湖南省长沙市天心区部分学校2019-2020学年九年级【上)开学数学试卷含解析

合集下载

2019-2020学年湖南省长沙市天心区长郡中学九年级(上)期中数学试卷 (含答案解析)

2019-2020学年湖南省长沙市天心区长郡中学九年级(上)期中数学试卷 (含答案解析)

2019-2020学年湖南省长沙市天心区长郡中学九年级(上)期中数学试卷一、选择题(本大题共12小题,共36.0分)1. 在下列交通标志中,既是轴对称图形,又是中心对称图形的是( ) A. B. C. D.2. 下列各数:π,√83,12,0,√3.其中无理数出现的频率是( ). A. 20% B. 40% C. 60% D. 80%3. 已知矩形的面积为20 cm 2,设该矩形的一边长为y cm ,另一边长为x cm ,则y 与x 之间的函数图像大致是( )A. B.C. D.4. 如图,在⊙O 中,CD 是直径,弦AB ⊥CD 于E ,顺次连接AC ,CB ,BD ,则下列结论中错误的是( )A. AC⏜=BC ⏜ B. AE =EBC. CD 平分∠ACBD. BA 平分∠CBD5. 如图,在同一平面内,将△ABC 绕点A 旋转到△AED 的位置,若AE ⊥BC ,∠ADC =65°,则∠ABC的度数为( )A. 30°B. 40°C. 50°D. 60°6.若不等式组{3x≥5x−2x>m恰有三个整数解,则m的取值范围是()A. −2≤m<−1B. −2<m≤−1C. −2≤m≤−1D. −2<m<−17.如图,已知BD是⊙O的直径,⊙O的弦AC⊥BD于点E,若∠AOD=60°,则∠DBC的度数为()A. 30°B. 40°C. 50°D. 60°8.如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(1,2),则菱形OABC的面积是()A. √5B. 2√5C. 2√3D. 2√5−19.如图,从一块直径为2的圆形铁皮上剪出一个圆心角为90°的扇形CAB,且点C,A,B都在⊙O上,将此扇形围成一个圆锥,则该圆锥底面圆的面积是πA. 18B. 2ππC. 14πD. 16410.如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD绕原点O顺时针旋转90°,再向左平移1个单位”为一次变换,如此这样,连续经过2019次变换后,正方形ABCD的对角线交点M的坐标变为()A. (−3,−1)B. (−2,3)C. (−2017,2)D.(−2017,−2)11.方程x2+4x=2的正根为()A. 2−√6B. 2+√6C. −2−√6D. −2+√612.如图所示:抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且经过点(−1,0),康康依据图象写出了四个结论:①如果点(−12,y1)和(2,y2)都在抛物线上,那么y1<y2;②b2−4ac>0;③m(am+b)<a+b(m≠1的实数);④ca=−3.康康所写的四个结论中,正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)13.因式分解:ab2−2ab+a=______.14.化简:√x3=______ .15.一个不透明的袋中装有除颜色外均相同的9个红球,3个白球,若干个绿球,每次摇匀后随机摸出一个球,记下颜色后再放回袋中,经过大量重复实验后,发现摸到绿球的频率稳定在0.2,则袋中约有绿球______个.16.正方形ABCD中,E为DC边上一点,且DE=1,将AE绕点E顺时针旋转90°得到EF,连接AF,FC,则FC=______.17.如图,Rt△ABC中,AC=BC=8,⊙C的半径为2,点P在线段AB上一动点,过点P作⊙C的一条切线PQ,Q为切点,则切线长PQ的最小值为______ .18.如图,点A在反比例函数y1=1x (x>0)的图象上,点B在反比例函数y2=kx(x<0)的图象上,AB⊥y轴,若△AOB的面积为2,则k的值为______.三、解答题(本大题共8小题,共66.0分)19.|−3|+(−12)−3−(−3)2−110+√1620.化简:(xx−1−1x2−x)÷x2+2x+1x2,并从−1,0,1,2中选择一个合适的数求代数式的值.21.如图,某商场为了吸引顾客,制作了可以自由转动的转盘(转盘被等分成20个扇形),顾客每购买200元的商品,就能获得一次转动转盘的机会,如果转动转盘,转盘停止后指针正好对准红色、黄色或绿色区域,就可以分别获得200元、100元、50元的购物券;如果不愿意,可直接获得30元的购物券.(1)求转动一次转盘获得购物券的概率;(2)如果你在该商场消费210元,你会选择转转盘还是直接获得购物券?说明理由.22.如图,在边长为1个单位长度的小正方形组成的网格中,点A,B都是格点,将△ABO向左平移6个单位长度得到△A1B1O1;将△A1B1O1绕点B1按逆时针方向旋转90°后,得到△A2B2O2,请画出△A1B1O1和△A2B2O2,并直接写出点O2的坐标.23.如图,直线y=12x与双曲线y=kx(k>0,x>0)交于点A,将直线y=12x向上平移4个单位长度后,与y轴交点C,与双曲线y=kx(k>0,x>0)交于点B.(1)直接写出平移后的直线BC的函数表达式;(2)如果OA=3BC,求反比例函数的表达式.24.如图,在Rt△ABC中,∠BAC=90°,以AB为直径的⊙O交BC于点D,点E是BD⏜上一点,连接DE,AE,CE,已知CE=AC(1)判断直线CE与⊙O的位置关系,并证明;(2)若AB=AC=4,求DE的长.x2+bx+c的图象经过A(2,0),B(0,−6)两点.25.如图,二次函数y=−12(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.26.已知二次函数y=mx2+2(m+2)x+m+9.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(4,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.-------- 答案与解析 --------1.答案:C解析:【分析】本题主要考查轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识,熟记概念是解题的关键.根据轴对称图形与中心对称图形的概念求解.【解答】解:A.不是轴对称图形,也不是中心对称图形;B.不是轴对称图形,也不是中心对称图形;C.是轴对称图形,也是中心对称图形;D.是轴对称图形,不是中心对称图形.故选C.2.答案:B解析:【分析】,正确掌握无理数的定义,是解决本题的关键.本题考查了频率的计算方法:频率=频数数据总和根据无理数的定义首先确定无理数的个数,然后利用频率的定义求解.【解答】解:无理数有π,√3共2个.×100%=40%.则无理数出现的频率是25故选B.3.答案:B解析:【分析】本题考查了反比例函数的应用,属于基础应用性题目,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.根据题意有:xy=20;故y与x之间的函数图象为反比例函数,且根据x、y实际意义x、y应大于0,其图象在第一象限,即可得出答案.【解答】解:∵xy=20,(x>0,y>0).∴y=20x则图象为:.故选B.4.答案:D解析:【分析】本题考查的是垂径定理、圆心角、弧、弦的关系,熟知垂直弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.直接根据垂径定理及圆心角、弧、弦的关系对各选项进行逐一解答即可.【解答】解:A.∵CD是⊙O的直径,AB为弦,CD⊥AB于E,∴CD垂直平分AB,∴AC⏜=BC⏜.故本选项正确;B.∵CD是⊙O的直径,AB为弦,CD⊥AB于E,∴CD垂直平分AB,∴AE=EB.故本选项正确;C.∵CD是⊙O的直径,AB为弦,CD⊥AB于E,∴CD垂直平分AB,∴AC=BC.∴CD平分∠ACB,故本选项正确;D.当AB是直径时,BA平分∠CBD,故本选项错误;故选D.5.答案:B解析:【分析】先根据旋转的性质得AD=AC,∠BAE=∠CAD,再根据等腰三角形的性质和三角形内角和计算出∠CAD=50°,则∠BAE=50°,然后利用互余计算∠ABC的度数.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.【解答】解:∵△ABC绕点A旋转到△AED的位置,∴AD=AC,∠BAE=∠CAD,∵AD=AC,∴∠ACD=∠ADC=65°,∴∠CAD=180°−65°−65°=50°,∴∠BAE=50°,∵AE⊥BC,∴∠ABC=90°−∠BAE=40°.故选:B.6.答案:A解析:【分析】本题考查的是一元一次不等式组的解法有关知识,先求出不等式组的解集,根据题意得出关于m的不等式组,求出不等式组的解集即可.【解答】解:∵{3x≥5x−2 x>m,∴该不等式组解集为m<x≤1,∵该不等式组有3个整数解,∴m的取值范围为−2≤m<−1.故选A.7.答案:A解析:【分析】本题主要考查垂径定理与圆周角定理,属于基础题.掌握垂径定理与圆周角定理是解题关键.由题意,弦AC⊥直径BD,可得AD⏜=CD⏜(垂径定理),再利用等弧所对的圆心角相等与同弧所对的圆周角是圆心角的一半,即可求解.【解答】∵⊙O的直径BD⊥AC,∴AD⏜=CD⏜,∴∠COD=∠AOD=60°,∴∠DBC=12∠COD=30°;故选A.8.答案:B解析:解:作CH⊥x轴于H.∵四边形OABC是菱形,∴OA=OC,∵C(1,2),∴OH=1,CH=2,∴OC=√22+12=√5,∴菱形OABC 的面积=√5×2=2√5.故选:B .作CH ⊥x 轴于H.利用勾股定理求出OA 的长即可解决问题;本题考查菱形的性质、勾股定理、坐标与图形性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.9.答案:A解析:【分析】本题主要考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理.连接BC ,如图,利用圆周角定理得到BC 为⊙O 的直径,则AB =AC =√2,设该圆锥底面圆的半径为r ,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr =90⋅π⋅√2180,然后解方程求出r 的值,再根据圆的面积公式计算即可.【解答】解:连接BC ,如图,∵∠BAC =90°,∴BC 为⊙O 的直径,BC =2,∴AB =AC =√2,设该圆锥底面圆的半径为r ,∴2πr =90⋅π⋅√2180, 解得r =√24, ∴圆锥底面圆的面积是π⋅(√24)2=18π. 故选A .10.答案:B解析:解:∵正方形ABCD ,顶点A(1,3)、B(1,1)、C(3,1).∴点M 的坐标为(2,2),根据题意得:第1次变换后的点M 的对应点的坐标为(2−1,−2),即(1,−2),第2次变换后的点M 的对应点的坐标为:(−2−1,−1 ),即(−3,−1),第3次变换后的点M 的对应点的坐标为(−1−1,3),即(−2,3),第4次变换后的点M 的对应点的坐标为:(3−1,2),即(2,2),∵2019÷4=504余3,∴连续经过2019次变换后,点M 的坐标变为(−2,3).故选:B.由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次、4次变换后的点M的对应点的坐标,即可得规律:每4次变换后点M回到原来的位置,继而求得把正方形ABCD 连续经过2019次这样的变换得到点M的坐标.此题考查了点的坐标变化,对称与平移的性质.得到规律:每4次变换为一个循环规律是解此题的关键.11.答案:D解析:解:∵x2+4x=2,∴(x+2)2=6,∴x1=−2+√6,x2=−2−√6;∴方程x2+4x=2的正根为−2+√6.故选:D.本题采用配方法解题,将方程左边配成完全平方式,再求方程的解.解此题的关键是选择适宜的解题方法,当二次项系数为1时,选择配方法较好.12.答案:D解析:解:∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,∴x=0与x=2时的函数值相等,由图象可知,x=0的函数值大于x=−1时的函数值.2,y1)和(2,y2)都在抛物线上,则y1<y2(故①正确).∴点(−12∵y=0时,函数图象与x轴两个交点,∴ax2+bx+c=0时,b2−4ac>0(故②正确).∵由图象可知,x=1时,y=ax2+bx+c取得最大值,∴当m≠1时,am2+bm+c<a+b+c.即m(am+b)<a+b(m≠1的实数)(故③正确).∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且经过(−1,0)点,∴当y=0时,x的值为−1或3.∴ax2+bx+c=0时的两根之积为:x1⋅x2=c,x1⋅x2=(−1)×3=−3.a=−3(故④正确).∴ca故选:D.根据二次函数具有对称性,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,可知x=0和x=2时的函数值一样,由图象可以判断①;根据函数图象与x轴的交点可判断②;根据函数开口向下,可知y=ax2+bx+c具有最大值,可判断③;根据抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且经过(−1,0)点,可知y=0时,x=−1或3,从而可以判断④.本题考查二次函数图象与系数的关系,解题的关键是利用数形结合的思想将二次函数与函数图象结合在一起.13.答案:a(b−1)2解析:解:原式=a(b2−2b+1)=a(b−1)2;故答案为:a(b−1)2.原式提取a,再运用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.答案:x√x解析:解:√x3=x√x,故答案为:x√x.根据二次根式的性质(当x≥0时,√x2=x)求出即可.本题考查了二次根式的性质的应用,能运用性质进行计算是解此题的关键,注意:当x≥0时,√x2=x,当x<0时,√x2=−x.15.答案:3解析:解:设绿球的个数为x,根据题意,得:x9+3+x=0.2,解得:x=3,经检验x=3是原分式方程的解,即袋中有绿球3个,故答案为:3直接利用绿球个数÷总数=0.2,进而得出答案.此题主要考查了利用频率估计概率,正确掌握频率求法是解题关键.16.答案:√2解析:【分析】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.作FH⊥CD于H,如图,利用正方形的性质得DA=CD,∠D=90°,再根据旋转的性质得EA=EF,∠AEF=90°,接着证明△ADE≌△EHF得到DE=FH=1,AD=EH,所以EH=DC,则DE=CH=1,然后利用勾股定理计算FC的长.【解答】解:作FH⊥CD于H,如图,∵四边形ABCD为正方形,∴DA=CD,∠D=90°,∵AE绕点E顺时针旋转90°得到EF,∴EA=EF,∠AEF=90°,∵∠DAE+∠AED=90°,∠FEH+∠AED=90°,∴∠EAD=∠FEH,在△ADE和△EHF中{∠D=∠FHE∠EAD=∠FEH AE=EF,∴△ADE≌△EHF,∴DE=FH=1,AD=EH,∴EH=DC,即DE+CE=CH+EC,∴DE=CH=1,在Rt△CFH中,FC=√12+12=√2.故答案为√2.17.答案:2√7解析:【分析】本题考查了切线的性质以及勾股定理的运用,掌握辅助线的作法,注意当PC⊥AB时,线段PQ最短是关键.当PC⊥AB时,线段PQ最短;连接CP,根据勾股定理知PQ2=CP2−CQ2,先求出CP的长,然后由勾股定理即可求得答案.【解答】解:连接CP,∵PQ是⊙C的切线,∴CQ⊥PQ,∴∠CQP=90°,根据勾股定理得:PQ2=CP2−CQ2,∴当PC⊥AB时,线段PQ最短,此时,PC=12AB=4√2,则PQ2=CP2−CQ2=28,∴PQ=2√7,故答案为:2√7.18.答案:−3解析:【解答】解:设点A坐标为(a,1a),∵点B在反比例函数y2=kx(x<0)的图象上,AB⊥y轴,∴1a =kx,∴x=ak,∴点B(ak,1a),∵△AOB的面积为2,∴12(a−ak)×1a=2,∴1−k=4,∴k=−3,故答案为:−3.【分析】本题考查了反比例函数系数k的几何意义,表示出AB的长是解决本题的关键.设点A坐标为(a,1a ),由AB⊥y轴,可得点B(ak,1a),由三角形面积公式可求k的值.19.答案:解:原式=3−8−9−1+4=−11.解析:直接利用负指数幂的性质以及绝对值的性质、二次根式的性质分别化简各数得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.答案:解:原式=x2−1x(x−1)⋅x2(x+1)2=(x+1)(x−1)x(x−1)⋅x2(x+1)2=xx+1,由x不等于−1,0,1;所以当x=2时,原式=23.解析:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=2代入计算即可求出值.21.答案:解:(1)∵自由转动的转盘被等分成20个扇形,红色、黄色或绿色区域分别占1,3,6个区域,∴转动一次转盘获得购物券的概率为:1+3+620=12;(2)选择转转盘.理由:转转盘:200×120+100×320+50×620=40(元),∵40>30,∴选择转转盘.解析:(1)由自由转动的转盘被等分成20个扇形,红色、黄色或绿色区域分别占1,3,6个区域,直接利用概率公式求解即可求得答案;(2)首先求得转转盘可能得到的购物券钱数,再比较即可求得答案.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.注意掌握选择转转盘获得购物券的钱数的求解方法是关键.22.答案:解:如图所示,△A1B1O1、△A2B2O2即为所求:其中点O2的坐标为(−3,−3).解析:分别作出平移变换和旋转变换后的对应点,再顺次连接即可得.本题主要考查作图−旋转变换、平移变换,解题的关键是熟练掌握旋转变换和平移变换的定义、性质.23.答案:解:(1)∵将直线y=12x向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=12x+4,(2)分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,32x),∵OA=3BC,BC//OA,CF//x轴,∴△BCF∽△AOD,∴CF=13OD,∵点B在直线y=12x+4上,∴B(x,12x+4),∵点A、B在双曲线y=kx上,∴3x⋅32x=x⋅(12x+4),解得x=1,∴k=3×1×32×1=92.故反比例函数的表达式为:y=92x=92x.解析:(1)根据一次函数平移的性质求出平移后函数的解析式;(2)分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,再设A(3x,32x),由于OA=3BC,故可得出B(x,12x+4),再根据反比例函数中k=xy为定值求出k的值即可.本题考查的是反比例函数综合题.根据题意作出辅助线,设出A、B两点的坐标,再根据k=xy的特点求出k的值即可.24.答案:解:(1)CE与⊙O相切,理由:连接OE,∵OA=OE,AC=EC,∴∠OAE=∠OEA,∠CAE=∠CEA,∴∠CEA+∠OEA=∠CAE+∠OAE,∴∠CEO=∠CAO,∵∠BAC=90°,∴∠CEO=90°,∴CE是⊙O的切线;(2)连接OC,OB,∵AB=AC=4,∠BAC=90°,∴OA =2,BC =4√2,CE =AC =4,∴OC =√AC 2+OA 2=2√5,∵AC =CE ,OA =OE ,∴AE ⊥OC ,AF =EF ,∴AO 2=OF ⋅OC ,∴OF =AO 2OC =2√55, ∵OF ⊥AE ,BE ⊥AE ,∴OF//BE ,∵AO =OB ,∴BE =2OF =4√55,∵CE 是⊙O 的切线,∴∠CBE =∠DEC ,∵∠BCE =∠ECD ,∴△CDE∽△CEB ,∴DE BE =CE BC ,∴4√55=4√2, ∴DE =2√105.解析:(1)连接OE ,根据等腰三角形的性质得到∠OAB =∠OEA ,∠CAE =∠CEA ,求得∠CEO =∠CAO ,得到∠CEO =90°,于是得到结论;(2)连接OC ,OB ,解直角三角形得到OA =2,BC =4√2,CE =AC =4,根据勾股定理得到OC =√AC 2+OA 2=2√5,根据射影定理得到AO 2=OF ⋅OC ,求得OF =AO 2OC =2√55,得到BE =2OF =4√55,根据相似三角形的性质即可得到结论.本题考查了切线的判定和性质,等腰直角三角形,圆周角定理,正确的作出辅助线是解题的关键. 25.答案:解:(1)把A(2,0)、B(0,−6)代入y =−12x 2+bx +c ,得:{−2+2b +c =0c =−6, 解得{b =4c =−6, ∴这个二次函数的解析式为y =−12x 2+4x −6;(2)∵该抛物线对称轴为直线x =−42×(−12)=4,∴点C的坐标为(4,0),∴AC=OC−OA=4−2=2,∴S△ABC=12×AC×OB=12×2×6=6.解析:本题是二次函数的综合题,要会求二次函数的对称轴,会运用面积公式.(1)二次函数图象经过A(2,0)、B(0,−6)两点,两点代入y=−12x2+bx+c,算出b和c,即可得解析式;(2)先求出对称轴方程,写出C点的坐标,计算出AC,然后由面积公式计算值.26.答案:解:(1)根据题意得m≠0且△=4(m+2)2−4m⋅(m+9)>0,所以m<45且m≠0;(2)把A(4,0)代入y=mx2+2(m+2)x+m+9得16m+8(m+2)+m+9=0,解得m=−1,所以抛物线解析式为y=−x2+2x+8=−(x−1)2+9,所以抛物线的对称轴为直线x=1,当x=0时,y=−x2+2x+8=8,则B(0,8),设直线AB的解析式为y=kx+b,把A(4,0),B(0,8)代入得{4k+b=0b=8,解得{k=−2b=8,所以直线AB的解析式为y=−2x+8,当x=1时,y=−2x+8=6,所以P点坐标为(1,6).解析:(1)利用二次函数的定义和判别式的意义得到m≠0且△=4(m+2)2−4m⋅(m+9)>0,然后求出两个不等式的公共部分即可;(2)先把A(4,0)代入y=mx2+2(m+2)x+m+9求出m=−1,则抛物线解析式为y=−x2+2x+8,配成顶点式得y=−(x−1)2+9,于是得到抛物线的对称轴为直线x=1,接着确定B(0,8),然后利用待定系数法求出直线AB的解析式为y=−2x+8,再求自变量为1时的一次函数值即可得到P点坐标.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.△=b2−4ac决定抛物线与x轴的交点个数:△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac<0时,抛物线与x轴没有交点.也考查了二次函数的性质.。

湖南省长沙市天心区部分学校2019-2020学年九年级(上)开学数学试卷

湖南省长沙市天心区部分学校2019-2020学年九年级(上)开学数学试卷

2019-2020学年九年级(上)开学数学试卷一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共12个小题,每小题4分,共48分)1.在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限2.计算正确的是()A.(﹣2019)0=0 B.x6÷x2=x3C.(﹣a2b3)4=﹣a8b12D.3a4•2a=6a53.分式的值为0,则()A.x=2 B.x=﹣2 C.x=±2 D.x=04.某校男子足球队年龄分布条形图如图所示,该球队年龄的众数和中位数分别是()A.8,8 B.15,15 C.15,16 D.15,145.下列长度的3根小木棒不能搭成三角形的是()A.2cm,3cm,4cm B.1cm,2cm,3cmC.3cm,4cm,5cm D.4cm,5cm,6cm6.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆锥,正方体,三棱锥,圆柱B.正方体,圆锥,四棱锥,圆柱C.正方体,圆锥,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱7.若关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,则k的取值范围是()A.k<﹣1 B.k>﹣1 C.k<1 D.k>18.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=60°,∠B=48°,则∠CDE的大小为()A.72°B.36°C.30°D.189.如图,在菱形ABCD中,∠A=60°,AD=4,点P是AB边上的一个动点,点E、F分别是DP、BP的中点,则线段EF的长为()A.2 B.4 C.2D.210.我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大小和尚各几人?设大、小和尚各有x、y人,则可以列方程组()A.B.C.D.11.定义min(a,b),当a≥b时,min(a,b)=b,当a<b时,min(a,b)=a;已知函数y=min(﹣x﹣3,2x﹣21),则该函数的最大值是()A.﹣15 B.﹣9 C.﹣6 D.612.一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),S与t之间的函数关系如图所示.下列说法中正确的有()①A、B两地相距60千米;②出发1小时,货车与小汽车相遇;③小汽车的速度是货车速度的2倍;④出发1.5小时,小汽车比货车多行驶了60千米.A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题4分,满分24分)13.式子在实数范围内有意义,则实数的取值范围是.14.2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km.数据384000用科学记数法可以表示为km.15.分解因式:a3﹣2a2b+ab2=.16.若一个多边形的内角和是540°,则该多边形的边数是.17.如图,四边形OABC是矩形,A(2,1),8(0,5),点C在第二象限,则点C的坐标是.18.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是.三、解答题(本题共2个小题,每小题6分,共12分)19.计算:|﹣(﹣3)2|+20.解不等式组,并把不等式组的解集在数轴上表示出来.四、解答题(本题共2个小题,每小题8分,共16分)21.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.22.某旅客携带xkg的行李乘飞机,登机前,旅客可选择托运或快递行李,托运费y1(元)与行李重量xkg的对应关系由如图所示的一次函数图象确定,下表列出了快递费y2(元)与行李重量xkg的对应关系.(1)如果旅客选择单托运,求可携带的免费行李的最大重量为多少kg?(2)如果旅客选择快递,当1<x≤15时,直接写出快递费y2(元)与行李的重量xkg之间的函数关系式;(3)某旅客携带25kg的行李,设托运mkg行李(10≤m<24,m为正整数),剩下的行李选择快递,当m为何值时,总费用y的值最小?并求出其最小值是多少元?参考答案与试题解析一.选择题(共12小题)1.在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】横坐标小于0,纵坐标大于0,则这点在第二象限.【解答】解:∵﹣2<0,3>0,∴(﹣2,3)在第二象限,故选:B.2.计算正确的是()A.(﹣2019)0=0 B.x6÷x2=x3C.(﹣a2b3)4=﹣a8b12D.3a4•2a=6a5【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别化简得出答案.【解答】解:A、(﹣2019)0=1,故此选项错误;B、x6÷x2=x4,故此选项错误;C、(﹣a2b3)4=a8b12,故此选项错误;D、3a4•2a=6a5,故此选项正确.故选:D.3.分式的值为0,则()A.x=2 B.x=﹣2 C.x=±2 D.x=0【分析】根据分式的值为零的条件得到x2﹣4=0且x+2≠0,然后分别解方程与不等式易得x=2.【解答】解:∵分式的值为0,∴x2﹣4=0且x+2≠0,解x2﹣4=0得x=±2,而x≠﹣2,∴x=2.故选:A.4.某校男子足球队年龄分布条形图如图所示,该球队年龄的众数和中位数分别是()A.8,8 B.15,15 C.15,16 D.15,14【分析】根据众数和中位数的概念求解.【解答】解:根据图示可得,15岁的队员人数最多,故众数为15;根据图示可得,共有人数:2+6+8+3+2+1=22(人),故第11和12名队员年龄的平均值为中位数,即中位数为:=15.故选:B.5.下列长度的3根小木棒不能搭成三角形的是()A.2cm,3cm,4cm B.1cm,2cm,3cmC.3cm,4cm,5cm D.4cm,5cm,6cm【分析】看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:A、2+3>4,能构成三角形,不合题意;B、1+2=3,不能构成三角形,符合题意;C、4+3>5,能构成三角形,不合题意;D、4+5>6,能构成三角形,不合题意.故选:B.6.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆锥,正方体,三棱锥,圆柱B.正方体,圆锥,四棱锥,圆柱C.正方体,圆锥,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱【分析】依据正方体,圆锥,圆柱,三棱柱的展开图的特征,即可得到结论.【解答】解:由图可得,从左到右,其对应的几何体名称分别为正方体,圆锥,圆柱,三棱柱,故选:D.7.若关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,则k的取值范围是()A.k<﹣1 B.k>﹣1 C.k<1 D.k>1【分析】直接利用根的判别式进而得出k的取值范围.【解答】解:∵关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,∴b2﹣4ac=4﹣4×1×(﹣k)=4+4k>0,∴k>﹣1.故选:B.8.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=60°,∠B=48°,则∠CDE的大小为()A.72°B.36°C.30°D.18【分析】由三角形内角和定理得出∠ACB=72°,由角平分线定义得出∠BCD=36°,再由平行线的性质即可得出答案.【解答】解:∵∠A=60°,∠B=48°,∴∠ACB=180°﹣∠A﹣∠B=72°,∵CD平分∠ACB,∴∠BCD=∠ACB=36°,∵DE∥BC,∴∠CDE=∠BCD=36°;故选:B.9.如图,在菱形ABCD中,∠A=60°,AD=4,点P是AB边上的一个动点,点E、F分别是DP、BP的中点,则线段EF的长为()A.2 B.4 C.2D.2【分析】如图连接BD.首先证明△ADB是等边三角形,可得BD=4,再根据三角形的中位线定理即可解决问题.【解答】解:如图连接BD.∵四边形ABCD是菱形,∴AD=AB=4,∵∠A=60°,∴△ABD是等边三角形,∴BD=AD=4,∵PE=ED,PF=FB,∴EF=BD=2.故选:A.10.我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大小和尚各几人?设大、小和尚各有x、y人,则可以列方程组()A.B.C.D.【分析】分别利用大、小和尚一共100人以及馒头大和尚一人分3个,小和尚3人分一个,馒头一共100个分别得出等式得出答案.【解答】解:设大、小和尚各有x,y人,则可以列方程组:.故选:A.11.定义min(a,b),当a≥b时,min(a,b)=b,当a<b时,min(a,b)=a;已知函数y=min(﹣x﹣3,2x﹣21),则该函数的最大值是()A.﹣15 B.﹣9 C.﹣6 D.6【分析】先画出直线y=﹣x﹣3和直线y=2x﹣21,它们的交点的坐标为(6,﹣9),再根据新定义讨论:x≤6,y=2x﹣21,利用一次函数的性质得到y有最大值﹣9;x≥6时,y=﹣x﹣3,则x=6时,利用一次函数的性质得到y有最大值﹣9;【解答】解:当﹣x﹣3≥2x﹣21,解得x≤6时,y=min(﹣x﹣3,2x﹣21)=2x﹣21,则x=6时,y有最大值﹣9;当﹣x﹣3≤2x﹣21,解得x≥6时,y=min(﹣x﹣3,2x﹣21)=﹣x﹣3,则x=6时,y 有最大值﹣9;所以该函数的最大值是﹣9.故选:B.12.一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),S与t之间的函数关系如图所示.下列说法中正确的有()①A、B两地相距60千米;②出发1小时,货车与小汽车相遇;③小汽车的速度是货车速度的2倍;④出发1.5小时,小汽车比货车多行驶了60千米.A.1个B.2个C.3个D.4个【分析】①根据图象中t=0时,s=120实际意义可得;②根据图象中t=1时,s=0的实际意义可判断;③由④可知小汽车的速度是货车速度的2倍;④由图象t=1.5和t=3的实际意义,得到货车和小汽车的速度,进一步得到1.5小时后的路程,可判断正误.【解答】解:(1)由图象可知,当t=0时,即货车、汽车分别在A、B两地,s=120,所以A、B两地相距120千米,故①错误;(2)当t=1时,s=0,表示出发1小时,货车与小汽车相遇,故②正确;(3)由(3)知小汽车的速度为:120÷1.5=80(千米/小时),货车的速度为40(千米/小时),∴小汽车的速度是货车速度的2倍,故③正确;(4)根据图象知,汽车行驶1.5小时达到终点A地,货车行驶3小时到达终点B地,故货车的速度为:120÷3=40(千米/小时),出发1.5小时货车行驶的路程为:1.5×40=60(千米),小汽车行驶1.5小时达到终点A地,即小汽车1.5小时行驶路程为120千米,故出发1.5小时,小汽车比货车多行驶了60千米,∵故④正确.∴正确的有②③④三个.故选:C.二.填空题(共3小题)13.式子在实数范围内有意义,则实数的取值范围是x≥﹣3 .【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:式子在实数范围内有意义,则3+x≥0,解得:x≥﹣3.故答案为:x≥﹣3.14.2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km.数据384000用科学记数法可以表示为 3.84×105km.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:384000=3.84×105.故答案为:3.84×105.15.分解因式:a3﹣2a2b+ab2=a(a﹣b)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=a(a2﹣2ab+b2)=a(a﹣b)2,故答案为:a(a﹣b)216.若一个多边形的内角和是540°,则该多边形的边数是 5 .【分析】n边形的内角和公式为(n﹣2)•180°,由此列方程求n.【解答】解:设这个多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,故答案为:5.17.如图,四边形OABC是矩形,A(2,1),8(0,5),点C在第二象限,则点C的坐标是(﹣2,4).【分析】作AM⊥x轴于M,CN⊥y轴于N,则∠AMO=∠BNC=90°,OM=2,AM=1,OB=5,证明△BCN≌△AOM(AAS),得出BN=AM=1,CN=OM=2,得出ON=OB﹣BN=4,即可得出答案.【解答】解:作AM⊥x轴于M,CN⊥y轴于N,如图所示:则∠AMO=∠BNC=90°,∴∠AOM+∠OAM=90°,∵A(2,1),8(0,5),∴OM=2,AM=1,OB=5,∵四边形OABC是矩形,∴BC=AO,∠AOC=90°,BC∥OA,∴∠CBN=∠AOB,∵∠AOM+∠AOB=90°,∴∠CBN=∠AOB=∠OAM,在△BCN和△AOM中,,∴△BCN≌△AOM(AAS),∴BN=AM=1,CN=OM=2,∴ON=OB﹣BN=4,∴点C的坐标是(﹣2,4);故答案为:(﹣2,4).18.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是2或5 .【分析】先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=10,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可.【解答】解:∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,∴AB=10,∵以AD为折痕△ABD折叠得到△AB′D,∴BD=DB′,AB′=AB=10.如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.设BD=DB′=x,则AF=6+x,FB′=8﹣x.在Rt△AFB′中,由勾股定理得:AB′2=AF2+FB′2,即(6+x)2+(8﹣x)2=102.解得:x1=2,x2=0(舍去).∴BD=2.如图2所示:当∠B′ED=90°时,C与点E重合.∵AB′=10,AC=6,∴B′E=4.设BD=DB′=x,则CD=8﹣x.在Rt△′BDE中,DB′2=DE2+B′E2,即x2=(8﹣x)2+42.解得:x=5.∴BD=5.综上所述,BD的长为2或5.故答案为:2或5.三.解答题(共4小题)19.计算:|﹣(﹣3)2|+【分析】原式利用平方根、立方根定义,乘方的意义,以及绝对值的代数意义计算即可求出值.【解答】解:原式=9+2﹣2﹣1=8.20.解不等式组,并把不等式组的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x﹣2≤x+6,得:x≤4,解不等式+1>x,得:x>0,则不等式组的解集为0<x≤4,将不等式组的解集表示在数轴上如下:21.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.【分析】(1)根据矩形性质求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,证△DMO≌△BNO,推出OM=ON,得出平行四边形BMDN,推出菱形BMDN;(2)根据菱形性质求出DM=BM,在Rt△AMB中,根据勾股定理得出BM2=AM2+AB2,推出x2=x2﹣16x+64+16,求出即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中,,∴△DMO≌△BNO(AAS),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8﹣x)2+42,解得:x=5,所以MD长为5.22.某旅客携带xkg的行李乘飞机,登机前,旅客可选择托运或快递行李,托运费y1(元)与行李重量xkg的对应关系由如图所示的一次函数图象确定,下表列出了快递费y2(元)与行李重量xkg的对应关系.(1)如果旅客选择单托运,求可携带的免费行李的最大重量为多少kg?(2)如果旅客选择快递,当1<x≤15时,直接写出快递费y2(元)与行李的重量xkg 之间的函数关系式;(3)某旅客携带25kg的行李,设托运mkg行李(10≤m<24,m为正整数),剩下的行李选择快递,当m为何值时,总费用y的值最小?并求出其最小值是多少元?【分析】(1)观察图象找出两点的坐标,利用待定系数法可求出托运费y1(元)与行李质量x(公斤)的函数关系式,将y1=0代入函数关系式中即可得出结论;(2)根据表格中的数据,分x=1、1<x≤5、5<x≤15三部分找出快递费y2(元)与行李质量x(公斤)的函数关系式;(3)分10≤m<20以及20≤m<24两种情况找出y关于m的函数关系式,根据一次函数的性质可找出y的取值范围,找出当y取最小值时m的值即可得出结论.【解答】解:(1)设托运费y1(元)与行李质量x(公斤)的函数关系式为y1=kx+b,将(30,300)、(50,900)代入y1=kx+b,,解得:,∴托运费y1(元)与行李质量x(公斤)的函数关系式为y1=30x﹣600.当y1=30x﹣600=0时,x=20.答:可携带的免费行李的最大质量为20公斤.(2)根据题意得:当0<x≤1时,y2=10;当1<x≤5时,y2=10+3(x﹣1)=3x+7;当5<x≤15时,y2=10+3×(5﹣1)+5(x﹣5)=5x﹣3.综上所述:快递费y2(元)与行李质量x(公斤)的函数关系式为y2=.(3)当10≤m<20时,5<25﹣m≤15,∴y=y1+y2=0+5×(25﹣m)﹣3=﹣5m+122.∵10≤m<20,∴22<y≤72;当20≤m<24时,1<25﹣m≤5,∴y=y1+y2=30m﹣600+3×(25﹣m)+7=27m﹣518.∵20≤m<24,∴22≤y<130.综上可知:当m=20时,总费用y的值最小,最小值为22.答:当托运20公斤、快递5公斤行李时,总费用最少,最少费用为22元。

湘教版2019-2020学年九年级上学期数学开学考试试卷A卷

湘教版2019-2020学年九年级上学期数学开学考试试卷A卷

湘教版2019-2020学年九年级上学期数学开学考试试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)一元二次方程=0的根()A .B . x1=2,x2=﹣2C .D .2. (2分)方程2x2﹣3x﹣=0的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 只有一个实数根D . 没有实数根3. (2分)在平面直角坐标系中,若将抛物线y=2x2 - 4x+3先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是()A . (-2,3)B . (-1,4)C . (1,4)D . (4,3)4. (2分)一次函数与的图象如图1,当时,则下列结论:①;②;③中,正确的个数是()A . 0B . 1C . 2D . 35. (2分)某市5月上旬的最高气温如下(单位℃)28,29,30,31,29,33,对这组数据下列说法错误的是()A . 平均数是30B . 众数是29C . 中位数是31D . 极差是56. (2分)如图,平行四边形ABCD中,∠ABC=45°,E、F分别在CD和BC的延长线上,AE//BD,EF⊥BC,AB=1,则EF的长是()A . 1.5B .C .D . 27. (2分)如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG= CG2;③若AF=2DF,则BG=6GF.其中正确的结论()A . 只有①②B . 只有①③C . 只有②③D . ①②③8. (2分)一次函数y=kx﹣k(k<0)的图象大致是()A .B .C .D .9. (2分)如图,四边形ABCD是正方形,直线a,b,c分别通过A、D、C三点,且a∥b∥c.若a与b之间的距离是4,b与c之间的距离是8,则正方形ABCD的面积是()A . 70B . 74C . 80D . 14410. (2分)如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于点E.则阴影部分面积为()A . 6-πB . 2 -πC . πD . π11. (2分)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P 在正方形的边上,则满足PE+PF=9的点P的个数是()A . 0B . 4C . 6D . 812. (2分)根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断,下列说法错误的是()A . 男生在13岁时身高增长速度最快B . 女生在10岁以后身高增长速度放慢C . 11岁时男女生身高增长速度基本相同D . 女生身高增长的速度总比男生慢二、填空题 (共6题;共7分)13. (1分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为________.14. (1分)三角形两边长分别为3和6,第三边是方程x2﹣6x+8=0的解,则此三角形周长是________.15. (1分)二次函数y=﹣x2+2x﹣3,用配方法化为y=a(x﹣h)2+k的形式为________.16. (1分)如图,在△ABD中,∠ADB=90°,C是BD上一点,若E、F分别是AC、AB 的中点,△DEF的面积为3.5,则△ABC的面积为________ .17. (2分)直线y=﹣x与直线y=x+2的交点坐标为________,这两条直线与x轴围成的三角形的面积为________.18. (1分)如图,在△ABC中,AB=AC=10,BC=12,AD⊥BC于点D,则AD的长为________.三、解答题 (共7题;共88分)19. (5分)(2x+3)2=x2﹣6x+9.20. (5分)如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M。

湖南省长沙市天心区19-20学年九年级上学期期末数学试卷 (含答案解析)

湖南省长沙市天心区19-20学年九年级上学期期末数学试卷 (含答案解析)

湖南省长沙市天心区19-20学年九年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.−12的相反数是()A. 2B. 12C. −2 D. −122.下列运算正确的是()A. x2x3=x6B. x3+x2=x5C. (3x3)2=9x5D. (2x)2=4x23.函数y=√x+1+1x−1的自变量x的取值范围是()A. x≠1B. x>−1C. x≥−1D. x≥−1且x≠14.计算12m2−9+2m+3的结果是()A. m+6m2−9B. 2m−3C. 2m+3D. 2m+9m2−95.下列方程中,有两个不等实数根的是()A. x2=3x−8B. x2+5x=−10C. 7x2−14x+7=0D. x2−7x=−5x+36.已知点(k,b)在第二象限,则一次函数y=−kx+b的图象大致是()A. B.C. D.7.函数y=kx与y=kx2−k(k≠0)在同一直角坐标系中的图象可能是()A. B.C. D.8.下列长度的三条线段能组成三角形的是()A. 1cm,2cm,3cmB. 3cm,4cm,5cmC. 5cm,15cm,8cmD. 6cm,8cm,1cm9.到三角形三条边的距离都相等的点是这个三角形的()A. 三条中线交点B. 三条高的交点C. 三条边垂直平分线的交点D. 三条角平分线交点10.如图,BC=3,AC=4,若△ABC∽△BDC,则CD=()A. 2B. 32C. 43D. 94二、填空题(本大题共8小题,共24.0分)11.如图,直线a//b,∠1=55°,则∠2=______.12.分解因式:5x3−10x2+5x=______.13.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,含有大量有毒、有害物质,也称可入肺颗粒物,将0.0000025用科学记数法表示为_____________14.二元一次方程组{x+y=21,3x−2y=8的解为_________.15.若x2−3x的值为4,则−3x2+9x−5的值为______.16.如图,正方形ABOC的边长为2,反比例函数y=kx的图象经过点A,则k的值是________.17.如图所示,延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC长的________倍.18.已知关于x的不等式组{x−a>03−2x>0的整数解共有6个,则a的取值范围是______ .三、计算题(本大题共2小题,共14.0分)19.解不等式x−22≤7−x3,并求出它的正整数解.20.已知:如图,CD=BE,CD//BE,∠D=∠E.求证:点C是线段AB的中点.四、解答题(本大题共6小题,共52.0分)21.计算:2tan60°−21+√3+(2−π)0−(13)−1.22.如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y=mx(x>0)的函数图象经过点D,点P是一次函数y=kx+3−3k(k≠0)的图象与该反比例函数图象的一个公共点。

湖南长沙市四中2019-2020学年九年级(上)开学数学试卷含解析

湖南长沙市四中2019-2020学年九年级(上)开学数学试卷含解析

湖南长沙市四中2019-2020学年九年级(上)开学数学试卷一.选择题(每题3分,满分36分)1.下列图形中既是轴对称图形又是中心对称图形的是( )A.B.C.D.2.下列事件为必然事件的是( )A.袋中有4个蓝球,2个绿球,共6个球,随机摸出一个球是红球B.三角形的内角和为180°C.打开电视机,任选一个频道,屏幕上正在播放广告D.抛掷一枚硬币两次,第一次正面向上,第二次反面向上3.已知点M是平行四边形ABCD内一点(不含边界),设∠MAD=θ1,∠MBA=θ2,∠MCB=θ3,∠MDC=θ4.若∠AMB=110°,∠CMD=90°,∠BCD=60°.则( )A.θ1+θ4﹣θ2﹣θ3=10°B.θ2+θ4﹣θ1﹣θ3=30°C.θ1+θ4﹣θ2﹣θ3=30°D.θ2+θ4﹣θ1﹣θ3=40°4.圆内接四边形ABCD,∠A,∠B,∠C的度数之比为3:4:6,则∠D的度数为( )A.60B.80C.100D.1205.若式子有意义,则一次函数y=(3﹣k)x+k﹣3的图象可能是( )A.B...人数232341则这些运动员成绩的中位数、众数分别是( ).4.65、4.70B.4.65、4.75C.4.70、4.75D.4.70、4.70.如图,A、B、C是正方形网格中的格点,将△ABC绕A点逆时针旋转45°得到△ADE,则tan值为( ).B.C.D..如图,在平面直角坐标系中,点P坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交轴的负半轴于点A,则点A的横坐标为( ).﹣.﹣.﹣的方程bx.B.C.2D.1二.填空题(满分18分,每小题3分).抛物线y=x2﹣4x﹣5与x轴交于点A、B,点P在抛物线上,若△PAB的面积为27,则满足条件的点P有 个..甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.5米,方差分别为s甲=0.2,S乙2=0.08,成绩比较稳定的是 (填“甲”或“乙”).如果顺次联结四边形ABCD各边中点所得的四边形是矩形,那么对角线AC与BD需满足的条件是 ..一元二次方程x2+5x+a=0的两根为m,n,若mn=2,则m2+6m+n= ..如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是 .分)计算+|(8分)如图,利用一面墙(墙的长度不超过45米),用80米长的篱笆围成一个矩形场地.①怎样围才能使矩形场地的面积为750平方米?②能否围成面积为810平方米的矩形场地,为什么?(9分)如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的,求的值.2400元购进乙种运动鞋的数量相同.不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?(10分)如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.为等腰三角形时,求t (3)当⊙G与BD相切时,求t的值.参考答案一.选择题1.解:A、是轴对称图形,也是中心对称图形;B、不是轴对称图形,不是中心对称图形;C、不是轴对称图形,是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:A.2.解:A.袋中有4个蓝球,2个绿球,共6个球,随机摸出一个球是红球是不可能事件;B.三角形的内角和为180°是必然事件;C.打开电视机,任选一个频道,屏幕上正在播放广告是随机事件;D.抛掷一枚硬币两次,第一次正面向上,第二次反面向上是随机事件;故选:B.3.解:∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=60°,∴∠BAP=60°﹣θ1,∠DCP=60°﹣θ3,∴△ABP中,60°﹣θ1+θ2+110°=180°,即θ2﹣θ1=10°①,△DCP中,60°﹣θ3+θ4+90°=180°,即θ4﹣θ3=30°②,由②+①,可得(θ4﹣θ3)+(θ2﹣θ1)=40°,即θ2+θ4﹣θ1﹣θ3=40°,故选:D.4.解:∵内接四边形的对角互补,∴∠A:∠B:∠C:∠D=3:4:6:5设∠A的度数为3x,则∠B,∠C,∠D的度数分别为4x,6x,5x∴3x+4x+6x+5x=360°∴x=20°∴∠D=100°故选:C.5.解:∵式子有意义,∴k﹣3>0,解得k>3,∴3﹣k<0,k﹣3>0,∴一次函数y=(3﹣k)x+k﹣3的图象过一、二、四象限.故选:D.6.解:如图,作AF⊥x轴于F,A1E⊥x轴于E.∵A(﹣1,2),∴AF=2,OF=1,∵∠AFO=∠OEA1=∠AOA1=90°,∴∠AOF+∠EOA1=90°,∠A+∠AOF=90°,∴∠A=∠EOA1,∵OA=OA1,∴△AOF≌△OA1E(AAS),∴OE=AF=2,A1E=OF=1,∴A1(﹣2,﹣1),故选:C.7.解:这些运动员成绩的中位数、众数分别是4.70,4.75.故选:C.8.解:根据旋转的性质可知∠D=∠B,∵tan B==,∴tan D=.故选:D.9.解:由勾股定理得,OP==,由题意得,OA=OP=,则点A的横坐标为﹣,故选:C.10.解:设该公司第二、三两个月投放单车数量的月平均增长率为x,依题意得第三个月第三个月投放单车a(1+x)2辆,则y=a(1+x)2.故选:A.11.解:∵点Q(b,a)在第三象限,∴a<0,b<0,∴ab>0.∵△=(﹣c)2﹣4b(﹣a)=c2+4ab>0,∴关于x的方程bx2﹣cx﹣a=0有两个不相等的实数根.故选:A.12.解:连接MC,如图所示:∵四边形ABCD是正方形,∴∠C=90°,∠DBC=45°,∵ME⊥BC于E,MF⊥CD于F∴四边形MECF为矩形,∴EF=MC,当MC⊥BD时,MC取得最小值,此时△BCM是等腰直角三角形,∴MC=BC=2,∴EF的最小值为2;故选:B.二.填空题(共6小题,满分18分,每小题3分)13.解:当y=0时, x2﹣4x﹣5=0,解得x1=﹣1,x2=5,∴A、B点的坐标为(﹣1,0),(5,0),设P(t,t2﹣4t﹣5),∵△PAB的面积为27,∴×(5+1)×|t2﹣4t﹣5|=27,即t2﹣4t﹣5=9或t2﹣4t﹣5=﹣9,解t2﹣4t﹣5=9得t1=2+3,t2=2﹣3,此时P点坐标为(2﹣3,9),(2+3,9);解t2﹣4t﹣5=﹣9得t1=t2=2,此时P点坐标为(2,﹣9),∴满足条件的点P有3个.故答案为3.14.解:∵S甲2=0.2,S乙2=0.08,∴S甲2>S乙2,∴成绩比较稳定的是乙;故答案为:乙.15.证明:∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB、各边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故答案为:AC⊥BD.16.解:由题意可知:m+n=﹣5,mn=2,∴a=2,∴m2+5m+2=0,∴原式=m2+5m+m+n,=﹣2+(﹣5)=﹣7,故答案为:﹣717.解:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴CH=AF,在Rt△AMF中,由勾股定理得:AF===2,∴CH=,故答案为:.18.解:∵当x≤﹣2时,y随x的增大而减小;当x≥﹣2时,y随x的增大而增大,∴对称轴x=﹣=﹣=﹣2,解得m=﹣16,∴y=4x2+16x+5,那么当x=1时,函数y的值为25.故答案为25.三.解答题(共8小题,满分66分)19.解:原式=3+2﹣1,=4.20.解:[(x﹣2y)2﹣(x+y)(x﹣y)﹣7y2]÷2y=[x2﹣4xy+4y2﹣x2+y2﹣7y2]÷2y=[﹣4xy﹣2y2]÷2y=﹣2x﹣y,当x=4,y=﹣3时,原式=﹣8+3=﹣5.21.解:(1)根据题意得:3÷15%=20(人),∴参赛学生共20人,则B等级人数20﹣(3+8+4)=5人.补全条形图如下:(2)C等级的百分比为×100%=40%,即m=40,°×=, 72所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P(恰好是一名男生和一名女生)==..解:①设AB=CD=x米,则BC=(80﹣2x)米,依题意,得:x(80﹣2x)=750,整理,得:x2﹣40x+375=0,解得:x1=15,x2=25,∴80﹣2x=50或30.∵80﹣2x≤45,∴x=25.答:矩形的长为30米,宽为25米.②不能,理由如下:设AB=CD=y米,则BC=(80﹣2y)米,,∴DG=GF=EF=DE,∴四边形DEFG为菱形;(2)解:设DE=x,根据折叠的性质,EF=DE=x,EC=8﹣x,在Rt△EFC中,FC2+EC2=EF2,即42+(8﹣x)2=x2,解得:x=5,CE=8﹣x=3,∴=.24.解:(1)依题意得,=,整理得,3000(m﹣20)=2400m,解得m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,,解不等式①得,x≥95,解不等式②得,x≤105,所以,不等式组的解集是95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤105),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=95时,W有最大值,即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.25.解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PF=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:,即:=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3)直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S四边形AEBD=AB(y D﹣y E)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,∵﹣1<0,故四边形AEBD面积有最大值,当x=,其最大值为,此时点E(,﹣).26.解:(1)当t=2时,BF=2×2=4(cm),FP=2×4=8(cm),∵四边形ABCD是矩形,∴∠C=90°,AB=CD=18cm,tan∠DBC===,∵∠GFE=90°,∴∠BFN=90°=∠C,∴GF∥CD,∴△BFN∽△BCD,∴=,即=,解得:FN=3cm,∴PN=FP﹣FN=5cm;GN=GF﹣FN=16﹣3=13(cm),∵Rt△GEF中,∠GFE=90°.EF=12cm,GF=16cm,∴GE==20cm,tan∠G===,∴∠DBC=∠G,∵∠BFN=180°﹣90°=90°,∴∠DBC+∠BNF=90°,∵∠GNM=∠BNF,∴∠G+∠GNM=90°,∴∠GMN=90°,∴△GNM∽△GEF,∴=,即=,∴GM=cm,故答案为:5,;(2)由题意得:当△PGE为等腰三角形时,PG=PE,如图2所示:设PF=x,则PE=PG=(16﹣x)cm,在Rt△PEF中,由勾股定理得:122+x2=(16﹣x)2,解得:x=,∴PF=,∴t=÷4=(s);(3)由勾股定理得:BD==30cm,由(1)得:∠GMN=90°,∴GM⊥BD,∵GP是⊙G的半径,∴当⊙G与BD相切时,GM=GP,∵∠BME=∠C=90°,∠DBC=∠EBM,∴△BME∽△BCD,∴=,即=,解得:ME=(2t+12),∴GM=GE﹣ME=20﹣(2t+12)=,分两种情况:①当0<t≤4时,∵GP=16﹣4t,∴=16﹣4t,解得:t=;②当4<t≤6时,P与M重合,GP=4t﹣16,∴=4t﹣16,解得:t=;综上所述,当⊙G与BD相切时,t的值为s或s.。

长沙市天心区长郡教育集团19-20学年九年级(上)期末数学试卷(含答案解析)

长沙市天心区长郡教育集团19-20学年九年级(上)期末数学试卷(含答案解析)

长沙市天心区长郡教育集团19-20学年九年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.2019的相反数是()A. 12019B. −12019C. |2019|D. −20192.中国的陆地面积和领水面积共约9970000km2,9970000这个数用科学记数法可表示为()A. 9.97×105B. 99.7×105C. 9.97×106D. 0.997×1073.若代数式x2−x有意义,则实数x的取值范围是()A. x=0B. x=2C. x≠0D. x≠24.下列运算正确的是()A. (x+y)2=x2+y2B. x3+x4=x7C. x3⋅x2=x6D. (−3x)2=9x25.如图,AB//CD,AD=CD,∠1=50°,则∠2的度数是()A. 55°B. 60°C. 65°D. 70°6.下列说法正确的是()A. 经过三个点一定可以作圆B. 三角形的外心到三角形各顶点的距离相等C. 相等的圆心角所对的弧相等D. 90°的角所对的弦是直径7.下列说法中,错误的是()A. 有一组邻边相等的平行四边形是菱形B. 两条对角线互相垂直且平分的四边形是菱形C. 对角线相等的平行四边形是矩形D. 有一组邻边相等的菱形是正方形8.下列图形是四棱柱的侧面展开图的是()A. B. C. D.9.某射击运动员在同一条件下的射击成绩记录如下:射击次数20801002004001000“射中九环以上”的次数186882168327823“射中九环以上”的频率(结果保留两位小数)0.900.850.820.840.820.82根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()A. 0.90B. 0.82C. 0.85D. 0.8410.通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,则要迟到15分钟.设通讯员到达某地的路程是x千米,原定的时间为y小时,则可列方程组为()A. {x15−15=yx12+12=yB. {x15+15=yx12−12=yC. {x15−2460=yx 12−1560=yD. {x15+2460=yx12−1560=y11.如图,点A在反比例函数y=kx(x>0,k>0)的图象上,轴于点B,点C在x轴的负半轴上,且BO=2CO,若的面积为18,则k的值为()A. 12B. 18C. 20D. 2412.如图,抛物线y=−12x2 +32x+2与x轴交于A,B两点,与y轴交于点C.若点P是线段BC上方的抛物线上一动点,当△BCP的面积取得最大值时,点P的坐标是()A. (2,3)B. (32,258) C. (1,3) D. (3,2)二、填空题(本大题共6小题,共18.0分)13.关于x的分式方程7xx−1+5=2m−1x−1的解为正数,则m的值为______.14.如图,在平面直角坐标系中,点P1的坐标为(√22,√22),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;又将线段OP2绕点O按顺时针方向旋转45°,长度伸长为OP2的2倍,得到线段OP3;如此下去,得到线段OP4,OP5,…,OP n(n为正整数),则点P2020的坐标是______.15.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为______米.16.因式分解:2ax2−4axy+2ay2=______.17.计算机可以帮助我们又快又准地画出函数的图象.用“几何画板”软件画出的函数y=x2(x−3)和y=x−3的图象如图所示.根据图象可知方程x2(x−3)=x−3的解的个数为;若m,n分别满足方程x2(x−3)=1和x−3=1,则m,n的大小关系是.18.如图,⊙O是锐角△ABC的外接圆,FH是⊙O的切线,切点为F,FH//BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.下列结论:①AF平分∠BAC;②点F为△BDC的外心;③BECE=sin∠ACBsin∠ABC;④若点M,N分别是AB和AF上的动点,则BN+MN的最小值是ABsin∠BAC.其中一定正确的是______(把你认为正确结论的序号都填上).三、解答题(本大题共8小题,共66.0分)19.计算:|√2−2|−2cos45°+(−1)−2+√8.20.先化简,再求值:(a+4a+1−a+1a)÷4a−2a2−1然后从−2<a≤2的范围内选取一个合适的整数作为a的值代入求值.21.某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a.实心球成绩的频数分布如表所示:分组6.2≤x<6.66.6≤x<7.07.0≤x<7.47.4≤x<7.87.8≤x<8.28.2≤x<8.6频数2m10621b.实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3c.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m的值为______;②一分钟仰卧起坐成绩的中位数为______;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:女生代码A B C D E F G H实心球8.17.77.57.57.37.27.06.5一分钟仰卧起坐∗4247∗4752∗49其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.22.如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.(1)求证:四边形ANCM为平行四边形;(2)若AD=4,AB=2,且MN⊥AC,求DM的长.23.端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共2600个,已知A、B两种粽子的进价不变.求A种粽子最多能购进多少个?24.如图,在△ABC中,∠C=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,与边BC交于点F,过点E作EH⊥AB于点H,连接BE.(1)求证:EH=EC;(2)若BC=4,sinA=2,求AD的长.325.将抛物线C:y=(x−2)2向下平移6个单位长度得到抛物线C1,再将抛物线C1向左平移2个单位长度得到抛物线C2.(1)直接写出抛物线C1,C2的解析式;(2)如图(1),点A在抛物线C1(对称轴l右侧)上,点B在对称轴l上,△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直x与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.线y=−4k26.如图,抛物线y=x2−2x−3与x轴交A,B两点(A点在B点左侧),直线l与抛物线交于A,C两点,其中C点的横坐标为2,(1)求A,B两点的坐标及直线AC的函数表达式。

2019-2020学年湖南省长沙市天心区长郡教育集团九年级(上)期末数学试卷-解析版

2019-2020学年湖南省长沙市天心区长郡教育集团九年级(上)期末数学试卷-解析版

2019-2020学年湖南省长沙市天心区长郡教育集团九年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分) 1. −12的绝对值为( )A. −2B. −12C. 12D. 12. PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( )A. 0.25×10−5B. 0.25×10−6C. 2.5×10−5D. 2.5×10−63. 使分式13−x 有意义的x 的取值范是( )A. x ≠3B. x =3C. x ≠0D. x =4. 在下列各式中,运算结果正确的是( )A. x 2+x 2=x 4B. x −2x =−xC. x 2⋅x 3=x 6D. (x −1)2=x 2−15. 如图,已知AB//CD ,AD =CD ,∠1=40°,则∠2的度数为( )A. 60°B. 65°C. 70°D. 75°6. 如图,△ABC 是⊙O 的内接三角形,∠AOB =110°,则∠ACB 的度数为( )A. 35°B. 55°C. 60°D. 70°7. 如图,在△ABC 中,AB 的垂直平分线交BC 于D ,AC 的中垂线交BC 于E ,∠DAE =20°,则∠BAC 的度数为( )A. 70°B. 80°C. 90°D. 100°8. 下面哪个图形不是正方体的平面展开图( )A.B.C. D.9. 在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的概率是0.2,则估计盒子中大约有红球( ) A. 12个 B. 16个 C. 20个 D. 25个10. 我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x 只,兔y 只,可列方程组为( )A. {x +y =352x +2y =94 B. {x +y =354x +2y =94 C. {x +y =354x +4y =94D. {x +y =352x +4y =9411.如图,平行于x轴的直线与函数y=k1x(k1>0,x>0),y=k2x(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为6,则k1−k2的值为()A. 12B. −12C. 6D. −612.已知抛物线y=x2+(2a+1)x+a2−a,则抛物线的顶点不可能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题(本大题共6小题,共18.0分)13.不等式x−42>4−x的解集为______.14.已知在平面直角坐标系中,点P在第二象限,且到x轴的距离为3,到y轴的距离为4,则点P的坐标为______.15.高为8米的旗杆在水平地面上的影子长为6米,同一时刻测得附近一个建筑物的影子长30米,则此建筑物的高度为______米.16.分解因式:x2y−4y=______.17.如图,直线y=ax+b过点A(0,2)和点B(−3,0),则方程ax+b=0的解是______ .18.如图,⊙O是锐角△ABC的外接圆,FH是⊙O的切线,切点为F,FH//BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.下列结论:①AF平分∠BAC;②点F为△BDC的外心;③BECE =sin∠ACBsin∠ABC;④若点M,N分别是AB和AF上的动点,则BN+MN的最小值是ABsin∠BAC.其中一定正确的是______(把你认为正确结论的序号都填上).三、解答题(本大题共8小题,共66.0分)19.计算√12−|4sin30°−2√3|+(−112)−1.20.先化简,再求值:(a2+1a −2)÷(a+2)(a−1)a2+2a,其中−2≤a≤2,从中选一个你喜欢的整数代入求值.21.为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810请根据图表中所提供的信息,完成下列问题:(1)表中a=______,b=______,样本成绩的中位数落在______范围内;(2)请把频数分布直方图补充完整;(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有多少人?22.如图,在四边形ABCD中,AD//BC,AC与BD交于点E,点E是BD的中点,延长CD到点F,使DF=CD,连接AF,(1)求证:AE=CE;(2)求证:四边形ABDF是平行四边形;(3)若AB=2,AF=4,∠F=30°,则四边形ABCF的面积为______.23.A,B两地间的距离为15千米,甲从A地出发步行前往B地,20分钟后,乙从B地出发骑车前往A地,且乙骑车比甲步行每小时多走10千米.乙到达A地后停留40分钟,然后骑车按原路原速返回,结果甲、乙两人同时到达B地.求甲从A地到B地步行所用的时间.24.如图,四边形ABCD的外接圆为⊙O,AD是⊙O的直径,过点B作⊙O的切线,交DA的延长线于点E,连接BD,且∠E=∠DBC.(1)求证:DB平分∠ADC;(2)若CD=9,tan∠ABE=1,求⊙O的半径.225.如图1,抛物线W:y=ax2−2的顶点为点A,与x轴的负半轴交于点D,直线AB交抛物线W于另一点C,点B的坐标为(1,0).(1)求直线AB的解析式;(2)过点C作CE⊥x轴,交x轴于点E,若AC平分∠DCE,求抛物线W的解析式;(3)若a=1,将抛物线W向下平移m(m>0)个单位得到抛物线W1,如图2,记抛2物线W1的顶点为A1,与x轴负半轴的交点为D1,与射线BC的交点为C1.问:在平移的过程中,tan∠D1C1B是否恒为定值?若是,请求出tan∠D1C1B的值;若不是,请说明理由.26.在平面直角坐标系中,点到直线的距离即为点到直线的垂线段的长.x−1的距离为多少?(1)如图1,取点M(1,0),则点M到直线l:y=12(2)如图2,点P是反比例函数y=4在第一象限上的一个点,过点P分别作PM⊥xx?若轴,作PN⊥y轴,记P到直线MN的距离为d0,问是否存在点P,使d0=2√105存在,求出点P的坐标,若不存在,请说明理由.(3)如图3,若直线y=kx+m与抛物线y=x2−4x相交于x轴上方两点A、B(A在B的左边).且∠AOB=90°,求点P(2,0)到直线y=kx+m的距离最大时,直线y= kx+m的解析式.答案和解析1.【答案】C【解析】解:∵|−12|=12,∴−12的绝对值为12.故选:C.计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.【答案】D【解析】解:0.0000025=2.5×10−6;故选:D.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查了用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】A【解析】解:分式13−x有意义,则3−x≠0,解得:x≠3.故选:A.直接利用分式有意义的条件进而得出答案.此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.4.【答案】B【解析】解:A、x2+x2=2x2,故本选项错误;B、x−2x=−x,故本选项正确;C、x2⋅x3=x5,故本选项错误;D、(x−1)2=x2−2x+1,故本选项错误.故选:B.根据合并同类项、完全平方公式及同底数幂的乘法法则进行各选项的判断即可.本题考查了合并同类项、完全平方公式及积的乘方运算,属于基础题,解答本题的关键是掌握各部分的运算法则.5.【答案】C【解析】解:∵AD=CD,∠1=40°,∴∠ACD=70°,∵AB//CD,∴∠2=∠ACD=70°,故选:C.由等腰三角形的性质可求∠ACD=70°,由平行线的性质可求解.本题考查了等腰三角形的性质,平行线的性质,是基础题.6.【答案】B【解析】解:∵∠AOB与∠ACB是同弧所对的圆心角与圆周角,∠AOB=110°,∠AOB=55°.∴∠ACB=12故选:B.直接根据圆周角定理进行解答即可.本题考查了三角形的外接圆与外心,圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.【答案】D【解析】解:∵DM是线段AB的垂直平分线,∴DA=DB,∴∠B=∠DAB,同理∠C=∠EAC,∵∠B+∠DAB+∠C+∠EAC+∠DAE=180°,∴∠DAB+∠EAC=80°,∴∠BAC=100°,故选:D.根据线段的垂直平分线的性质得到DA=DB,EA=EC,得到∠B=∠DAB和∠C=∠EAC,根据三角形内角和定理计算得到答案.本题考查的是线段的垂直平分线的性质和三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是具体点关键.8.【答案】A【解析】解:A、不是正方体展开图,符合题意;B、是正方体展开图,不符合题意;C、是正方体展开图,不符合题意;D、是正方体展开图,不符合题意.故选:A.根据正方体展开图的11种形式,对各选项分析判断即可得解.本题主要考查了正方体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.9.【答案】B=0.2,【解析】解:设盒子中有红球x个,由题意可得:4x+4解得:x=16,故选:B.在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的概率得到相应的等量关系.10.【答案】D【解析】【分析】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.根据题意可以列出相应的方程组,从而可以解答本题. 【解答】解:由题意可得, {x +y =352x +4y =94, 故选:D . 11.【答案】A【解析】解:设:A 、B 点的坐标分别是A(k 1m,m)、B(k2m ,m), 则:△ABC 的面积=12⋅AB ⋅y A =12⋅(k 1m−k2m)⋅m =6, 则k 1−k 2=12. 故选:A .△ABC 的面积=12⋅AB ⋅y A ,先设A 、B 两点坐标(其y 坐标相同),然后计算相应线段长度,用面积公式即可求解.此题主要考查了反比例函数系数的几何意义,以及图象上点的特点,求解函数问题的关键是要确定相应点坐标,通过设A 、B 两点坐标,表示出相应线段长度即可求解问题. 12.【答案】D【解析】解:抛物线y =x 2+(2a +1)x +a 2−a 的顶点的横坐标为:x =−2a+12=−a −12,纵坐标为:y =4(a 2−a)−(2a+1)24=−2a −14,∴抛物线的顶点横坐标和纵坐标的关系式为:y =2a +34,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D .求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键. 13.【答案】x >4【解析】解:去分母得:x −4>8−2x , 移项合并得:3x >12, 解得:x >4, 故答案为:x >4不等式去分母,去括号,移项合并,把x 系数化为1,即可求出解集. 此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键. 14.【答案】(−4,3)【解析】解:∵点P 在第二象限,且到x 轴的距离为3,到y 轴的距离为4, ∴点P 的横坐标为−4,纵坐标为3,∴点P的坐标为(−4,3).故答案为:(−4,3).根据第二象限点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.15.【答案】40【解析】【分析】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.设此建筑物的高度为h,再根据同一时刻物高与影长成正比即可得出h的值.【解答】解:设此建筑物的高度为h,∵同一时刻物高与影长成正比,∴86=ℎ30,解得ℎ=40m.故答案为:40.16.【答案】y(x+2)(x−2)【解析】解:x2y−4y,=y(x2−4),=y(x+2)(x−2).故答案为:y(x+2)(x−2).先提取公因式y,然后再利用平方差公式进行二次分解.本题考查了提公因式法,公式法分解因式,利用平方差公式进行二次分解因式是解本题的难点,也是关键.17.【答案】x=−3【解析】解:方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(−3,0),∴方程ax+b=0的解是x=−3,故答案为:x=−3.所求方程的解,即为函数y=ax+b图象与x轴交点横坐标,确定出解即可.此题考查了一次函数与一元一次方程,任何一元一次方程都可以转化为ax+b=0(a,b 为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b,确定它与x轴的交点的横坐标的值.18.【答案】①②③④【解析】解:如图1,连接OF,CF,∵FH是⊙O的切线,∴OF⊥FH,∵FH//BC,∴OF⊥BC,且OF为半径,∴OF垂直平分BC,∴BF⏜=CF⏜∴∠1=∠2,BF=CF,∴AF平分∠BAC,故①正确,∵∠1=∠2,∠4=∠3,∠5=∠2,∴∠1+∠4=∠2+∠3,∴∠1+∠4=∠5+∠3,∵∠1+∠4=∠BDF,∠5+∠3=∠FBD,∴∠BDF=∠FBD,∴BF=FD,且BF=CF,∴BF=DF=CF,∴点F为△BDC的外心,故②正确;如图2,过点C作CG//AB,交AF的延长线于点G,∵CG//AB,∴∠BAE=∠EGC,且∠BAE=∠CAE,∴∠CAE=∠CGE,∴AC=CG,∵CG//AB,∴△BAE∽△CGE,∴ABCG =BEEC,∴ BEEC =AB×1ANAC×1AN=1sin∠ABC1sin∠ACB=sin∠ACBsin∠ABC,故③正确;如图3,作点M关于AF的对称点M′,∵点M与点M′关于AF对称,∴MN=M′N,∴BN+MN=BN+M′N,∴当点N在线段BM′上,且BM′⊥AC时,BN+MN有最小值为BM′,且sin∠BAC=BM′AB,∴BN+MN最小值为ABsin∠BAC,故④正确,故答案为:①②③④.如图1,连接OF,CF,通过切线的性质证OF⊥FH,进而由FH//BC,得OF⊥BC,即可由垂径定理得到F是弧BC的中点,根据圆周角定理可得∠BAF=∠CAF,可得AF平分∠BAC;由三角形外角性质和同弧所对的圆周角相等可得∠BDF=∠FBD,可得BF= DF=CF,可得点F为△BDC的外心;如图2,过点C作CG//AB,交AF的延长线于点G,通过证明△BAE∽△CGE,可得ABCG =BEEC,即可判断③;如图3,作点M关于AF的对称点M′,当点N在线段BM′上,且BM′⊥AC时,BN+MN有最小值为BM′,即可判断④.本题是相似形综合题,考查了圆的有关知识,相似三角形的判定和性质,轴对称的性质,灵活运用这些性质进行推理是本题的关键.19.【答案】解:原式=2√3−(2√3−2)−12=2√3−2√3+2−12=−10.【解析】直接利用绝对值的性质以及负指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:原式=a2+1−2aa ⋅a(a+2)(a+2)(a−1)=(a−1)2a⋅a(a+2)(a+2)(a−1)=a−1,∵−2≤a≤2,且a为整数,∴a=0,1,−2时没有意义,a=−1或2,当a=−1时,原式=−2;当a=2时,原式=1.【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出a的值,代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)820 2.0≤x<2.4(2)由(1)知,b=20,补全的频数分布直方图如右图所示;(3)1000×1050=200(人),答:该年级学生立定跳远成绩在2.4≤x <2.8范围内的学生有200人.【解析】解:(1)由统计图可得,a =8,b =50−8−12−10=20,样本成绩的中位数落在:2.0≤x <2.4范围内,故答案为:8,20,2.0≤x <2.4;(2)(3)见答案【分析】(1)根据题意和统计图可以求得a 、b 的值,并得到样本成绩的中位数所在的取值范围;(2)根据b 的值可以将频数分布直方图补充完整;(3)根据统计图中的数据可以求得该年级学生立定跳远成绩在2.4≤x <2.8范围内的学生有多少人.本题考查频数分布直方图、频数分布表、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.22.【答案】6【解析】(1)证明:∵点E 是BD 的中点,∴BE =DE ,∵AD//BC ,∴∠ADE =∠CBE ,在△ADE 和△CBE 中{∠ADE =∠CBE DE =BE ∠AED =∠CEB∴△ADE≌△CBE(ASA),∴AE =CE ;(2)证明:∵AE =CE ,BE =DE ,∴四边形ABCD 是平行四边形,∴AB//CD ,AB =CD ,∵DF =CD ,∴DF =AB ,即DF =AB ,DF//AB ,∴四边形ABDF 是平行四边形;(3)解:过C作CH⊥BD于H,过D作DQ⊥AF于Q,∵四边形ABCD和四边形ABDF是平行四边形,AB=2,AF=4,∠F=30°,∴DF=AB=2,CD=AB=2,BD=AF=4,BD//AF,∴∠BDC=∠F=30°,∴DQ=12DF=12×2=1,CH=12DC=12×2=1,∴四边形ABCF的面积S=S平行四边形BDFA +S△BDC=AF×DQ+12×BD×CH=4×1+12×4×1=6,故答案为:6.(1)根据平行线的性质得出∠ADE=∠CBE,根据全等三角形的判定得出△ADE≌△CBE,根据全等三角形的性质得出即可;(2)根据平行四边形的判定推出即可;(3)求出高DQ和CH,再根据面积公式求出即可.本题考查了平行四边形的性质和判定,三角形的面积等知识点,能综合运用定理进行推理是解此题的关键.23.【答案】解:设甲从A地到B地步行所用时间为x小时,由题意得:30x−1=15x+10,化简得:2x2−5x−3=0,解得:x1=3,x2=−12,经检验x1=3,x2=−12都是原分式方程的解,但x=−12不符合题意,舍去.故x=3,答:甲从A地到B地步行所用时间为3小时.【解析】首先设甲从A地到B地步行所用时间为x小时,由题意得等量关系:乙所走路程÷乙所用时间=甲所走路程÷甲所用时间+10,根据等量关系,列出方程再解即可.此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意不要忘记检验.24.【答案】(1)证明:连接OB,∵BE为⊙O的切线,∴OB⊥BE,∴∠OBE=90°,∴∠ABE+∠OBA=90°,∵OA=OB,∴∠OBA=∠OAB,∴∠ABE+∠OAB=90°,∵AD是⊙O的直径,∴∠OAB+∠ADB=90°,∴∠ABE=∠ADB,∵四边形ABCD的外接圆为⊙O,∴∠EAB=∠C,∵∠E=∠DBC,∴∠ABE=∠BDC,∴∠ADB=∠BDC,即DB平分∠ADC;(2)解:∵tan∠ABE=12,∴设AB=x,则BD=2x,AD=√AB2+BD2=√5x,∵∠E=∠E,∠ABE=∠BDE,∴△AEB∽△BED,∴BE2=AE⋅DE,且AEBE =ABBD=12,设AE=a,则BE=2a,∴4a2=a(a+√5x),∴a=√53x,∵∠BAE=∠C,∠ABE=∠BDC,∴△AEB∽△CBD,∴BEBD =ABCD,∴23√5x2x=x9,解得=3√5,∴AD=√5x=15,∴OA=152.【解析】(1)连接OB ,证明∠ABE =∠ADB ,可得∠ABE =∠BDC ,则∠ADB =∠BDC ;(2)证明△AEB∽△CBD ,AB =x ,则BD =2x ,可求出AB ,则答案可求出.本题考查切线的性质、解直角三角形、勾股定理等知识,解题的关键是学会添加常用辅助线解决问题.25.【答案】解:(1)∵抛物线W :y =ax 2−2的顶点为点A ,∴点A(0,−2)设直线AB 解析式为y =kx +b ,∴{b =−2k +b =0解得{k =2b =−2∴抛物线解析式为:y =2x −2;(2)如图1,过点B 作BN ⊥CD 于N ,∵AC 平分∠DCE ,BN ⊥CD ,BE ⊥CE ,∴BN =BE ,∵∠BND =∠CED =90°,∠BDN =∠CDE ,∴△BND∽△CED ,∴BN CE=DB CD , ∴BE CE =DB CD ,∵AO//CE ,∴BO AO =BE CE =12=DB CD∴CE =2BE ,CD =2DB ,设BE =x ,BD =y ,则CE =2x ,CD =2y ,∵CD 2=DE 2+CE 2,∴4y 2=(x +y)2+4x 2,∴(x +y)(5x −3y)=0,∴y =53x ,∴点C(x +1,2x),点D(1−53x,0)∵点C ,点D 是抛物线W :y =ax 2−2上的点,∴{2x =a(x +1)2−20=a(1−53x)2−2 ∴x +1=(1−53x)2,∴x 1=0(舍去),x 2=3925,∴0=a(1−53×3925)2−2,∴a =2532,∴抛物线解析式为:y =2532x 2−2;(3)tan∠D 1C 1B 恒为定值,理由如下:由题意可得抛物线W 1的解析式为:y =12x 2−2−m ,设点D 1的坐标为(t,0)(t <0),∴0=12t 2−2−m ,∴2+m =12t 2,∴抛物线W 1的解析式为:y =12x 2−12t 2,∵抛物线W 1与射线BC 的交点为C 1,∴{y =2x −2y =12x 2−12t 2 解得:{x 1=2−t y 1=2−2t ,{x 2=2+t y 2=2+2t(不合题意舍去), ∴点C 1的坐标(2−t,2−2t),如图2,过点C 1作C 1H ⊥x 轴,过点C 作CG ⊥x 轴,∴C 1H =2−2t ,OH =2−t ,∴D 1H =D 1O +OH =2−t +(−t)=2−2t ,∴C 1H =D 1H ,且C 1H ⊥x 轴,∴∠C 1D 1H =45°,∵y=12x2−2与x轴交于点D,∴点D(−2,0)∵y=2x−2与y=12x2−2交于点C,点A∴点C(4,6)∴GC=6,DG=OD+OG=2+4=6,∴DG=CG,且CG⊥x轴,∴∠GDC=45°=∠C1D1H,∴C1D1//CD,∴∠D1C1B=∠DCB,∴tan∠D1C1B=tan∠DCB,如图3,过点B作BF⊥CD于点F,∵∠CDB=45°,BF⊥CD,BD=OD+OB=2+1=3,∴∠FDB=∠FBD=45°,∴DF=BF,DB=√2DF=3,∴DF=BF=3√2 2∵点D(−2,0),点C(4,6),∴CD=√(−2−4)2+(0−6)2=6√2,∴CF=CD−DF=9√22,∴tan∠D1C1B=tan∠DCB=BFCF =13,∴tan∠D1C1B恒为定值.【解析】(1)由待定系数法可求解析式;(2)如图1,过点B作BN⊥CD于N,通过证明△BND∽△CED,可得BNCE =DBCD,由平行线分线段成比例可求BOAO =BECE=12=DBCD,可得CE=2BE,CD=2DB,设BE=x,BD=y,则CE=2x,CD=2y,由勾股定理可求y=53x,可求点C,点D坐标,代入解析式可求x的值,即可求抛物线W的解析式;(3)先求出点C1的坐标(2−t,2−2t),如图2,过点C1作C1H⊥x轴,过点C作CG⊥x轴,可证C1D1//CD,可得∠D1C1B=∠DCB,如图3,过点B作BF⊥CD于点F,由勾股定理和直角三角形的性质可求BF,DF,CF的长,即可求tan∠D1C1B=tan∠DCB=BFCF =13.本题是二次函数综合题,考查了二次函数的性质和应用,一次函数的性质,待定系数法求解析式,相似三角形的判定和性质,勾股定理等知识,添加恰当辅助线是本题的关键.26.【答案】解:(1)如图1,设直线l:y=12x−1与x轴,y轴的交点为点A,点B,过点M作ME⊥AB,∵直线l:y=12x−1与x轴,y轴的交点为点A,点B,∴点A(2,0),点B(0,−1),且点M(1,0),∴AO=2,BO=1,AM=OM=1,∴AB=√AO2+BO2=√1+4=√5,∵tan∠OAB=tan∠MAE=OBAB =MEAM,∴√5=ME1,∴ME=√55,∴点M到直线l:y=12x−1的距离为√55;(2)设点P(a,4a),(a>0)∴OM=a,ON=4a,∴MN=√OM2+ON2=√a2+16a2,∵PM⊥x轴,PN⊥y轴,∠MON=90°,∴四边形PMON是矩形,∴S△PMN=12S矩形PMON=2,∴12×MN×d0=2,∴√a2+16a2×2√105=4,∴a4−10a2+16=0,∴a1=2,a2=−2(舍去),a3=2√2,a4=−2√2(舍去),∴点P(√2,2√2)或(2√2,√2),(3)如图3,过点A作AC⊥x轴于点C,过点B作BD⊥y轴于点D,设点A(a,a2−4a),点B(b,b2−4b),∵∠AOB=90°,∴∠AOC+∠BOD=90°,且∠AOC+∠CAO=90°,∴∠BOD=∠CAO,且∠ACO=∠BDO,∴△AOC∽△BOD,∴ACCO =ODBD,∴a2−4a−a=bb2−4b∴ab−4(a+b)+17=0,∵直线y=kx+m与抛物线y=x2−4x相交于x轴上方两点A、B,∴a,b是方程kx+m=x2−4x的两根,∴a+b=k+4,ab=−m,∴−m−4(k+4)+17=0,∴m=1−4k,∴y=kx+1−4k=k(x−4)+1,∴直线y=k(x−4)+1过定点N(4,1),∴当PN⊥直线y=kx+m时,点P到直线y=kx+m的距离最大,设直线PN的解析式为y=cx+d,∴{1=4c+d0=2c+d解得{c=12b=−1∴直线PN的解析式为y=12x−1,∴k=−2,∴m=1−4×(−2)=9,∴直线y=kx+m的解析式为y=−2x+9.【解析】(1)如图1,设直线l:y=12x−1与x轴,y轴的交点为点A,点B,过点M作ME⊥AB,先求出点A,点B坐标,可得OA=2,OB=1,AM=1,由勾股定理可求AB长,由锐角三角函数可求解;(2)设点P(a,4a),用参数a表示MN的长,由面积关系可求a的值,即可求点P坐标;(3)如图3,过点A作AC⊥x轴于点C,过点B作BD⊥y轴于点D,设点A(a,a2−4a),点B(b,b2−4b),通过证明△AOC∽△BOD,可得ab−4(a+b)+17=0,由根与系数关系可求a+b=k+4,ab=−m,可得y=kx+1−4k=k(x−4)+1,可得直线y= k(x−4)+1过定点N(4,1),则当PN⊥直线y=kx+m时,点P到直线y=kx+m的距离最大,由待定系数法可求直线PN的解析式,可求k,m的值,即可求解.本题是二次函数综合题,考查了二次函数的性质,待定系数法求解析式,根与系数关系,相似三角形的判定和性质,锐角三角函数等知识,利用参数列出方程是本题的关键.。

湖南省长沙市部分学校联考2019-2020秋学期九年级数学综合检测卷(Word版无答案)12-09

湖南省长沙市部分学校联考2019-2020秋学期九年级数学综合检测卷(Word版无答案)12-09

湖南省长沙市部分学校联考2019-2020秋学期九年级数学综合检测卷(Word 版无答案)12-092019-2020 秋学期九年级数学综合检测试卷 12-09一、选择题(每题 3 分,共 36 分)1、据统计显示,上年(2018 年)末,长沙市人口达 815 万人,将 815 万人用科学记数法表示为( )人A .815×103B .81.5×104C .8.15×105D .8.15×1062、下列运算中,正确的是()A .a 3+a 3=2a6B .a 5﹣a 3=a2C .a 2•a 2=2a4D .(a 5)2=a103、在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是()A .a+b=0B .a ﹣b=0C .|a|<|b|D .ab >04.若正多边形的一个外角是 40°,则这个正多边形是()A .正七边形B .正八边形C .正九边形D .正十边形5.用配方法解一元二次方程 x 2﹣6x ﹣5=0,此方程可化为() A .(x ﹣3)2=4 B .(x ﹣3)2=14C .(x ﹣9)2=4D .(x ﹣9)2=146.在一个不透明的口袋中装有 5 个完全相同的小球,把它们分别标号为 1,2,3,4,5,从中随机摸出一个小球,其标号是奇数的概率为()A .B .C .D .7.对于反比例函数 ,当 1<x <2 时,y 的取值范围是( )A .1<y <3B .2<y <3C .1<y <6D .3<y <68、如图,AB ∥CD ,DA ⊥CE 于点A .若∠EAB=55°,则∠D 的度数为( )A .25°B .35°C .45°D .55°9.如图是某几何体的三视图,该几何体是( )A .三棱柱B .长方体C .圆锥D .圆柱10.如图,△ABC 中,∠A =60 ︒ ,BD ,CD 分别是∠ABC ,∠ACB 的平分线,则∠BDC 的度数是()A .100 ︒B .110 ︒C .120︒ D.130︒38 ⎛ 1 ⎫11.如图,若 AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD 的度数为( )A 、32°B 、58°C 、64°D 、116°12.如图,木杆 AB 斜靠在墙壁上,∠OAB =30 ︒ ,AB =4 米.当木杆的上端 A 沿墙壁 NO 下滑时,木杆的底端 B 也随之沿着地面上的射线 OM 方向滑动.设木杆的顶端 A 匀速下滑到点 O 停止,则木杆的中点 P 到射线 OM 的距离 y (米)与下滑的时间 x (秒)之间的函数图象大致是( )二、填空题(每题 3 分,共 18 分)13.分解因式: 2x 2y - 8 y =.14.一个扇形的半径长为 5,且圆心角为 60°,则此扇形的弧长为 .15. 如图,在△ABC 中,D 为 AB 边上一点,DE ∥BC 交 AC 于点 E ,如果 AE = 1,DE =7,那么 BC 的长为.EC 216.如图,正方形 ABCD 中,点 E 为对角线 AC 上一点,且 AE=AB ,则∠BED 的度数是度.17、若关于 x 的方程 x 2- x + a - 4 = 0 没有实数根,写出一个满足条件的整数 a 的值:a =.18、如图,在平面直角坐标系中,点 A 是抛物线 y = a (x -3)2 + k 与 y 轴的交点,点 B 是这条抛物线上的另一点,且 AB ∥x 轴,则以 AB 为边的等边三角形 ABC 的周长为 .三、解答题(共 66 分)19、(6 分)计算: 1 --2+ - 2 sin 45︒ + ⎪ .⎝ 2 ⎭20、(6 分)解不等式组:.并把解集在数轴上表示出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档