函数的单调性教案优秀
函数的单调性市公开课获奖教案省名师优质课赛课一等奖教案

函数的单调性教案一、引入函数的单调性是高中数学中的重要概念,它描述的是函数在定义域上的变化趋势。
在解题中,了解函数的单调性能够帮助我们简化问题,提高解题效率。
本教案将通过详细的讲解和例题分析,帮助学生掌握函数的单调性的概念、判断和应用。
二、概念剖析1. 单调递增函数:设函数 f(x) 在定义域上有定义,若对任意的x1 和 x2,当 x1 < x2 时,有 f(x1) ≤ f(x2),则称 f(x) 在定义域上是单调递增的。
2. 单调递减函数:设函数 f(x) 在定义域上有定义,若对任意的x1 和 x2,当 x1 < x2 时,有 f(x1) ≥ f(x2),则称 f(x) 在定义域上是单调递减的。
3. 严格单调递增函数:设函数 f(x) 在定义域上有定义,若对任意的 x1 和 x2,当 x1 < x2 时,有 f(x1) < f(x2),则称 f(x) 在定义域上是严格单调递增的。
4. 严格单调递减函数:设函数 f(x) 在定义域上有定义,若对任意的 x1 和 x2,当 x1 < x2 时,有 f(x1) > f(x2),则称 f(x) 在定义域上是严格单调递减的。
三、判断方法1. 导数判断法:对于函数 f(x),通过求导数 f'(x),可以判断函数的单调性。
当 f'(x) > 0 时,函数 f(x) 单调递增;当 f'(x) < 0 时,函数f(x) 单调递减。
2. 一阶差分判断法:对于函数 f(x),通过计算相邻两点之间的函数值差来判断函数的单调性。
当 f(x2) - f(x1) > 0 时,函数 f(x) 单调递增;当 f(x2) - f(x1) < 0 时,函数 f(x) 单调递减。
四、应用示例1. 实例1:判断函数 f(x) = 3x + 2 的单调性。
解析:根据导数判断法,求出函数 f(x) 的导数 f'(x) = 3。
函数的单调性教案()

函数的单调性教案(优秀)第一章:函数单调性的基本概念1.1 函数单调性的定义教学目标:让学生理解函数单调性的概念,掌握函数单调增和单调减的定义。
教学内容:(1) 引入函数单调性的概念。
(2) 讲解函数单调增和单调减的定义。
(3) 举例说明函数单调性的应用。
教学方法:(1) 采用讲解法,讲解函数单调性的定义和例子。
(2) 采用提问法,引导学生思考函数单调性的含义和应用。
教学步骤:(1) 引入函数单调性的概念,引导学生理解函数单调性的意义。
(2) 讲解函数单调增和单调减的定义,举例说明。
(3) 让学生通过例子判断函数的单调性,加深对函数单调性的理解。
(4) 总结函数单调性的应用,如解不等式、求最值等。
1.2 函数单调性的性质教学目标:让学生掌握函数单调性的性质,包括传递性、同增异减等。
教学内容:(1) 讲解函数单调性的传递性。
(2) 讲解函数单调性的同增异减性质。
(3) 举例说明函数单调性性质的应用。
教学方法:(1) 采用讲解法,讲解函数单调性的性质。
(2) 采用提问法,引导学生思考函数单调性性质的含义和应用。
教学步骤:(1) 讲解函数单调性的传递性,举例说明。
(2) 讲解函数单调性的同增异减性质,举例说明。
(3) 让学生通过例子判断函数的单调性,加深对函数单调性性质的理解。
(4) 总结函数单调性性质的应用,如解不等式、求最值等。
第二章:函数单调性的判断方法2.1 利用导数判断函数单调性教学目标:让学生掌握利用导数判断函数单调性的方法。
教学内容:(1) 讲解导数与函数单调性的关系。
(2) 讲解利用导数判断函数单调性的方法。
(3) 举例说明利用导数判断函数单调性的应用。
教学方法:(1) 采用讲解法,讲解导数与函数单调性的关系及判断方法。
(2) 采用提问法,引导学生思考导数判断函数单调性的含义和应用。
教学步骤:(1) 讲解导数与函数单调性的关系,让学生理解导数在判断函数单调性中的作用。
(2) 讲解利用导数判断函数单调性的方法,举例说明。
函数的单调性教案(获奖)

函数的单调性教案(获奖)章节一:函数单调性的引入1. 引入概念:单调增加和单调减少2. 讲解实例:设f(x) = x,则f(x)在实数集上单调增加设g(x) = -x,则g(x)在实数集上单调减少3. 总结:函数单调性是描述函数值变化趋势的重要性质,分为单调增加和单调减少两种情况。
章节二:函数单调性的定义1. 定义单调增加:若对于任意的x1 < x2,都有f(x1) ≤f(x2),则称f(x)在区间I上单调增加。
2. 定义单调减少:若对于任意的x1 < x2,都有f(x1) ≥f(x2),则称f(x)在区间I上单调减少。
3. 举例说明:设h(x) = 2x + 3,则h(x)在实数集上单调增加设k(x) = -x^2 + 1,则k(x)在区间[-1, 1]上单调增加,在区间(-∞, -1]和[1, +∞)上单调减少章节三:函数单调性的判断方法1. 导数法:若函数f(x)在区间I上可导,且导数f'(x) ≥0(单调增加)或f'(x) ≤0(单调减少),则f(x)在区间I上单调增加或单调减少。
2. 图像法:绘制函数图像,观察函数值的变化趋势,判断单调性。
3. 表格法:列出函数在不同x值下的函数值,观察函数值的变化规律,判断单调性。
章节四:函数单调性的应用1. 最大值和最小值:对于单调增加的函数,最大值出现在定义域的右端点;对于单调减少的函数,最小值出现在定义域的左端点。
2. 函数的切线:单调增加的函数在切点处的切线斜率为正;单调减少的函数在切点处的切线斜率为负。
3. 函数的图像:单调增加的函数图像上升,单调减少的函数图像下降。
章节五:单调性在实际问题中的应用1. 线性规划:利用函数的单调性确定最优解的位置。
2. 优化问题:求函数的最值,利用函数的单调性判断最值的位置。
3. 经济学:分析市场需求和供给的单调性,预测市场变化趋势。
4. 物理学:研究物体运动的速度和加速度,利用单调性分析物体的运动状态。
《函数的单调性》教学设计

《函数的单调性》教学设计一、教学内容1. 函数单调性的定义:函数单调递增和单调递减的定义及其性质。
2. 单调性的判断方法:利用导数、图像以及定义法判断函数的单调性。
3. 单调性在实际问题中的应用:求解最值问题、不等式问题等。
二、教学目标1. 理解函数单调性的定义,掌握单调递增和单调递减的概念。
2. 学会利用导数、图像以及定义法判断函数的单调性。
3. 能够运用单调性解决实际问题,提高解决问题的能力。
三、教学难点与重点1. 教学难点:单调性的判断方法,特别是利用导数判断单调性。
2. 教学重点:函数单调性的定义,单调性的判断方法以及单调性在实际问题中的应用。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:笔记本、彩笔、函数图像绘制工具。
五、教学过程1. 实践情景引入:通过一个实际问题,引发学生对函数单调性的思考。
例题:某商品的价格随销售量的增加而减少,问销售量为多少时,商品的价格最低?3. 单调性的判断方法:(1)利用导数:讲解导数与函数单调性的关系,引导学生学会利用导数判断函数的单调性。
(2)利用图像:引导学生观察函数图像,判断函数的单调性。
(3)利用定义法:讲解如何利用定义法判断函数的单调性。
4. 单调性在实际问题中的应用:通过例题,讲解单调性在求解最值问题、不等式问题等方面的应用。
5. 随堂练习:让学生通过实际问题,运用所学知识解决,巩固所学内容。
六、板书设计1. 函数单调性的定义。
2. 单调性的判断方法:导数法、图像法、定义法。
3. 单调性在实际问题中的应用。
七、作业设计(1)y = x^2(2)y = x^2(3)y = 2x + 3某商品的价格随销售量的增加而减少,已知销售量为100时,价格为5000元,销售量为200时,价格为4000元。
求销售量为多少时,商品的价格最低?八、课后反思及拓展延伸1. 课后反思:本节课通过实际问题引入,让学生了解了函数单调性的概念及其应用,通过讲解和练习,使学生掌握了单调性的判断方法。
函数的单调性教案(获奖)

函数的单调性教案(获奖)第一章:函数单调性的概念及意义1.1 函数单调性的定义引入函数单调性的概念,让学生理解函数单调性的含义。
举例说明函数单调性的两种类型:单调递增和单调递减。
1.2 函数单调性的意义解释函数单调性在数学分析中的重要性,如在求解极值、最值等问题中的应用。
通过实际例子展示函数单调性在现实生活中的应用,如经济学中的需求函数等。
第二章:函数单调性的判断方法2.1 图像法教授如何通过观察函数图像来判断函数的单调性。
引导学生学会识别函数图像中的单调区间。
2.2 导数法介绍导数与函数单调性的关系。
教授如何利用导数的正负来判断函数的单调性。
第三章:函数单调性的应用3.1 求函数的极值讲解如何利用函数单调性来求解函数的极值。
通过例题让学生掌握求解极值的方法。
3.2 求函数的最值介绍如何利用函数单调性来求解函数的最值。
通过例题让学生理解最值的求解过程。
第四章:函数单调性的进一步探讨4.1 单调区间与导数的关系讲解单调区间与导数之间的关系,让学生理解导数在单调性判断中的作用。
通过例题展示导数在单调区间判断中的应用。
4.2 单调性在实际问题中的应用介绍单调性在实际问题中的应用,如优化问题、经济问题等。
通过实际例子让学生学会如何运用单调性解决实际问题。
第五章:综合练习与拓展5.1 综合练习题提供综合练习题,让学生巩固函数单调性的概念、判断方法和应用。
引导学生学会如何运用所学知识来解决问题。
5.2 拓展与应用引导学生思考函数单调性在其他数学领域的应用,如微分方程、线性代数等。
提供一些拓展问题,激发学生的学习兴趣和思考能力。
第六章:函数单调性的高级应用6.1 函数的单调性与其他数学概念的联系探讨函数单调性与其他数学概念的联系,如微分、积分、极限等。
通过例题展示函数单调性在其他数学领域的应用。
6.2 函数单调性在优化问题中的应用介绍函数单调性在优化问题中的应用,如求解最大值、最小值等。
通过实际例子让学生学会如何运用函数单调性来解决优化问题。
函数的单调性教案()

函数的单调性教案(优秀)第一章:引言1.1 教学目标了解函数单调性的概念及其在数学中的重要性。
理解单调性对解决实际问题的重要作用。
1.2 教学内容介绍函数单调性的概念。
通过实际例子说明单调性在解决实际问题中的应用。
1.3 教学方法使用多媒体演示和实际例子来讲解函数单调性的概念。
引导学生通过思考和讨论来理解单调性的重要性。
1.4 教学评估通过课堂提问和小组讨论来评估学生对函数单调性的理解程度。
第二章:函数单调性的定义与性质2.1 教学目标理解函数单调性的定义及其性质。
学会判断函数的单调性。
2.2 教学内容介绍函数单调性的定义。
讲解函数单调性的性质,如单调递增和单调递减。
2.3 教学方法使用数学定义和示例来解释函数单调性的概念。
引导学生通过自主学习和小组讨论来掌握函数单调性的性质。
2.4 教学评估通过课堂练习和小组讨论来评估学生对函数单调性定义和性质的理解程度。
第三章:函数单调性的应用3.1 教学目标学会使用函数单调性解决实际问题。
理解函数单调性在数学和其他领域中的应用。
3.2 教学内容介绍函数单调性在解决实际问题中的应用。
讲解函数单调性在其他领域中的应用,如经济学和物理学。
3.3 教学方法使用实际例子和应用问题来展示函数单调性的使用。
引导学生通过思考和讨论来理解函数单调性在实际问题中的应用。
3.4 教学评估通过课堂练习和小组讨论来评估学生对函数单调性应用的理解程度。
第四章:函数单调性的证明4.1 教学目标学会使用数学方法证明函数的单调性。
理解证明函数单调性的重要性和方法。
4.2 教学内容介绍证明函数单调性的方法和技巧。
讲解不同类型的函数单调性证明。
4.3 教学方法使用示例和练习来讲解证明函数单调性的方法。
引导学生通过自主学习和小组讨论来掌握证明函数单调性的技巧。
4.4 教学评估通过课堂练习和小组讨论来评估学生对证明函数单调性的理解程度。
5.1 教学目标拓展对函数单调性的深入理解。
5.2 教学内容介绍函数单调性的进一步研究和发展。
函数的单调性优秀教案

函数的单调性优秀教案一、教学目标1、知识与技能目标理解函数单调性的概念,能够根据函数的图象判断函数的单调性。
掌握函数单调性的证明方法,能运用定义证明函数的单调性。
2、过程与方法目标通过观察函数图象,引导学生发现函数单调性的特征,培养学生的观察能力和归纳能力。
通过函数单调性的证明,让学生体会从特殊到一般、从具体到抽象的思维方法,提高学生的逻辑推理能力。
3、情感态度与价值观目标让学生在自主探究中体验成功的喜悦,增强学习数学的信心。
通过函数单调性的应用,让学生感受数学与实际生活的紧密联系,提高学生学习数学的兴趣。
二、教学重难点1、教学重点函数单调性的概念。
运用定义证明函数的单调性。
2、教学难点函数单调性定义的理解。
利用定义证明函数的单调性。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课展示函数图象,如一次函数 y = 2x + 1,二次函数 y = x²的图象。
引导学生观察图象的上升和下降趋势,提问:“从图象中,你能发现函数值随着自变量的变化有什么规律吗?”2、讲授新课给出函数单调性的定义:设函数 f(x) 的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x₁,x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂)(或 f(x₁) > f(x₂)),那么就说函数 f(x) 在区间 D 上是增函数(或减函数)。
强调定义中的关键词:定义域、区间、任意、都有。
通过具体例子,如 f(x) = x²在区间 0, +∞)上是增函数,在区间(∞, 0 上是减函数,帮助学生理解函数单调性的概念。
3、例题讲解例 1:判断函数 f(x) = 2x 1 在区间(∞,+∞)上的单调性。
分析:设 x₁,x₂是区间(∞,+∞)上的任意两个实数,且 x₁< x₂,计算 f(x₂) f(x₁),判断其符号。
解:f(x₂) f(x₁) =(2x₂ 1) (2x₁ 1) = 2(x₂ x₁)因为 x₁< x₂,所以 x₂ x₁> 0,所以 2(x₂ x₁) > 0,即 f(x₂) f(x₁) > 0,所以 f(x) = 2x 1 在区间(∞,+∞)上是增函数。
函数的单调性教案(获奖)

函数的单调性教案(获奖)第一章:函数单调性的概念及定义1.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如商品价格的变化、物体运动的速度等。
1.2 讲解:单调性的定义,函数单调递增和单调递减的概念。
1.3 练习:判断几个简单函数的单调性,如f(x)=x, f(x)=-x, f(x)=x^2等。
第二章:函数单调性的判断方法2.1 引入:通过实际例子,让学生理解单调性判断的重要性。
2.2 讲解:利用导数、图像、定义等方法判断函数的单调性。
2.3 练习:判断一些复杂函数的单调性,并进行验证。
第三章:函数单调性的应用3.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如最优化问题、不等式的证明等。
3.2 讲解:函数单调性在解决最优化问题、不等式证明等方面的应用。
3.3 练习:解决一些实际问题,如求函数的最值、证明不等式等。
第四章:函数单调性的性质与定理4.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如函数的周期性、奇偶性等。
4.2 讲解:函数单调性的性质与定理,如拉格朗日中值定理、柯西中值定理等。
4.3 练习:运用性质与定理解决一些实际问题。
第五章:函数单调性与导数的关系5.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如函数的极值点。
5.2 讲解:函数单调性与导数的关系,如单调递增的充分必要条件是导数大于0,单调递减的充分必要条件是导数小于0。
5.3 练习:判断函数的单调性,并找出其极值点。
第六章:复合函数的单调性6.1 引入:通过实际例子,让学生感受复合函数单调性在实际生活中的应用,如温度随高度和纬度的变化。
6.2 讲解:复合函数单调性的定义和判断方法。
6.3 练习:判断复合函数的单调性,并进行验证。
第七章:反函数的单调性7.1 引入:通过实际例子,让学生感受反函数单调性在实际生活中的应用,如坐标系的转换。
7.2 讲解:反函数单调性的性质和判断方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的单调性教案优秀标准化管理部编码-[99968T-6889628-J68568-1689N]
课题:函数的单调性
授课教师:王青
【教学目标】
1.知识与技能:使学生从形与数两方面理解函数的单调性概念,初步掌握利用
函数图象和单调性定义判断、证明函数的单调性的方法,了解函数单调区间的概念。
2.过程与方法:通过对函数单调性定义的探究,渗透数形结合的数学思想方
法,培养学生的观察、归纳、抽象思维能力。
3.情感态度与价值观:在参与的过程中体验成功的喜悦,感受学习数学的乐
趣。
【教学重点】函数单调性的概念、判断及证明.
【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性.【教学方法】教师启发讲授,学生探究学习.
【使用教具】多媒体教学
【教学过程】
一、创设情境,引入课题
1、下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.
引导学生识图,捕捉信息,启发学生思考.
问题:
(1)当天的最高温度、最低温度以及何时达到;
(3)哪些时段温度升高哪些时段温度降低
在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.
归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.
〖设计意图〗由生活情境引入新课,激发兴趣.
二、归纳探索,形成概念
对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是系统地学习这块内容.
1.借助图象,直观感知
问题1:分别作出函数1+=x y ,1+-=x y ,2)(x x f =的图象,并且思考
(1) 函数1+=x y 的图象从左至右是上升还是下降,在区间_____上
)(x f 的值随x 的增大而_______
(2) 函数1+-=x y 的图象从左至右是上升还是下降,在区间_____上
)(x f 的值随x 的增大而_______
(3)
函数2)(x x f =在区间_____上,)(x f 的值随x 的增大而增大 (4) 函数2)(x x f =在区间_____上,)(x f 的值随x 的增大而减小
〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识.
2.抽象思维,形成概念
问题:你能用数学符号语言描述第(3)(4)题吗
任取2121),,0[,x x x x <+∞∈且,因为0))((21212
221<-+=-x x x x x x ,即
2221x x <,所以()()21x f x f >
任意的x 1,x 2∈(0-,∞),x 1<x 2,则()()21x f x f >
任意的x 1,x 2∈(0-,∞),x 1<x 2,则()()21x f x f <
师生共同探究,得出增函数和减函数的定义:
增函数定义:
如果函数y=f(x)在数集I 上满足:随着自变量x 的增大,因变量y 也增大,那么称y=f(x)在数集I 上单调增,也称y=f(x)在数集I 上是增函数
数学语言描述:
如果函数y=f(x)在数集I 上满足:对于任意的x 1,x 2∈I,当
x 1<x 2时,f(x 1)<f(x 2),则称y=f(x)在数集I 上单调增,也称y=f(x)在数集I 上是增函数。
同学们根据增函数的定义给出减函数的定义
〖设计意图〗把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫.
判断题:
①若函数上为增函数,
在区间则函数满足]32[)(),3()2()(x f f f x f <. 通过判断题,强调三点:
通过判断题,强调三点:
①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.
②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).
③ 函数的单调性就是函数的增减性
〖设计意图〗让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.
有了函数的单调性这一概念就有如下概念:
①如果函数()x f y =在某区间上是增函数,就称该区间为函数()x f y =的单调增区间。
②如果函数()x f y =在某区间上是减函数,就称该区间为函数()x f y =的单调减区间。
练一练
下图为函数()f x 的图像,找出它的单调区间以及在每个区间上()f x 是增函数还是减函数。
三、掌握证法,适当延展
例1、 证明函数()27+=x x f 在R 上是增函数.
1.分析解决问题 针对学生可能出现的问题,组织学生讨论、交流. 证明:任取, 设元 求差
变形
断号
∴,0)()(21<-x f x f 即),()(21x f x f < 定论
∴函数x
x x f 2)(+=在),2(+∞上是增函数. 2.归纳解题步骤
引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论. 练习:证明函数()x f 1x = 在),0[+∞上是增函数.
四、归纳小结,提高认识
学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.
1.小结
(1)函数单调性的定义
(2) 证明函数单调性的步骤:设元、作差、变形、断号、定论.
2.作业
书面作业:《学习指导用书》P53-P54
2121,,x x R x x <∈且)27()27()()(2121+-+=-x x x f x f )(
721x x -=,21x x < 021<-∴x x。