∵∠AEC =90°,∴四边形AECF 是矩形(有一个角是直角的平行四边形是矩形)(2)在Rt △ABE 中,∵AE ==4,∴S 菱形ABCD =8×4=3223.(12分)如图,已知四边形ABCD 是平行四边形,DE ⊥AB ,DF ⊥BC ,垂足分别是点E ,F ,并且DE =DF ,求证:(1)△ADE ≌△CDF ;(2)四边形ABCD 是菱形.解:证明:(1)∵四边形ABCD 是平行四边形,∴∠A =∠C ,又∵DE =DF ,DE ⊥AB ,DF ⊥BC ,∴∠DEA =∠DFC =90°,∴△ADE ≌△CDF (AAS ) (2)由(1)知AD =DC ,又∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形24.(10分)在四边形ABCD 中,AB =CD ,M ,N ,P ,Q 分别是AD ,BC ,BD ,AC 的中点,求证:MN 与PQ 互相垂直平分.解:证明:连结MP ,NQ ,PN ,MQ ,∵PM 綊21AB ,同理NQ 綊21AB ,∴PM 綊NQ ,∴四边形MPNQ 为平行四边形,又∵PN 綊21CD ,而CD =AB ,∴PN =PM ,∴四边形MPNQ 为菱形,∴MN 与PQ 互相垂直平分。

矩形、菱形和正方形复习学案

矩形、菱形和正方形复习学案

矩形、菱形和正方形复习学案制作人:王宾 审核人:朱海青中考目标性、开放性的题目中知识梳理一、矩形的性质与判定1.定义:有一个角是直角的____________是矩形.2.性质:(1)矩形的四个角都是________.2)矩形的对角线________.(3)矩形既是轴对称图形,又是中心对称图形,它有两条对称轴;它的对称中心是__________.3.判定:(1)有三个角是________的四边形是矩形.(2)对角线________的平行四边形是矩形.二、菱形的性质与判定1.定义:一组邻边相等的__________叫做菱形.2.性质:(1)菱形的四条边都________.(2)菱形的对角线__________,并且每一条对角线平分一组对角.3.判定:(1)对角线互相垂直的________是菱形.(2)四条边都相等的________是菱形. 三、正方形的性质与判定1.定义:一组邻边相等的________叫做正方形. 2.性质:(1)正方形的四条边都________,四个角都是______.(2)正方形的对角线______,且互相________;每条对角线平分一组对角.(3)正方形是轴对称图形,两条对角线所在直线,以及过每一组对边中点的直线都是它的对称轴;正方形是中心对称图形,对角线的交点是它的对称中心.3.判定:(1)一组邻边相等并且有一个角是直角的__________是正方形(2)一组邻边相等的________是正方形.(3)对角线互相垂直的________是正方形.4)有一个角是直角的________是正方形.(5)对角线相等的________是正方形.例题解析 考点一、矩形的性质与判定【例1】如图,在△ABC 中,点O 是AC 边上(端点除外)的一个动点,过点O 作直线MN ∥BC .设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F ,连接AE ,AF .那么当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.考点二、菱形的性质与判定【例2】如图,矩形ABCD 的对角线相交于点O ,DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 是菱形;(2)若∠ACB=30°,菱形OCED的面积为83,求AC的长考点三、正方形的性质与判定【例3】如图①,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.(1)如图②,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;(2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图③的方式拼接成一个四边形.若正方形ABCD的边长为3 cm,HA=EB=FC=GD=1 cm,则图③中阴影部分的面积为__________cm2.当堂达标1.如图,在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是()A.AB∥DC B.AC=BDC.AC⊥BD D.OA=OC2.若菱形的周长为8 cm,高为1 cm,则菱形两邻角的度数比为()A.3:1 B.4:1 C.5:1 D.6:13.下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连接矩形四边中点得到的四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.其中真命题共有()A.1个B.2个C.3个D.4个4.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是()A.4B.6C.8D.105.以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A,B两点,则线段AB的最小值是__________.6.如图,点A,F,C,D在同一直线上,点B和点E分别在直线AD的两侧,且AB =DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形?。

矩形、菱形、正方形精讲精练(含答案)-

矩形、菱形、正方形精讲精练(含答案)-

矩形、菱形、正方形重点与难点:矩形、菱形、正方形的性质与判定定理。

一、知识点(1)矩形:有一个角是直角的平行四边形;菱形:有一组邻边相等的平行四边形;正方形:有一个角是直角并且有一组邻边相等的平行四边形。

(注:矩形、菱形、正方形的定义既是性质又是判定)(2)矩形的性质:矩形的四个角都是直角;矩形的对角线相等;矩形是轴对称图形菱形的性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;正方形的性质:正方形既是矩形又是菱形,它具有矩形和菱形的全部性质;(3)矩形的判定:有三个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;菱形的判定:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;正方形的判定:先判定是矩形,再判定是菱形;或者先判定是菱形,再判定是矩形。

(4)直角三角形斜边上的中线等于斜边的一半;菱形的面积等于对角线乘积的半二、例题:例1、如图,矩形ABCD中,E为AD上一点,EF⊥CE交AB于F,若DE=2,矩形的周长为16,且CE=EF,求AE的长。

解:∵矩形ABCD∴∠A=∠D=90°(矩形的四个角都是直角)∴∠AEF+∠AFE=90°∵CE⊥EF∴∠AEF+∠DEC=90°∴∠AFE=∠DEC(等角的余角相等)在△AEF和△DCE中B CE D AF⎪⎩⎪⎨⎧=∠=∠∠=∠CE EF DCE AEF D A ∴△AEF ≌ △DCE(AAS )∴AE=DC(全等三角形的对应边相等) ∴2×(AE+DE+CD )=16 即AE=3。

例2、如图,E 是菱形ABCD 边AD 的中点,EF⊥AC 于H ,交CB 的延长线于F ,交AB 于G ,求证:AB 与EF 互相平分。

证明:∵菱形ABCD∴AC 平分∠BAD(菱形的对角线平分对角)AD 平行且等于AB (菱形四条边都相等,平行四边形的对边互相平行) ∠GAE=∠GBF,∠GFB=∠GEA(两直线平行,内错角相等)在△AEH 和△AGH 中⎪⎩⎪⎨⎧∠=∠=∠=∠EHA GHA AH AH EAHGAH ∴△AEH ≌ △AGH(ASA ) ∴AE=AG ∵AE=21AD ∴AG=21AD=21AB 即AG=AB 在△AEG 和△BFG 中⎪⎩⎪⎨⎧=∠=∠∠=∠GB GA GBF GEA FBG EAG ∴△AEG ≌ △BFG(AAS ) ∴AG=BG,EG=FGABCDEFGH例3、如图,以正方形ABCD 的DC 边为一边向外作一个等边三角形,①求证:△ABE 是等腰三角形;②求∠BAE 的度数。

矩形、菱形、正方形导学案

矩形、菱形、正方形导学案

学习
目标探索矩形的概念与性质,知道解决矩形问题的基本思想是化为三角形问题来解决,体会数学转化思想
学习
重难点理解矩形的概念和性质,并能应用矩形的概念和性质解决问题
教学流程
思考、交流:
合作探究一、概念探究:有一个角是直角的平行四边形叫矩形。

(矩形通常也叫长方形)1.矩形与平行四边形比较:(小组合作、交流)
相同点:
不同点:
2.你能用以前学过的知识证明矩形的对角线相等吗?
3.小结:矩形的特殊性质
(1)
(2)
二、例题分析:
问题2:证明一个三角形是等边三角形的方法有哪些?
变式1:
变式2:
三、展示交流:
1.矩形具有而一般的平行四边形不具有的特点是()
2.矩形的两条对角线所成的钝角为120°,若一条对角线的长是2,那么它的周长是()
四、提炼总结:
(1)oa= = =
(2) ∠dab= = = =90°
当堂达标1.矩形是具有而平行四边形不一定具有的性质是____(填代号)
①对边平行且相等;②对角线互相平分;③对角相等
④对角线相等;⑤4个角都是90°;⑥轴对称图形
2.矩形是轴对称图形,对称轴是_____又是中心对称图形,对称中心是___矩形两对角线把矩形分成___个等腰三角形
,它的面积为
4.矩形的一条对角线长为10,则另一条对角线长为,如果一边长为8,则矩形的面积为。

苏科版数学八上《矩形、菱形、正方形》word教案

苏科版数学八上《矩形、菱形、正方形》word教案

课题3.5矩形、菱形、正方形(1)课型新授教学目标1、理解矩形的概念,掌握矩形的性质.2、经历探索矩形的概念与性质的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法.教学重点矩形的性质的理解和掌握.教学难点矩形的性质的综合应用.教具准备多媒体,课件教学过程教学内容教师活动内容、方式学生活动方式设计意图一、情境创设:情境1:组织学生观察课本P92节首的两幅图片..情境2:通过多媒体课件展示一些含有矩形的图片,引导学生观察.问题(1)上面的图片中有你熟悉的图形吗?(2)你能举出生活中类似的图形的吗?(3)矩形的结构特征是什么?二、新知探索1.操作题:BO是Rt△ABC的斜边AC上的中线,画出△ABC关于点O对称的图形。

操作分为以下二个步骤:第一:画出Rt△ABC关于点O对称的图形,得出四边形ABCD是中心对称图形,点O是对称中心的结论.第二:探索图中的四边形ABCD的特点.学生通过探究可以发现:四边形ABCD是中心对称图形,是平行四边形,并且有一个角是直角,为引入矩形的概念做好铺垫.2.给出矩形的概念3.思考:矩形是特殊的平行四边形,它还具有哪些特殊性质?引导学生主要从下面两点考虑(1)既然矩形是特殊的平行四边形,它具有平行四边形的一切性质。

(2)由于矩形比平行四边形多了一个特殊条件:有一个角是直角,因此,矩形应具有一些特殊的性质.探索矩形的特殊性质要从这一特殊之处(有一个角是直角)入手.学生观察并回答问题学生操作并交流设计意图:让学生感受到特殊的平行四边形就在自己的身边,有利于激发学生的学习兴趣及探索精神.教师活动内容、方式学生活动方式设计意图4.讨论(课本p92)(图略)演示平行四边形活动框架,引导学生观察改变平行四边形活动框架形状,它的边、角、对角线有怎样的变化?当∠ 为直角时,平行四边形变为矩形,它的2条对角线有怎样的数量关系?四个角之间有怎样的数量关系?5.给出矩形的特殊性质三.练一练1.课本P93例1讲解例1要注意①引导学生探索解题途径,培养学生有条理地思考能力.②规范解答过程,培养学生有条理地表达能力.③引导学生归纳:矩形的一条对角线将矩形分成2个全等的直角三角形;矩形的2条对角线将矩形分成4个全等的等腰三角形;有关矩形的问题往往可以化为直角三角形或等腰三角形的问题来解决.5、已知,如图,矩形ABCD的对角线AC,BD相交于点O,E,F分别是OA,OB的中点.(1)求证:△ADE≌△BCF;(2)若AD=4cm,AB=8cm,求OF的长.四.小结:这节课你有哪些收获?还有哪些问题?五.课堂作业P100 T3 , T4, T5 学生讨论学生板演设计意图:旨在利用四边形框架的不稳定性,引导学生通过合情推理去探索,发现结论设置例1的目的是使学生熟悉和应用矩形的有关性质,为解答习题3.5. 第5题作铺垫课题3.5矩形、菱形、正方形(2)课型新授教学目标1、理解掌握矩形的判定条件. 提高学生应用矩形的判定解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第31课时矩形、菱形、正方形学案基训题目 1、在平面直角坐标系中,已知点A(0,2),B(3
2
-,0),C(0,2-),D(3
2,0),则以这四个点为顶点的四边形ABCD是( )
A.矩形B.菱形C.正方形D.梯形
2、如图,正方形ABCD内有两条相交线段MN、EF,
M、N、E、F分别在边AB、CD、AD、BC上.小明认为:
若MN = EF,则MN⊥EF;小亮认为: 若MN⊥EF,
则MN = EF.你认为 ( )
A.仅小明对B.仅小亮对
C.两人都对D.两人都不对
3、在下列命题中,是真命题的是( )
A.两条对角线相等的四边形是矩形
B.两条对角线互相垂直的四边形是菱形
C.两条对角线互相平分的四边形是平行四边形
D.两条对角线互相垂直且相等的四边形是正方形
4、下列命题中正确的是( )
A.矩形的对角线相互垂直B.菱形的对角线相等
C.平行四边形是轴对称图形D.等腰梯形的对角线相等
5、正方形有条对称轴.
*6、如果用4个相同的长为3宽为1的长方形,拼成一个大的长方形,那么这个大的长方形的周长可以是_____________.
7、在四边形A B C D中,对角线A C与BD
互相平分,交点为O.在不添加任何辅助线
的前提下,要使四边形A B C D成为矩形,还
需添加一个条件,这个条件可以是.
o
B C
D A
* 8、如图,在四边形ABCD中,E为AB上一点,
△ADE和△BCE都是等边三角形,AB、BC、CD、DA
的中点分别为P、Q、M、N,试判断四边形PQMN为
怎样的四边形,并证明你的结论.
9、请填写下列表格
图形平行四边形矩形菱形正方形
对称中心对角线交点
定义
性质边

对角线
判定边
既是矩形
又是菱形角
对角线
2011.3.24。

相关文档
最新文档