北师大版数学八上《一次函数》ppt课
合集下载
北师大版八年级数学上册《一次函数与正比例函数》一次函数PPT教学课件

知识点 3
知3-讲
1.一般地,形如y=kx+b(k,b是常数,k≠0)的函 数,叫做一次函数.当b=0时,y=kx+b即为y
=kx,所以说正比例函数是特殊的一次函数.
2.正比例函数是一次函数,但一次函数不一定是正
比例函数.
第十五页,共二十八页。
例3 知写识出点下列各题中y与x之间的关系式,并判断:
例函数.
第十七页,共二十八页。
例知4 识点已知函数y=(m-1)x+1-3m.
知3-讲
(1)当m为何值时,y是x的一次函数?
(2)当m为何值时,y是x的正比例函数?
解:(1) 根据一次函数的定义可得:m-1≠0,所以
m≠1,即当m≠1时,y是x的一次函数.
1
1
(2) 根据正比例函数的定义可3得:m-1≠0且3
(3)z = 60 - 3 x 25
第五页,共二十八页。
一次函数:
若两个变量x,y间的对应关系可以表示成
y=kx+b(k,b为常数,k≠0) 的形式,则称y是x
的一次函数.
知1-讲
第六页,共二十八页。
例1 〈原创易错题〉已知函数y=(n2-4)x2+(2n-4)xm-2 -(m+n-8).
(1)当m,n为何值时,函数是一次函数? (2)如果函数是一次函数,计算当x=1时的函数值.
y是否为x的一次函数?是否为正比例函数?
(1)汽车以60 km/h的速度匀速行驶,行驶路程 y( km )与行驶时间x (h)之间的关系;
(2)圆的面积y(cm2)与它的半径x (cm)之间的关系;
(3)某水池有水15 m3,现打开进水管进水,进水 速度为5 m3/h, x h后这个水池内有水ym3.
北师大版八年级数学上册一次函数的应用教学课件(第一课时24张)

(2)两种租书方式每天的收费是多少元?(x<10)
解:(1)设使用会员卡租书金额y1(元)与租书时间x(天)之间的关系式为y1=kx+b. 从图象可知它过(0,20),可得b=20,将(10,50),代入关系式得k=3.∴y1= 3x+20.设使用租书卡租书金额y2(元)与租书时间x(天)之间的关系式为y2=mx. 它经过(10,50),代入得10m=50,m=5.∴y2=5x (2)会员卡方式每天收费(50-20)÷10=3(元),租书卡方式每天收费5元
二 确定一次函数的表达式
例2:已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函 数的表达式.
解:设一次函数的表达式为y=kx+b,根据题意得, ∴-5=2k+b,5=b, 解得b=5,k=-5. ∴一次函数的表达式为y=-5x+5.
练一练
已知直线l与直线y=-2x平行,且与y轴交于点(0,2),求直线l 的表达式.
(1)设出式子中的未知系数;
将已知数据代入 (2)
;
(3) 求出未知系数的值 ;
(4) 写出一次函数表达式 .
1.正比例函数 y=kx 的图象如右图所示,则这个函数的表达式是(B ) A.y=x B.y=-x C.y=-2x
D.y=-12x
2.如图,一次函数的图象过点A,且与正比例函数y=-x的图象交于点B, 则该一次函数的表达式为( ) B
解:由题易得一次函数为 y=x+2,当 y=0 时,x+2=0, x=-2,∴C(-2,0),∴S△AOC=12×2×4=4
11.某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用 租书卡,使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如下 图所示:
(1)分别写出用租书卡和会员卡租书金额y(元)与租书时间x(天)之间的关系式 ;
解:(1)设使用会员卡租书金额y1(元)与租书时间x(天)之间的关系式为y1=kx+b. 从图象可知它过(0,20),可得b=20,将(10,50),代入关系式得k=3.∴y1= 3x+20.设使用租书卡租书金额y2(元)与租书时间x(天)之间的关系式为y2=mx. 它经过(10,50),代入得10m=50,m=5.∴y2=5x (2)会员卡方式每天收费(50-20)÷10=3(元),租书卡方式每天收费5元
二 确定一次函数的表达式
例2:已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函 数的表达式.
解:设一次函数的表达式为y=kx+b,根据题意得, ∴-5=2k+b,5=b, 解得b=5,k=-5. ∴一次函数的表达式为y=-5x+5.
练一练
已知直线l与直线y=-2x平行,且与y轴交于点(0,2),求直线l 的表达式.
(1)设出式子中的未知系数;
将已知数据代入 (2)
;
(3) 求出未知系数的值 ;
(4) 写出一次函数表达式 .
1.正比例函数 y=kx 的图象如右图所示,则这个函数的表达式是(B ) A.y=x B.y=-x C.y=-2x
D.y=-12x
2.如图,一次函数的图象过点A,且与正比例函数y=-x的图象交于点B, 则该一次函数的表达式为( ) B
解:由题易得一次函数为 y=x+2,当 y=0 时,x+2=0, x=-2,∴C(-2,0),∴S△AOC=12×2×4=4
11.某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用 租书卡,使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如下 图所示:
(1)分别写出用租书卡和会员卡租书金额y(元)与租书时间x(天)之间的关系式 ;
新版北师大版八年级数学上册第四章一次函数全章课件

也是x的正比例函数;
(2)由圆的面积公式,得y=πx2,y不是x的正比例函数, 也不是x的一次函数;
(3)这个水池每时增加5 m3水,x h增加5x m3水,因 而y=15+5x,y是x的一次函数,但不是x的正比例函数.
二、新课讲解
例2 我国自2011年9月1日起,个人工资、薪金所得税征 收办法规定:月收入不超过3500元的部分不收税;月收 入超过3500元但不超过5000元的部分征收3%的所得 税……如某人月收入3860元,他应缴纳个人工资、薪金 所得税为(3860-3500)×3%=10.8(元). (1)当月收入超过3500元而又不超过5000元时,写出 应缴纳个人工资、薪金所得税y(元)与月收入x(元)之 间的关系式; (2)某人月收入为4160元,他应缴纳个人工资、薪金所 得税多少元? (3)如果某人本月缴纳个人工资、薪金所得税19.2元, 那么此人本月工资、薪金收入是多少元?
吗?
当t>-273时,t+273>0,即T>0,满足T≧0. 故给定一个大于-273℃的t值,能求出相应的T值.
二、新课讲解
在上面各例中,都有两个变量,给定其中某一个变量 的值,相应地就确定了另一个变量的值.
一般地,如果在一个变化过程中有两个变量x和y,并 且对于变量x的每一个值,变量y都有唯一的值与它对应, 那么我们称y是x的函数,其中x是自变量.
温度的零度.热力学温度T(K)与摄氏温度t(℃)之间有 如下数量关系:T=t+273,T≧0.
(1)当t分别为-43℃,-27℃,0℃,18℃时,相应的热
力学温度T是多少? 根据T=t+273,当t=-43℃时,T=230K;当t=-27℃
时,T=246K;当t=0℃时,T=273K;当t=18℃时, T=291K. (2)给定一个大于-273℃的t值,你都能求出相应的T值
(2)由圆的面积公式,得y=πx2,y不是x的正比例函数, 也不是x的一次函数;
(3)这个水池每时增加5 m3水,x h增加5x m3水,因 而y=15+5x,y是x的一次函数,但不是x的正比例函数.
二、新课讲解
例2 我国自2011年9月1日起,个人工资、薪金所得税征 收办法规定:月收入不超过3500元的部分不收税;月收 入超过3500元但不超过5000元的部分征收3%的所得 税……如某人月收入3860元,他应缴纳个人工资、薪金 所得税为(3860-3500)×3%=10.8(元). (1)当月收入超过3500元而又不超过5000元时,写出 应缴纳个人工资、薪金所得税y(元)与月收入x(元)之 间的关系式; (2)某人月收入为4160元,他应缴纳个人工资、薪金所 得税多少元? (3)如果某人本月缴纳个人工资、薪金所得税19.2元, 那么此人本月工资、薪金收入是多少元?
吗?
当t>-273时,t+273>0,即T>0,满足T≧0. 故给定一个大于-273℃的t值,能求出相应的T值.
二、新课讲解
在上面各例中,都有两个变量,给定其中某一个变量 的值,相应地就确定了另一个变量的值.
一般地,如果在一个变化过程中有两个变量x和y,并 且对于变量x的每一个值,变量y都有唯一的值与它对应, 那么我们称y是x的函数,其中x是自变量.
温度的零度.热力学温度T(K)与摄氏温度t(℃)之间有 如下数量关系:T=t+273,T≧0.
(1)当t分别为-43℃,-27℃,0℃,18℃时,相应的热
力学温度T是多少? 根据T=t+273,当t=-43℃时,T=230K;当t=-27℃
时,T=246K;当t=0℃时,T=273K;当t=18℃时, T=291K. (2)给定一个大于-273℃的t值,你都能求出相应的T值
北师大版八年级数学上册课件 4.4 一次函数的应用(共28张PPT)

5. 某地长途汽车客运公司规定旅客可随身携带一定质 量的行李,如果超过规定,则需要购买行李票,行李 票费用y元与行李质量的关系如图:
(1)旅客最多可免费携带多少 千克行李?
30千克
⑵超过30千克ห้องสมุดไป่ตู้,每千克需 付多少元?
0。2元
课堂小结
1、确定正比例函数 y kx的表达式: 只需要正比例函数 y kx的一组变量对应值
新知探究
Ⅱ、在弹性限度内,弹簧的长度y(厘米)是所挂物 体质量x(千克)的一次函数。一根弹簧不挂物体时 长14.5厘米;当所挂物体的质量为3千克时,弹簧 长16厘米。写出y与x之间的关系式,并求当所挂 物体的质量为4千克时弹簧的长度。
解:设一次函数的表达式为:ykxb
x=0时,y=14.5;x=3时,y=16
4.4 一次函数的应用〔1〕
新知探究 Ⅰ、某物体沿一个斜坡下滑,它的速度v(米/秒)与 其下滑时间t(秒)的关系如下图。 (1)写出v与t之间的关系式;
解:正比例函数的表达式为:vkt
当t=2时,v=5
5t2
(2, 5)
k5 2
v 5t 2
确定正比例函数的表达式需要几个条件?
要求出k值,只需要一个点的坐标。
引例、由于持续高温和连日无雨,某水库的蓄水量随时间的增 加而减少。干旱持续时间t(天)与蓄水量v(万米3)的关系如下图, 答复以下问题: (2)蓄水量小于400万米3时,将发出严重干旱警报,干旱多少 天后将发出严重干旱警报? (3)按照这个规律,预计持续 多少天水库将干涸?
解〔1〕因为一次函数解析式为y=-20x+1200 蓄水量小于400万米3,即y=400时, -20x+1200=400 得
解:设干旱持续时间t与蓄水量v的关系式为y=kx+b 由图上可知:当x=0时,y=1200;当x=60时,y=0;
北师大版八年级数学上册第四章一次函数函数课件

【提升训练】 6. 把棋子按下图那样摆放,随着图案每条边上棋子个数的增加,棋子总数 是如何变化的?
4 8 12 16
4n-4
7. 下列各变化过程中的两个量,其中变量之间的关系哪些是函数关系?哪些不 是函数关系?
(1)在一定的时间内,匀速运动所走的路程和速度; (2)在平静的湖面上,投入一粒石子,泛起的波纹的周长与半径; (3)x+3与y; (4)三角形的面积一定,它的一边和这边上的高; (5)正方形的面积和梯形的面积; (6)水管中水流的速度和水管的长度; (7)圆的面积和它的直径; (8)底是定长的等腰三角形的周长与底边上的高.
9. 如图,梯形上底的长是x,下底的长是15,高是8. (1)梯形面积y与上底长x之间的关系式是什么? (2)用表格表示当x从10变到20时(每次增加1),y的相应值. (3)当x每增加1时,y如何变化?说说你的理由. (4)当x=0时,y等于什么?此时图形是什么?
【拓展训练】 10. 星期天晚饭后,小红从家出去散步,下图描述了她散步过程中离家的距离 s(m)与散步所用的时间t(min)之间的关系. (1)取t的一个值,相应的s的值确定吗?s可以看成t 的函数吗?t可以看成s的函数吗? (2)12 min时,小红离家多远? (3)小红这次散步一共用了多少时间?
2. 小明从家出发步行至学校,停留一段时间后乘车返回,则下列函数图象最 能体现他离家的距离(s)与出发时间(t)之间的对应关系的是( B )
3. 如图,在平行四边形ABCD中,AB=3,其高BE为x,则平行四边形ABCD的面 积S为 3x , S 是 x 的函数,其中 x 是自变量, S 是因变量.
(1)取t的一个值,相应的s的值随之确定;s可以看成t的函数;因为当s=300时, 不能确定t的值,所以t不可以看成s的函数. (2)从图象可看出12 min时,小红离家500 m. (3)从图象可看出18 min时,小红回到家,所以小红这次散步一共用了18 min.
北师大版八年级数学上册《一次函数与正比例函数》一次函数PPT课件

体会数学应用的广泛性.
导入新知
明天是小美妈妈的生日,小美坐爸爸的车以48 km/h的速度去
花店为妈妈准备生日礼物.
导入新知
…
康乃馨
6 元/支
君子兰
8 元/支
…
包装费
20 元/次
明天是小美妈妈的生日,小美坐爸爸的车以48 km/h的速度去
花店为妈妈准备生日礼物.很快到了花店,花店里琳琅满目:
康乃馨6元/支,君子兰8元/支,……包装费为20元/次.
花店为妈妈准备生日礼物.很快到了花店,花店里琳琅满目:
康乃馨6元/支,君子兰8元/支,……包装费为20元/次.
此时小美爸爸提出了一些数学问题,你能帮忙解决吗?
若小美想给妈妈买康乃馨.设买花的费用z元,买花及包装的
总费用y元,所买康乃馨数量x支.
(1)题中有几个量,哪些是常量?哪些是变量?有哪些等
量关系? 题中有7个量,48、6、8、20是常量,
次收入超过800元但不超过4000元的,预扣预缴税款=(每次收入800)×20%;……如某人取得劳务报酬2000元,他这笔所得应预扣
预缴税款(2000-800)×20%=240(元).
(3)如果某人某次预扣预缴劳务报酬所得税600元,那么此人这次取
得的劳务报酬是多少元?
(3)因为(4000-800)×20%=640(元),600<640,
z、y、x是变量,等量关系:z=6x,y=6x+20.
导入新知
明天是小美妈妈的生日,小Байду номын сангаас坐爸爸的车以48 km/h的速度去
花店为妈妈准备生日礼物.很快到了花店,花店里琳琅满目:
康乃馨6元/支,君子兰8元/支,……包装费为20元/次.
导入新知
明天是小美妈妈的生日,小美坐爸爸的车以48 km/h的速度去
花店为妈妈准备生日礼物.
导入新知
…
康乃馨
6 元/支
君子兰
8 元/支
…
包装费
20 元/次
明天是小美妈妈的生日,小美坐爸爸的车以48 km/h的速度去
花店为妈妈准备生日礼物.很快到了花店,花店里琳琅满目:
康乃馨6元/支,君子兰8元/支,……包装费为20元/次.
花店为妈妈准备生日礼物.很快到了花店,花店里琳琅满目:
康乃馨6元/支,君子兰8元/支,……包装费为20元/次.
此时小美爸爸提出了一些数学问题,你能帮忙解决吗?
若小美想给妈妈买康乃馨.设买花的费用z元,买花及包装的
总费用y元,所买康乃馨数量x支.
(1)题中有几个量,哪些是常量?哪些是变量?有哪些等
量关系? 题中有7个量,48、6、8、20是常量,
次收入超过800元但不超过4000元的,预扣预缴税款=(每次收入800)×20%;……如某人取得劳务报酬2000元,他这笔所得应预扣
预缴税款(2000-800)×20%=240(元).
(3)如果某人某次预扣预缴劳务报酬所得税600元,那么此人这次取
得的劳务报酬是多少元?
(3)因为(4000-800)×20%=640(元),600<640,
z、y、x是变量,等量关系:z=6x,y=6x+20.
导入新知
明天是小美妈妈的生日,小Байду номын сангаас坐爸爸的车以48 km/h的速度去
花店为妈妈准备生日礼物.很快到了花店,花店里琳琅满目:
康乃馨6元/支,君子兰8元/支,……包装费为20元/次.
《一次函数的图象》一次函数PPT课件

观察图象可以发现:①直线y=x,y=3x向右
图
像
逐渐
,
上升
分
即y的值随x的增大而增大;
析
②直线
,y=-4x向右逐渐
,
即y的值随yx的 增 1大x而减小. 2
下降
探究新知
在正比例函数y=kx中: 当k>0时,y的值随着x值的增大而增大; 当k<0时,y的值随着x值的增大而减小.
y
y
y=kx(k>0)
解析:因为函数图象经过第一、三象限,所以k-3>0,解得k>3.
(2)若函数图象经过点(2,4),则k_____.
=5
解析:将坐标(2,4)带入函数解析式中,得4=(k-3)·2,解得 k=5.
巩固练习
变式训练
已知正比例函数y=(k+5)x.
(1)若函数图象经过第二、四象限,则k的取值范围是_______.
数 分析:对于函数y=x,当x=-1时,y= ;当x=1时,-1y= ;当x=2时,y= 1;不难发
值 现y的值随x的增大而
.
分
2
增大
析
分析:对于函数y=-4x,当x=-1时,y= ;当x=1时,4y= ;当x=2时,y= ;-不4 难
发现y的值随x的增大-而8
.
减小
探究新知
我们还可以借助函数图象分析此问题.
值的增大,y的值都减小了,其中哪一个减小得更快?
你是如何判断的?
解:y=-4x减小得更快.
在自变量的变化情况相
同的条件下y=-4x的函数来自值的减小量大于y= -1 2
x的
函数值的减小量.
故y=-4x减小得更快.
y 4x
北师大版八年级数学上册 (一次函数与正比例函数)一次函数教育课件

n=8m,w=8m+20
导入新知
明天是小美妈妈的生日,小美坐爸爸的车以48 km/h的速度去 花店为妈妈准备生日礼物.很快到了花店,花店里琳琅满目: 康乃馨6元/支,君子兰8元/支,……包装费为20元/次. 此时小美爸爸提出了一些数学问题,你能帮忙解决吗?
(6)函数w=8m+20有何特点?
式子两边各有一个变量, 式子左边是一个单项式,式子右边是两个单项式的和.
42 36 30
(2) 你能写出y与x的关系吗? y=60-0.12x
上面的两个函数关系式: (1)y=3+0.5x 有什么关系?
若两个变量 x、y之间的关系可以表示成
y=kx+b(k,b为常数,k不等于0)的形式,则称 y是x 的一次函数.(x为自变量,y为因变量.)
体会一次函数是刻画现实世界变化规律的重要数学模型, 体会数学应用的广泛性.
导入新知
明天是小美妈妈的生日,小美坐爸爸的车以48 km/h的速度去 花店为妈妈准备生日礼物.
导入新知
…
康乃馨 6 元/支
君子兰
8 元/支
…
包装费 20 元/次
明天是小美妈妈的生日,小美坐爸爸的车以48 km/h的速度去 花店为妈妈准备生日礼物.很快到了花店,花店里琳琅满目: 康乃馨6元/支,君子兰8元/支,……包装费为20元/次. 此时小美爸爸提出了一些数学问题,你能帮忙解决吗?
所以 m2-24=1且m-5≠0, 所以 m=±5且m≠5, 所以 m=-5. 所以,当m=-5时,函数y=(m-5)xm2-24 +m+1是一次函数.
(2)若它是正比例函数,求 m 的值. 解:(2)因为 y=(m-5)xm2-24+m+1是一次函数,
所以 m2-24=1且m-5≠0且m+1=0. 所以 m=±5且m≠5且m=-1, 则这样的m不存在, 所以函数y=(m-5)xm2-24+m+1不可能为 正比例函数.
导入新知
明天是小美妈妈的生日,小美坐爸爸的车以48 km/h的速度去 花店为妈妈准备生日礼物.很快到了花店,花店里琳琅满目: 康乃馨6元/支,君子兰8元/支,……包装费为20元/次. 此时小美爸爸提出了一些数学问题,你能帮忙解决吗?
(6)函数w=8m+20有何特点?
式子两边各有一个变量, 式子左边是一个单项式,式子右边是两个单项式的和.
42 36 30
(2) 你能写出y与x的关系吗? y=60-0.12x
上面的两个函数关系式: (1)y=3+0.5x 有什么关系?
若两个变量 x、y之间的关系可以表示成
y=kx+b(k,b为常数,k不等于0)的形式,则称 y是x 的一次函数.(x为自变量,y为因变量.)
体会一次函数是刻画现实世界变化规律的重要数学模型, 体会数学应用的广泛性.
导入新知
明天是小美妈妈的生日,小美坐爸爸的车以48 km/h的速度去 花店为妈妈准备生日礼物.
导入新知
…
康乃馨 6 元/支
君子兰
8 元/支
…
包装费 20 元/次
明天是小美妈妈的生日,小美坐爸爸的车以48 km/h的速度去 花店为妈妈准备生日礼物.很快到了花店,花店里琳琅满目: 康乃馨6元/支,君子兰8元/支,……包装费为20元/次. 此时小美爸爸提出了一些数学问题,你能帮忙解决吗?
所以 m2-24=1且m-5≠0, 所以 m=±5且m≠5, 所以 m=-5. 所以,当m=-5时,函数y=(m-5)xm2-24 +m+1是一次函数.
(2)若它是正比例函数,求 m 的值. 解:(2)因为 y=(m-5)xm2-24+m+1是一次函数,
所以 m2-24=1且m-5≠0且m+1=0. 所以 m=±5且m≠5且m=-1, 则这样的m不存在, 所以函数y=(m-5)xm2-24+m+1不可能为 正比例函数.