电子设计自动化(EDA)实验

合集下载

EDA-实验报告

EDA-实验报告

实验一五人表决器设计一、实验目的1 加深对电路理论概念的理解3 加深计算机辅助分析及设计的概念4 了解及初步掌握对电路进行计算机辅助分析的过程二、实验要求制作一个五人表决器,共五个输入信号,一个输出信号。

若输入信号高电平数目多于低电平数目,则输出为高,否则为低。

三、实验原理根据设计要求可知,输入信号共有2^5=32种可能,然而输出为高则有15种可能。

对于本设计,只需一个模块就能完成任务,并采用列写真值表是最简单易懂的方法。

四、计算机辅助设计设A,B,C,D,E引脚为输入引脚,F为输出引脚。

则原理图如1所示图1.1 五人表决器原理图实验程序清单如下:MODULE VOTEA,B,C,D,E PIN;F PIN ISTYPE 'COM';TRUTH_TABLE([A,B,C,D,E]->[F])[0,0,1,1,1]->[1];[0,1,1,1,0]->[1];[0,1,0,1,1]->[1];[0,1,1,0,1]->[1];[1,0,1,1,1]->[1];[1,1,0,1,1]->[1];[1,1,1,0,1]->[1];[1,1,1,1,0]->[1];[1,1,1,0,0]->[1];[1,1,0,1,0]->[1];[1,1,1,1,1]->[1];[1,1,0,0,1]->[1];[1,0,0,1,1]->[1];[1,0,1,0,1]->[1];[1,0,1,1,0]->[1];END五、实验测试与仿真根据题目要求,可设输入分别为:0,0,0,0,0;1,1,1,1,1;1,0,1,0,0;0,1,0,1,1。

其测试程序如下所示:MODULE fivevoteA,B,C,D,E,F PIN;X=.X.;TEST_VECTORS([A,B,C,D,E]->[F])[0,0,0,0,0]->[X];[1,1,1,1,1]->[X];[1,0,1,0,0]->[X];[0,1,0,1,1]->[X];END测试仿真结果如图1.2所示:图1.2 五人表决器设计仿真图可知,设计基本符合题目要求。

eda实训总结

eda实训总结

EDA实训总结随着科技的飞速发展,电子设计自动化(EDA)技术在当今的电子工程领域中扮演着越来越重要的角色。

为了提高我们的实践能力和对EDA技术的深入理解,学校为我们安排了为期一个月的EDA实训课程。

以下是我对这次实训的详细总结和心得体会。

一、实训目的与意义EDA实训的主要目的是让我们通过实际操作,掌握EDA工具的使用方法,了解电子设计的流程,培养我们的实践能力和创新思维。

这对我们未来从事电子工程相关工作具有重要的指导意义。

在实训过程中,我们不仅学习了EDA工具的基本操作,还通过完成各种设计任务,锻炼了我们的团队协作能力、问题解决能力和创新思维。

这些能力对于我们未来的职业发展都是非常重要的。

二、实训内容与过程实训内容主要包括EDA工具的学习和使用,以及基于这些工具完成实际的设计任务。

我们使用的EDA工具主要包括原理图设计工具、PCB设计工具、电路仿真工具等。

在实训初期,我们首先学习了这些工具的基本操作方法,包括原理图的绘制、元件的封装、电路板的布局布线等。

通过不断的练习,我们逐渐掌握了这些工具的使用技巧。

接下来,我们开始进行实际的设计任务。

我们分组进行,每组负责完成一个不同的设计项目。

在设计过程中,我们遇到了很多问题和挑战。

例如,原理图的绘制需要精确到每个元件的引脚连接,稍有差错就可能导致整个电路无法正常工作。

此外,电路板的布局布线也是一项非常考验耐心和技巧的工作。

我们需要根据元件的尺寸和连接方式,合理安排它们的位置,同时确保信号的传输路径尽可能短且不受干扰。

在面对这些问题时,我们通过查阅资料、请教老师和同学讨论等方式,逐步找到了解决问题的方法。

最终,我们成功完成了设计任务,并进行了电路板的制作和测试。

三、实训收获与体会通过这次EDA实训,我收获颇丰。

首先,我掌握了EDA工具的基本操作方法,为今后的学习和工作打下了坚实的基础。

其次,我通过实际的设计任务,锻炼了自己的团队协作能力和问题解决能力。

这些能力对于我未来的职业发展都是非常重要的。

EDA实验报告完结版

EDA实验报告完结版

EDA实验报告完结版一、实验目的本次 EDA 实验的主要目的是通过实际操作和设计,深入理解和掌握电子设计自动化(EDA)技术的基本原理和应用。

具体而言,包括熟悉 EDA 工具的使用方法,学会运用硬件描述语言(HDL)进行逻辑电路的设计与描述,以及通过综合、仿真和实现等流程,将设计转化为实际的硬件电路,并对其性能进行评估和优化。

二、实验环境本次实验所使用的 EDA 工具为_____,该工具提供了丰富的功能模块和强大的设计支持,包括原理图编辑、HDL 代码编写、综合、仿真和下载等。

实验所使用的硬件平台为_____开发板,其具备多种接口和资源,便于对设计的电路进行实际验证和测试。

三、实验内容1、基本逻辑门电路的设计与实现使用 HDL 语言(如 Verilog 或 VHDL)设计常见的基本逻辑门电路,如与门、或门、非门等。

通过编写代码,对逻辑门的输入输出关系进行描述,并进行综合和仿真,验证设计的正确性。

2、组合逻辑电路的设计与实现设计并实现较为复杂的组合逻辑电路,如加法器、减法器、编码器、译码器等。

运用 HDL 语言描述电路的功能,进行综合和仿真,确保电路在各种输入情况下的输出结果符合预期。

3、时序逻辑电路的设计与实现设计常见的时序逻辑电路,如计数器、寄存器、移位寄存器等。

在设计过程中,考虑时钟信号、同步复位和异步复位等因素,通过仿真验证时序逻辑的正确性,并对电路的性能进行分析。

4、有限状态机(FSM)的设计与实现设计一个有限状态机,实现特定的功能,如交通信号灯控制器、数字密码锁等。

明确状态转移条件和输出逻辑,通过编写 HDL 代码实现状态机,并进行综合和仿真,验证其功能的准确性。

5、综合与优化对设计的电路进行综合,生成门级网表,并通过优化工具对电路进行面积、速度等方面的优化,以满足特定的设计要求。

6、硬件实现与测试将综合后的设计下载到硬件开发板上,通过实际的输入输出信号,对电路的功能进行测试和验证。

观察电路在实际运行中的表现,对出现的问题进行分析和解决。

eda仿真实验报告

eda仿真实验报告

eda仿真实验报告EDA仿真实验报告一、引言EDA(Electronic Design Automation)是电子设计自动化的缩写,是指利用计算机技术对电子设计进行辅助、自动化的过程。

在现代电子设计中,EDA仿真是不可或缺的一环,它可以帮助工程师验证电路设计的正确性、性能和可靠性。

本篇报告将介绍我在EDA仿真实验中的经验和收获。

二、实验背景本次实验的目标是对一个数字电路进行仿真,该电路是一个4位加法器,用于将两个4位二进制数相加。

通过仿真,我们可以验证电路设计的正确性,并观察其在不同输入情况下的输出结果。

三、实验步骤1. 电路设计:首先,我们根据给定的要求和电路原理图进行电路设计。

在设计过程中,我们需要考虑电路的逻辑关系、时序要求以及输入输出端口的定义等。

2. 仿真环境搭建:接下来,我们需要选择合适的EDA仿真工具,并搭建仿真环境。

在本次实验中,我选择了Xilinx ISE Design Suite作为仿真工具,并创建了一个仿真项目。

3. 仿真测试向量生成:为了对电路进行全面的测试,我们需要生成一组合适的仿真测试向量。

这些测试向量应该覆盖了电路的所有可能输入情况,以验证电路的正确性。

4. 仿真运行:在仿真环境搭建完成后,我们可以开始进行仿真运行了。

通过加载测试向量,并观察仿真结果,我们可以判断电路在不同输入情况下的输出是否符合预期。

5. 仿真结果分析:仿真运行结束后,我们需要对仿真结果进行分析。

通过对比仿真输出和预期结果,可以判断电路设计的正确性。

如果有不符合预期的情况,我们还可以通过仿真波形分析,找出问题所在。

四、实验结果与讨论在本次实验中,我成功完成了4位加法器的仿真。

通过对比仿真输出和预期结果,我发现电路设计的正确性得到了验证。

无论是正常情况下的加法运算,还是特殊情况下的进位和溢出,电路都能够正确地输出结果。

在实验过程中,我还发现了一些有趣的现象。

例如,在输入两个相同的4位二进制数时,电路的输出结果与输入完全一致。

eda实验报告

eda实验报告

eda实验报告
1. 实验目的
通过本次实验,了解EDA(Electronic Design Automation)的基本概念和应用模式,并通过实际操作掌握EDA工具的使用方法和流程。

2. 实验原理
EDA是电子设计自动化的缩写,是指通过计算机技术来实现电子系统设计的各个环节的自动化。

常用的EDA工具有电路仿真、电路布局、原理图设计、印刷电路板设计等。

3. 实验步骤
3.1 电路仿真
首先,我们需打开EDA工具,并导入所需的仿真器和电路元件库。

其次,我们需绘制电路图并进行仿真,根据仿真结果进一步分析和改进电路设计。

3.2 电路布局
在电路设计完成后,我们需进行电路布局,以便更精确地计算
电路性能和参数。

在布局过程中,我们需根据电路设计需求进行
元件排布,并考虑布局紧凑性和功耗等因素。

3.3 原理图设计
电路图设计是EDA工具中非常重要的一个环节,它可以帮助
我们全面了解电路设计的各个细节,确定电路元件的类型和参数,以及进一步优化电路性能。

3.4 印刷电路板设计
在进行电路仿真、布局、原理图设计后,我们需将电路设计转
化为印刷电路板(PCB)的形式。

在进行印刷电路板设计前,我
们需考虑各个细节,在选择印刷方式、器件布局、线路距离、阻
抗匹配等方面进行优化和调整。

4. 实验结论
通过本次实验,我深刻认识到EDA工具在电子设计中的应用
和重要性,并掌握了EDA工具的基本操作方法和流程。

此外,我
了解了EDA工具在电子设计和生产中的优势和局限性,对于今后
电子设计工作的开展和优化有很大的指导意义。

电子设计自动化(EDA)_数字时钟程序模块(LED数码管显示)_实验报告

电子设计自动化(EDA)_数字时钟程序模块(LED数码管显示)_实验报告

电子设计自动化(EDA)—数字时钟LED数码管显示二、实验内容和实验目的1. 6个数码管动态扫描显示驱动2. 按键模式选择(时\分\秒)与闹钟(时\分)调整控制,3. 用硬件描述语言(或混合原理图)设计时、分、秒计数器模块、闹钟模块、按键控制状态机模块、动态扫描显示驱动模块、顶层模块。

要求使用实验箱左下角的6个动态数码管(DS6 A~DS1A)显示时、分、秒;要求模式按键和调整按键信号都取自经过防抖处理后的按键跳线插孔。

实验目的: 1)学会看硬件原理图, 2)掌握FPGA硬件开发的基本技能3)培养EDA综合分析、综合设计的能力三、实验步骤、实现方法(或设计思想)及实验结果主要设备: 1)PC机, 2)硬件实验箱, 3)Quartus II软件开发平台。

1.打开Quartus II , 连接实验箱上的相关硬件资源, 如下图1所示。

2.建立新文件, 选择文本类型或原理图类型。

3. 编写程序。

4.编译5. 仿真, 加载程序到芯片, 观察硬件输出结果(数码管显示)6.结果正确则完成。

若结果不正确, 则修改程序, 再编译, 直到正确。

模24计数器模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;ENTITY count24 ISPORT(clk,en:IN STD_LOGIC;cout:OUT STD_LOGIC;hh,hl:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END count24;ARCHITECTURE arc OF count24 ISSIGNAL a,b:STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINPROCESS(clk,en)BEGINhh<=a;hl<=b;IF(clk'EVENT AND clk='1') THENIF(en='1') THENIF(a="0010" AND b="0011") THENa<="0000";b<="0000";ELSE IF(b="1001") THENa<=a+'1';b<="0000";ELSE b<=b+'1';END IF;END IF;IF(a="0010" AND b="0010") THENcout<='1';ELSE cout<='0';END IF;END IF;END IF;END PROCESS;END arc;模60计数器模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;ENTITY count60 ISPORT(clk,en:IN STD_LOGIC;cout:OUT STD_LOGIC;hh,hl:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END count60;ARCHITECTURE arc OF count60 ISSIGNAL a,b:STD_LOGIC_VECTOR(3 DOWNTO 0);SIGNAL sout:STD_LOGIC;BEGINPROCESS(clk)BEGINhh<=a; hl<=b;IF(clk'EVENT AND clk='1') THENIF(en='1') THENIF(a="0101" AND b="1001") THENa<="0000";b<="0000";ELSE IF(b="1001") THENa<=a+'1';b<="0000";ELSE b<=b+'1';END IF;END IF;END IF;END IF;END PROCESS;sout<='1' WHEN a="0101" AND b="1001" ELSE '0';cout<=sout AND en;END arc;4-7显示译码模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY segment4to7 ISPORT(s:IN STD_LOGIC_VECTOR(3 DOWNTO 0);a,b,c,d,e,f,g:OUT STD_LOGIC);END segment4to7;ARCHITECTURE arc OF segment4to7 IS SIGNAL y:STD_LOGIC_VECTOR(6 DOWNTO 0); BEGINa<= y(6);b<= y(5);c<= y(4);d<= y(3);e<= y(2); f<= y(1);g<= y(0);PROCESS(s)BEGINCASE s ISWHEN "0000"=>y<="1111110"; WHEN "0001"=>y<="0110000"; WHEN "0010"=>y<="1101101"; WHEN "0011"=>y<="1111001"; WHEN "0100"=>y<="0110011"; WHEN "0101"=>y<="1011011"; WHEN "0110"=>y<="1011111"; WHEN "0111"=>y<="1110000"; WHEN "1000"=>y<="1111111"; WHEN "1001"=>y<="1111011"; WHEN OTHERS=>y<="0000000"; END CASE;END PROCESS;END arc;带闹钟控制模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY mode_adjust_with_alarm ISPORT (adjust,mode,clk1hz: IN STD_LOGIC;clkh,enh,clkm,enm,clks,enha: OUT STD_LOGIC;clkh_a,clkm_a:OUT STD_LOGIC;mode_ss: OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END mode_adjust_with_alarm;ARCHITECTURE arc OF mode_adjust_with_alarm ISTYPE mystate IS (s0,s1,s2,s3,s4,s5);SIGNAL c_state,next_state: mystate;BEGINPROCESS (c_state)BEGINCASE c_state ISWHEN s0=> next_state <= s1; clkh<=clk1hz; clkm<=clk1hz; clks<=clk1hz;enh<='0'; enm<='0'; enha<='0'; clkh_a<= '0'; clkm_a<= '0'; mode_ss <="000";WHEN s1=> next_state <= s2; clkh<=adjust; clkm<= '0'; clks<='0';enh<='1'; enm<='0';enha<='0'; clkh_a<= '0';clkm_a<= '0'; mode_ss <="001";WHEN s2=> next_state <= s3; clkh<= '0'; clkm<=adjust; clks <= '0';enh<='0';enm<='1';enha<='0'; clkh_a<= '0'; clkm_a<= '0'; mode_ss <="010";WHEN s3=> next_state <= s4; clkh<= '0'; clkm<= '0'; clks<=adjust;enh<='0'; enm<='0';enha<='0'; clkh_a<= '0'; clkm_a<= '0'; mode_ss <="011";WHEN s4=> next_state <= s5; clkh<= clk1hz; clkm<= clk1hz; clks<=clk1hz;enh<='0';enm<='0';enha<='1'; clkh_a<=adjust; clkm_a<= '0'; mode_ss <="100";WHEN s5=> next_state <= s0; clkh<= clk1hz; clkm<= clk1hz; clks<=clk1hz;enh<='0'; enm<='0'; enha<='0'; clkh_a<= '0'; clkm_a<=adjust; mode_ss <="101";END CASE;END PROCESS;PROCESS (mode)BEGINIF (mode'EVENT AND mode='1') THENc_state<=next_state ;END IF;END PROCESS;END arc;扫描模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY scan ISPORT(clk256hz:IN STD_LOGIC;ss:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END scan;ARCHITECTURE arc OF scan ISTYPE mystate IS (s0, s1,s2,s3,s4,s5);SIGNAL c_state,next_state: mystate;BEGINPROCESS ( c_state )BEGINCASE c_state ISWHEN s0=> next_state <=s1; ss<="010";WHEN s1=> next_state <=s2; ss<="011";WHEN s2=> next_state <=s3; ss<="100";WHEN s3=> next_state <=s4; ss<="101";WHEN s4=> next_state <=s5; ss<="110";WHEN s5=> next_state <=s0; ss<="111";END CASE;END PROCESS;PROCESS (clk256hz)BEGINIF (clk256hz'EVENT AND clk256hz='1') THENc_state<=next_state ;END IF;END PROCESS;END arc;复用模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY mux ISPORT(hh,hl,mh,ml,sh,sl,hha,hla,mha,mla:IN STD_LOGIC_VECTOR(3 DOWNTO 0);ss,mode_ss:IN STD_LOGIC_VECTOR(2 DOWNTO 0);y:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);alarm:OUT STD_LOGIC);END mux;ARCHITECTURE arc OF mux ISSIGNAL a,hhtmp,hltmp,mhtmp,mltmp,shtmp,sltmp:STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINPROCESS(mode_ss)BEGINCASE mode_ss ISWHEN "000"=>hhtmp<=hh; hltmp<=hl; mhtmp<=mh; mltmp<=ml; shtmp<=sh; sltmp<=sl;WHEN "001"=>hhtmp<=hh; hltmp<=hl; mhtmp<=mh; mltmp<=ml; shtmp<=sh; sltmp<=sl;WHEN "010"=>hhtmp<=hh; hltmp<=hl; mhtmp<=mh; mltmp<=ml; shtmp<=sh; sltmp<=sl;WHEN "011"=>hhtmp<=hh; hltmp<=hl; mhtmp<=mh; mltmp<=ml; shtmp<=sh; sltmp<=sl;WHEN "100"=> hhtmp<=hha; hltmp<=hla; mhtmp<=mha; mltmp<=mla; shtmp<=sh; sltmp<=sl;WHEN "101"=> hhtmp<=hha; hltmp<=hla; mhtmp<=mha; mltmp<=mla; shtmp<=sh; sltmp<=sl;WHEN OTHERS=>hhtmp<="0000";hltmp<="0000";mhtmp<="0000";mltmp<="0000";shtmp<="0000";sltmp<="0000"; END CASE;END PROCESS;PROCESS(ss)BEGINCASE ss ISWHEN "010"=> a <=hhtmp;WHEN "011"=> a <=hltmp;WHEN "100"=> a <=mhtmp;WHEN "101"=> a <=mltmp;WHEN "110"=> a <=shtmp;WHEN "111"=> a <=sltmp;WHEN OTHERS => a <="0000";END CASE;y<=a;END PROCESS;alarm<='1' WHEN ((hh=hha)AND(hl=hla)AND(mh=mha)AND(ml=mla)) ELSE '0';END arc;闪烁模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY blink_control ISPORT(ss,mode_ss:IN STD_LOGIC_VECTOR(2 DOWNTO 0);blink_en:OUT STD_LOGIC);END blink_control;ARCHITECTURE arc OF blink_control ISBEGINPROCESS (ss,mode_ss)BEGINIF(ss="010" AND mode_ss="001") THEN blink_en<='1';ELSIF(ss="011" AND mode_ss="001") THEN blink_en<='1';ELSIF(ss="100" AND mode_ss="010") THEN blink_en<='1';ELSIF(ss="101" AND mode_ss="010") THEN blink_en<='1';ELSIF(ss="110" AND mode_ss="011") THEN blink_en<='1';ELSIF(ss="111" AND mode_ss="011") THEN blink_en<='1';ELSIF(ss="010" AND mode_ss="100") THEN blink_en<='1';ELSIF(ss="011" AND mode_ss="100") THEN blink_en<='1';ELSIF(ss="100" AND mode_ss="101") THEN blink_en<='1';ELSIF(ss="101" AND mode_ss="101") THEN blink_en<='1';ELSE blink_en<='0';END IF;END PROCESS;END arc;Top文件LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY design3 ISPORT (mode,adjust,clk1hz,clk2hz,clk256hz,clk1khz:IN STD_LOGIC;alarm,a,b,c,d,e,f,g:OUT STD_LOGIC;ss:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END design3;ARCHITECTURE arc OF design3 ISCOMPONENT mode_adjust_with_alarm PORT (adjust,mode,clk1hz: IN STD_LOGIC;clkh,enh,clkm,enm,clks,enha: OUT STD_LOGIC;clkh_a,clkm_a:OUT STD_LOGIC;mode_ss: OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END COMPONENT;COMPONENT scan PORT (clk256hz:IN STD_LOGIC;ss:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END COMPONENT;COMPONENT segment4to7 PORT (s: IN STD_LOGIC_VECTOR(3 DOWNTO 0);a,b,c,d,e,f,g: OUT STD_LOGIC);END COMPONENT;COMPONENT mux PORT(hh,hl,mh,ml,sh,sl,hha,hla,mha,mla:IN STD_LOGIC_VECTOR(3 DOWNTO 0);ss,mode_ss:IN STD_LOGIC_VECTOR(2 DOWNTO 0);y:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);alarm:OUT STD_LOGIC);END COMPONENT;COMPONENT blink_control PORT(ss,mode_ss:IN STD_LOGIC_VECTOR(2 DOWNTO 0);blink_en:OUT STD_LOGIC);END COMPONENT;COMPONENT count24 PORT (clk,en:IN STD_LOGIC;cout:OUT STD_LOGIC;hh,hl:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END COMPONENT;COMPONENT count60 PORT (clk ,en:IN STD_LOGIC;cout:OUT STD_LOGIC;hh,hl:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END COMPONENT;SIGNALclkh,enh,clkm,enm,clks,clkh_a,clkm_a,coutm,couts,coutm_en,couts_en,cout,vcc,coutma_en,coutma,alarm1,bli nk_en,blink_tmp,enha: STD_LOGIC;SIGNAL mode_ss,ss1:STD_LOGIC_VECTOR(2 DOWNTO 0);SIGNAL hh,hl,mh,ml,sh,sl,hha,hla,mha,mla,y,i:STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINvcc<='1';coutm_en <= enh OR coutm;couts_en <= enm OR couts;coutma_en<= enha OR coutma;blink_tmp<=blink_en and clk2hz;i(3)<=y(3) OR blink_tmp;i(2)<=y(2) OR blink_tmp;i(1)<=y(1) OR blink_tmp;i(0)<=y(0) OR blink_tmp;ss<=ss1;alarm<=alarm1 AND clk1khz;u1:mode_adjust_with_alarmPORT MAP( adjust,mode,clk1hz,clkh,enh,clkm,enm,clks,enha,clkh_a,clkm_a,mode_ss);u2:count24 PORT MAP(clkh,coutm_en,cout,hh,hl);u3:count60 PORT MAP(clkm,couts_en,coutm,mh,ml);u4:count60 PORT MAP(clks,vcc,couts,sh,sl);u5:count24 PORT MAP(clkh_a,coutma_en,cout,hha,hla);u6:count60 PORT MAP(clkm_a,vcc,coutma,mha,mla);u7:mux PORT MAP(hh,hl,mh,ml,sh,sl,hha,hla,mha,mla,ss1,mode_ss,y,alarm1);u8:scan PORT MAP(clk256hz,ss1);u9:blink_control PORT MAP(ss1,mode_ss,blink_en);u10:segment4to7 PORT MAP(i,a,b,c,d,e,f,g);END arc;实验结果:数字钟包括正常的时分秒计时, 实验箱左下角的6个动态数码管(DS6 A~DS1A)显示时、分、秒。

EDA实验一38译码器设计

EDA实验一38译码器设计

《电子设计自动化》实验报告实验一实验名称:3-8译码器的设计专业及班级:姓名:学号:一、实验目的:1.掌握组合逻辑电路的设计方法。

2.掌握 VHDL 语言的基本构造及设计的输入方法。

3.掌握 VHDL 语言的基本描绘语句的使用方法。

二、实验步骤(附源代码及仿真结果图):1.成立工程, Quartus II -- project wizard (注意工程目录中不可以出现中文字符,不可以成立在桌面上);弹出窗口如图 2-3 所示。

图 2-3 New Project Wizard 窗口2.点击next,在出现的对话框中输入以下项目信息:a.项目路径,如: D:\EDA experiment\decoder38; b.项目名称,如: decoder38。

如图 2-4 所示:图 2-4 项目路径和项目名称对话框3.点击 2 次 next 后,出现如图 2-5 所示的对话框:a.Device family 中选择 Cyclone IV E;b.Available devices 中选择 EP4CE115F29C7.图 2-5器件选择窗口4.点击next后,出现EDA工具设置对话框。

在Simulation一行中, Tool Name 选择ModelSim-Altera , Fomat(s)选择 VHDL ,如图 2-6 所示。

图 2-6 EDA 工具设置对话框5.点击 next,出现如图 2-7 所示的对话框:图 2-7 新建项目汇总对话框6. 点击 Finish 后,出现如图2-8 所示的界面:图 2-8 decoder38 项目界面7.点击 File->New->VHDL File ,如图 2-9 所示。

点击 ok 封闭对话框。

图 2-9 新建 VHDL 文件窗口8.在文本编写框内键入以下程序:LIBRARY ieee;USE ieee.std_logic_1164.ALL;ENTITY decoder38 ISPORT(A, B,C,G1,G2A,G2B: IN STD_LOGIC;Y: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); END decoder38;ARCHITECTURE Behavior OF decoder38 ISSIGNAL indata: STD_LOGIC_VECTOR(2 DOWNTO 0); BEGINindata <= C&B&A;PROCESS (indata, G1, G2A,G2B)BEGINIF (G1='1' AND G2A='0' AND G2B='0') THENCASE indata ISWHEN "000"=>Y<="11111110";WHEN "001"=>Y<="11111101";WHEN "010"=>Y<="11111011";WHEN "011"=>Y<="11110111";WHEN "100"=>Y<="11101111";WHEN "101"=>Y<="11011111";WHEN "110"=>Y<="10111111";WHEN "111"=>Y<="01111111";WHEN OTHERS =>Y<="XXXXXXXX";END CASE;ELSEY<="11111111";END IF;END PROCESS;END Behavior;9. 将文件保留为decoder38.vhd 后,开始编译,点击Processing->Start Compilation ,编译成功后,出现如图2-10 所示界面:图 2-10 编译成功界面10.再次新建一个 vhdl 文件,键入以下的 modelsim 测试程序:LIBRARY ieee;USE ieee.std_logic_1164.ALL;ENTITY decoder38_tb ISEND decoder38_tb;ARCHITECTURE Behavior OF decoder38_tb ISCOMPONENT decoder38PORT (A,B,C,G1,G2A,G2B: IN STD_LOGIC;Y:OUT STD_LOGIC_VECTOR(7 DOWNTO 0));END COMPONENT;SIGNAL A: STD_LOGIC:='0';SIGNAL B : STD_LOGIC:='0';SIGNAL C: STD_LOGIC:='0';SIGNAL G1: STD_LOGIC:='1';SIGNAL G2A: STD_LOGIC:='0';SIGNAL G2B: STD_LOGIC:='0';SIGNAL Y: STD_LOGIC_VECTOR(7 DOWNTO 0);CONSTANT CLK_PERIOD: TIME:=10ns;BEGINA<=not A after CLK_PERIOD;B<=not B after 20ns;C<=not C after 40ns;U1: decoder38 port map(A=>A,B=>B,C=>C,G1=>G1,G2A=>G2A,G2B=>G2B,Y=>Y);END behavior;11.将文件保留为 decoder38_tb.vhd ,编译经过。

《EDA技术》实验报告

《EDA技术》实验报告

《EDA技术》实验报告
本次实验报告是关于EDA技术的研究和应用。

EDA技术全称电子设计自动化技术,能
够实现电子设计的自动化和优化。

首先,我们讨论了EDA技术的应用范围。

EDA技术主要应用于现代集成电路的设计和
制造,目的是提高电路的性能,并减少设计和制造的成本和时间。

EDA技术可用于设计各
种电路,包括数字电路、模拟电路、混合信号电路和射频电路等。

其次,我们介绍了EDA技术的主要工具。

EDA技术工具包括原理图编辑器、电路模拟器、布局编辑器和综合工具等。

这些工具可以协同工作,在电路设计的不同阶段对电路进
行分析和优化。

接着,我们描述了EDA技术的设计流程。

EDA技术的设计流程分为四个主要阶段:设计,模拟,综合和布局。

在设计阶段,设计师使用原理图编辑器和其他工具来设计电路。

在模拟阶段,设计师将电路模型装入电路模拟器中,并进行仿真以验证电路的功能和性能。

在综合阶段,设计师使用综合工具将电路转换为特定的逻辑网表文件。

在布局阶段,设计
人员使用布局编辑器来设置电路的物理布局。

最后,我们讨论了EDA技术的优缺点。

EDA技术的主要优点是提高电路设计的效率和
准确性,并减少了设计和制造的成本和时间。

然而,EDA技术也存在一些缺点,例如,设
计人员需要具备高水平的技术和知识,否则可能出现算法错误或设计缺陷。

综上所述,EDA技术在现代电子设备设计和制造中起着非常重要的作用,技术的发展
将会极大程度上促进电子设备的设计和制造的进步和发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


日复一日的努力只为成就美好的明天 。18:37:2318:3 7:2318:37Satur day , December 12, 2020

安全放在第一位,防微杜渐。20.12.12 20.12.1 218:37:2318:3 7:23De cember 12, 2020

加强自身建设,增强个人的休养。202 0年12 月12日 下午6时 37分20 .12.122 0.12.12
电子设计自动化 (EDA)实验
电子设计自动化(EDA)实验
实验体系 指导思想 实验内容 参考资料
实验目的 实验要求
知识点 难点指导 实验发挥
实验体系
EDA实验体系
基础性实验
设计性实验 创新与提高实验
发挥题
点击“返回”按钮可返回主页 返回
指导思想
1. 电子设计自动化(EDA)实验是我校国家面向21世纪 电工电子课程体系改革和电工电子教学基地建设教学 改革的研究成果。
2. 软件平台输入方法的选择
在这个实验中,输入方法可选择文本输入与原理图 输入相结合的方法。
参考资料
数字逻辑与系统解题指导和Foundation操作指南, 主编 侯建军 中国铁道出版社 2001年 CPLD/FPGA的开发与应用 主编 徐志军 电子工业 出版社 2002年
点击“返回”按钮可返回主页 返回
(2)引爆的同时,在8个七段显示管上显示彩灯循 环,循环方式自选。
基本仪器
计算机、实验板、软件平台、 EPF8282ALC84-4 CPLD 芯片、微机电源
实验三 数字密码引爆器
实验目的 实验要求 知识点 难点指导
知识点
编码、译码及显示接口电路的设计方法 存储器设计方法
难点指导
1. 课堂教学中编码、译码及显示接口电路设计
实验二 彩灯控制器
要求彩灯循环是:
实验目的 实验要求 知识点 难点指导
第一秒,40号灯和69号灯亮; 第二秒,31号灯和79号灯亮; 第三秒,22号灯和9号灯亮; 第四秒,12号灯和18号灯亮; 第五秒,4号灯和28号灯亮; 第六秒,74号灯和36号灯亮; 第七秒,73号灯和35号灯亮; 第八秒,70号灯和34号灯亮; 第九秒,40号灯和69号灯亮;……
实验三
实验目的 实验要求 知识点 难点指导
数字密码引爆器
—EDA数字系统综合设计实验
实验目的
1. 掌握用VHDL语言设计数字控制系统方法 2. 掌握编码、译码和显示接口电路的设计方法 3. 掌握EDA平台中的存储器电路设计方法
实验三 数字密码引爆器
ห้องสมุดไป่ตู้
实验目的 实验要求 知识点 难点指导
实验内容
数字密码引爆器应具有如下功能。
实验二
实验目的 实验要求 知识点 难点指导
彩灯控制器
—EDA设计型实验
实验目的
1. 掌握用VHDL语言设计时序电路的设计方法; 2. 掌握分频器、译码和显示接口电路的设计方法。
实验要求
设计并制作一彩灯循环电路。
实验二 彩灯控制器
实验目的 实验要求 知识点 难点指导
提供一1MHz脉冲信号(管脚锁定83),6个LED发光管 (低电平有效)及管脚锁定如下图所示。用PLD器件设计 一彩灯。
实验发挥
实验目的 实验要求 知识点 难点指导
1. 两个四位二进制数取值可以在0000~1111的范围内, 2. 和数以8421BCD码显示。
2. 在上述实验基础上,在七段显示发光管LED4上显 示等于(=)符号。
基本仪器
计算机、实验板、软件平台、EPF8282ALC84-4 CPLD 芯片、微机电源

生活中的辛苦阻挠不了我对生活的热 爱。20. 12.1220 .12.12Saturday , December 12, 2020

人生得意须尽欢,莫使金樽空对月。1 8:37:23 18:37:2 318:37 12/12/2 020 6:37:23 PM

做一枚螺丝钉,那里需要那里上。20. 12.1218 :37:231 8:37De c-2012 -Dec-2 0

爱情,亲情,友情,让人无法割舍。2 0.12.12 2020年 12月12 日星期 六6时3 7分23 秒20.12. 12
谢谢大家!

科学,你是国力的灵魂;同时又是社 会发展 的标志 。下午6 时37分 23秒下 午6时3 7分18:37:2320 .12.12

每天都是美好的一天,新的一天开启 。20.12. 1220.1 2.1218:3718:37 :2318:3 7:23De c-20

相信命运,让自己成长,慢慢的长大 。2020 年12月1 2日星 期六6时 37分23 秒Satu rday , December 12, 2020
实验一 2位16进制数转换2位10进制数
6个七段显示器
实验目的 实验要求 知识点 难点指导
16个LED输出状态
中国最大的资料库下载
CPLD芯片
24bitDIP 开关
小键 盘
4信道脉冲输出按 键
16个LED输入输出状态
实验一 2位16进制数转换2位10进制数
实验目的 实验要求 知识点 难点指导
知识点
实验二 彩灯控制器
实验目的 实验要求 知识点 难点指导
难点指导
3. LED1-LED6中不需要的发光管应该通过开关将其 关断;
4. 注意管脚锁定。
实验二 彩灯控制器
实验目的 实验要求 知识点 难点指导
实验发挥
同时使3个LED发光管亮。 时钟改为1/5秒动作,发光管上下跳跃。
基本仪器
计算机、实验板、软件平台、 EPF8282ALC84-4 CPLD 芯片、微机电源
40 34
35 36
31 22 12 28 18 9
4 74 73
70 79 69
第一秒,4第0号二灯秒和,6第391号三号灯秒灯亮,和第;2729四号号秒灯灯,和亮19;2号号灯灯亮和;18号灯亮; 第五秒,4第号六灯秒和,28第7号4七号灯秒灯亮,和;第7336八号号秒灯灯,和亮73;05号号灯灯和亮3;4号灯亮;
(1)系统通电后,系统处 于等待状态, 按F1键即可由 键盘输入密码,此时,显示 器的最右侧数码管显示 “0”。 (2)密码输入中如有错误可 按F2键删除,重新键入。键 入密码后按F1键与系统密码 进行比较,若正确则按F4 进 行引爆;如不正确,则发出 报警信号。
实验三 数字密码引爆器
实验内容
实验目的 实验要求 知识点 难点指导
实验一
实验目的 实验要求 知识点 难点指导
2位16进制数转换2位10进制数
—EDA基础性实验
实验目的
1. 熟悉EDA软件使用环节,了解EDA实验过程;
2. 掌握EDA软件设计平台的VHDL、ABEL、图形、 符号和状态机输入设计方法;
3. 掌握EDA软件设计平台的逻辑仿真工具;
4. 掌握EDA软件设计平台的综合设计、编译方法 ;
四位二进制数与十进制数的转换规则
EDA实验的环节和过程及实验板的结构
难点指导
1. EDA实验的步骤及实验板的结构
2. 软件环境的熟悉
注意
参阅软件使用说明,在实电验源前线具的备正基负本极应不用能能接力反;!
3. 下载到实验板如何完成 参阅使用说明中实验板接线说明。
实验一
2位16进制数转换2位10进制数
2. EDA实验反映了我国当前在数字实验教学体系、内 容和方法上的改革思路和教学水平。
3. EDA实验教学的目标定位在系统地、科学地培养学 生的实际动手能力、理论联系实际的能力、工程设计 能力与创新意识。
4. EDA实验能使学生尽快掌握现代电子设计自动化技术 的新方法、新工具和新手段。
点击“返回”按钮可返回主页 返回
5. 掌握可编程芯片下载的方法。
实验一 2位16进制数转换2位10进制数
实验目的 实验要求 知识点 难点指导
实验要求
在北方交通大学可编程实验系统(如下图所 示)的8位搬码开关SW24输入两个四位二进制数 (小于1010),显示在LED1和LED3七段显示发 光管上。两位二进制数相加后的和显示在LED5 (高位)和LED6(低位)七段显示发光管上。

精益求精,追求卓越,因为相信而伟 大。202 0年12 月12日 星期六 下午6时 37分23 秒18:3 7:2320. 12.12

让自己更加强大,更加专业,这才能 让自己 更好。2 020年1 2月下 午6时37 分20.1 2.1218:37December 12, 2020

这些年的努力就为了得到相应的回报 。2020 年12月1 2日星 期六6时 37分23 秒18:3 7:2312 December 2020
要求写出设计思想及下载实现。
实验二 彩灯控制器
实验目的 实验要求 知识点 难点指导
知识点
时序电路的概念,及相应时序电路的设计方法
分频器、译码器的概念及设计方法
难点指导
1. 分频器、译码器设计应用 通过温习课堂教学中相关知识或查阅相关资料,
于实验前完成设计。 2. 软件平台输入方法的熟练掌握 对于输入方法可选择文本输入或原理图输入方法;
(3)在输入密码正确时, 可以按F3键修改系统密码, 密码由0-9 十个数字键输入, 位数最多为8位。
(4)为提高系统保密性, 密码输入时,显示器只显 示F,报警装置安装在工作 人员室中。
实验三 数字密码引爆器
实验目的 实验要求 知识点 难点指导
实验发挥
(1)修改密码时,需输入两遍,并在8个七段显示管 上显示修改数字。
相关文档
最新文档