线性代数复习讲义
自考04184线性代数(经管类)讲义

高数线性代数第一章行列式线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。
所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。
行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。
1.1行列式的定义(一)一阶、二阶、三阶行列式的定义)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;)定义:符号叫二阶行列所以二阶行列式的值等于两个例如)符号叫三阶行列式,它也例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9 =0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,解因为所以8-3a=0,时例2当x取何值时,解:解得0<x<9所以当0<x<9时,所给行列式大于0。
(二)n阶行列式符号:它由n行、n列元素(共个元素)组成,称之为n阶行列式。
其中,每一个数称为行列式的一个元素,它的前一个下标i称为行标,它表示这个数在第i行上;后一个下标j 称为列标,它表示这个数在第j列上。
《线性代数讲义》课件

在工程学中,性变换也得到了广泛的应用。例如,在图像处理中,可
以通过线性变换对图像进行缩放、旋转等操作;在线性控制系统分析中
,可以通过线性变换对系统进行建模和分析。
THANKS
感谢观看
特征向量的性质
特征向量与特征值一一对应,不同的 特征值对应的特征向量线性无关。
特征值与特征向量的计算方法
01
定义法
根据特征值的定义,通过解方程 组Av=λv来计算特征值和特征向 量。
02
03
公式法
幂法
对于某些特殊的矩阵,可以利用 公式直接计算特征值和特征向量 。
通过迭代的方式,不断计算矩阵 的幂,最终得到特征值和特征向 量。
矩阵表示线性变换的方法
矩阵的定义与性质
矩阵是线性代数中一个基本概念,它可以表示线性变 换。矩阵具有一些重要的性质,如矩阵的加法、标量 乘法、乘法等都是封闭的。
矩阵表示线性变换的方法
通过将线性变换表示为矩阵,可以更方便地研究线性 变换的性质和计算。具体来说,如果一个矩阵A表示 一个线性变换L,那么对于任意向量x,有L(x)=Ax。
特征值与特征向量的应用
数值分析
在求解微分方程、积分方程等数值问题时, 可以利用特征值和特征向量的性质进行求解 。
信号处理
在信号处理中,可以利用特征值和特征向量的性质 进行信号的滤波、降噪等处理。
图像处理
在图像处理中,可以利用特征值和特征向量 的性质进行图像的压缩、识别等处理。
05
二次型与矩阵的相似性
矩阵的定义与性质
数学工具
矩阵是一个由数字组成的矩形阵列,表示为二维数组。矩阵具有行数和列数。矩阵可以进行加法、数 乘、乘法等运算,并具有相应的性质和定理。矩阵是线性代数中重要的数学工具,用于表示线性变换 、线性方程组等。
线性代数总复习讲义

线性代数总复习
r(A) r(A,b)无解
r(A)=r(A,b)=n 有唯一解
克拉默法则, xj
Dj D
Ax=b
b=0 b≠0
d1 d 2 d n T 初等变换,
齐次方程的基础解系
r(A)=r(A,b)<n 有无穷多解
非齐次方程的一个特解
非齐次方程的通解
上页 下页 返回
0 1 1
1 1 0 0 0 0
r3 r2 r4 3r1
0 1 1 2 r4 r3 0 0 0 0 2 4 2 2
0 1 1
1 ( 1) ( 2) ( 2) 4
上页 下页 返回
线性代数总复习
(2) 利用行列式展开计算
定理 行列式等于它的任一行(列)的各元素 与其对应的代数余子式乘积之和,即
r2 5r3
32 2 1 0 10 1 3 r2 ( 2) 3 5 3 5 1 A 1 3 3 . 0 0 2 2 2 r3 ( 1) 2 11 1 0 0 11 1
上页 下页 返回
上页 下页 返回
线性代数总复习
r1 r2
r3 r2
r1 2r3
1 0 2 1 1 0 r 2r 3 1 0 2 5 2 1 0 0 0 1 1 1 1 r2 5r3 1 0 0 1 3 2 r 2 ( 2) 0 2 0 3 6 5 ( 1) 0 0 1 1 1 1 r3
上页 下页 返回
线性代数总复习
2、n阶行列式的计算 (1) 利用行列式的性质计算 (化为三角形) 性质1 行列式与它的转置行列式相等.
《线性代数》考研辅导讲义4

《线性代数》考研辅导讲义4 第四部分 线性方程组一.线性方程组的四种表示形式1.非齐次线性方程组(1)一般形式:11112211211222221122n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩(2)矩阵形式:令1112111212222212,,n n m m mn n m a a a x b a a a x b A x b a a a x b ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则11m n n m A x b ⨯⨯⨯=,而11121121222212(|)_n nm m mnm a a a b a a a b B A b a a a b ⎛⎫⎪ ⎪== ⎪⎪⎝⎭增广矩阵(3)向量形式:令12(,,,)n A ααα= ,得向量形式1122n n x x x bααα+++= .其中()12,,,,1,2,,Tj j j mj a a a j n α== 为A 的列向量组.(4)内积形式:令12T T T m A ααα⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭ ,则内积形式1122T T T mm x b x b x b ααα⎧=⎪=⎪⎨⎪⎪=⎩ .其中12(,,,),1,2,,T i i i in a a a i m α== 为A 的行向量组.2.齐次线性方程组(1)一般形式:111122121122221122000n n n nm m mn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩(2)矩阵形式:110m n n m A x ⨯⨯⨯=(3)向量形式:11220n n x x x ααα+++=(4)内积形式:12000T TT mx x x ααα⎧=⎪=⎪⎨⎪⎪=⎩ 二.线性方程组解的性质 1.110m n n m A x ⨯⨯⨯=解的性质(1)若12,ξξ为0Ax =的解,则12ξξ+也为0Ax =的解.(2)若ξ为0Ax =的解,则k ξ也为0Ax =的解.故{|0}S x Ax ==是n R 的一个子空间,其基础解系构成子空间的一个基.2.11m n n m A x b ⨯⨯⨯=解的性质(1)设12,ηη为Ax b =的解,则12ηη-为其导出组0Ax =的解.(2)设η为Ax b =的解,ξ为0Ax =的解,则ξη+为Ax b =的解.【注意】若12,ηη为Ax b =的解,则121,(1)k k ηηη+≠都不是Ax b =的解,故{|}S x Ax b ==不是nR 的一个子空间. 三.线性方程组解的理论及解的结构 1.110m n n m A x ⨯⨯⨯=解的理论及解的结构定理1110m n n m A x ⨯⨯⨯=至少有一个零解.(1)110m n n m A x ⨯⨯⨯=只有零解()R A n ⇔=(未知量的个数).不存在基础解系;(2)110m n n m A x ⨯⨯⨯=有非零解()R A r n ⇔=<.其基础解系含n r -个线性无关的解向量,设为12,,,n r ξξξ- ,则110m n n m A x ⨯⨯⨯=的通解为1122n r n r x k k k ξξξ--=+++其中12,,,n r k k k - 为任意常数; (3)(Crammer 定理)110n n n n A x ⨯⨯⨯= 只有零解0A ⇔≠.2.11m n n m A x b ⨯⨯⨯=解的理论及解的结构定理2 11m n n m A x b ⨯⨯⨯=可能有解.(1)11m n n m A x b ⨯⨯⨯=有解()()R A R B ⇔=;(2)有唯一解()()R A R B n ⇔==;(3)有无穷多解()()R A R B r n⇔==<.设其导出组的基础解系为12,,,n r ξξξ- ,η为11m n n m A x b ⨯⨯⨯=的一个特解,则11m n n m A x b ⨯⨯⨯=的通解为1122n r n r x k k k ξξξη--=++++其中12,,,n r k k k - 为任意常数; (4) (Crammer 定理)11n n n n A x b ⨯⨯⨯=有唯一解0A ⇔≠.四.两个线性方程组解之间的关系设方程组(1)的解集合为M ,方程组(2)的解集合为N ,则 1. M N =⇔方程组(1)与方程组(2)同解; 2. M N ⇔ 方程组(1)与方程组(2)的公共解; 3.M N ⊂⇔方程组(1)的解是方程组(2)的解.五.一个非常有用的结论 1. ()()m s s n m n A B O R A R B s ⨯⨯⨯=⇒+≤;2.m s s n m n A B O B ⨯⨯⨯=⇔的列向量是110m s s m A x ⨯⨯⨯=的解向量.典型例题一.解的概念、性质、理论、结构的基本题例1 设1231233,2,223A p b Ax b t ⎛⎫⎛⎫⎪ ⎪=+==⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭无解,则t 与p 满足 .解 由12311231(|)233201302230021B A b p p t t p ⎛⎫⎛⎫⎪ ⎪==+→--⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ,得202t p t p -=⇒=.例2 设三平面0(1,2,3)i i i i a x b y c z d i +++==重合,则齐次线性方程组0(1,2,3)i i i a x b y c z i ++==的解空间的维数等于 2 .解111222333a b c a b c a b c ⎛⎫ ⎪⎪ ⎪⎝⎭的秩等于1. 例3 设A 为n 阶实矩阵,则以下命题成立的是( C ).(A)若0Ax =有解时0T A Ax =也有解,则A 必可逆;(B)若0T A Ax =有解时0Ax =也有解, 则A 必可逆;(C) 0T A Ax =的解必是0Ax =的解; (D)0T A Ax =的解与0Ax =的解无任何关系.解0Ax =与0T A Ax =同解.例4 设541234(,,,)A αααα⨯=,已知12(1,1,1,1),(0,1,0,1)T T ηη==是0Ax =的基础解系,则( D ). (A) 13,αα线性无关; (B) 24,αα线性无关; (C)1α不能被34,αα线性表示;(D)4α能被23,αα线性表示.解 由1η知: 12340αααα+++=;由2η知: 240αα+=,则4α能被2α线性表示,所以4α能被23,αα线性表示.例5 设12,ββ是0Ax b =≠的两个不同的解, 12,αα是0Ax =的基础解系, 12,k k R ∈,则Ax b =的通解必是( B )(A) 1211212()2k k ββααα-+++; (B) 1211212()2k k ββααα++-+; (C) 1211212()2k k ββαββ-+++;(D)1211212()2k k ββαββ++++.例6 设123,,ααα是四元非齐次线性方程组Ax b=的三个解向量,且()3R A =,123(1,2,3,4),(0,1,2,3)T T ααα=+=,则Ax b =的通解是( C ).(A)11213141c ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ (B) 10213243c ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ (C) 12233445c ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ (D) 13243546c ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭二.含参数的线性方程组解的讨论例7 当λ为何值时,方程组12312312321,2,4551x x x x x x x x x λλ+-=⎧⎪-+=⎨⎪+-=-⎩无解,有唯一解,无穷多解?并在有无穷多解时求方程组的通解.解 方法一:一般情形.13211121(|)11211245515541c c B A b λλλλ↔--⎛⎫⎛⎫⎪ ⎪==-−−−→- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭121012300549rλλλλ-⎛⎫ ⎪−−→-+ ⎪ ⎪+⎝⎭(1)方程组有唯一解104()()3,15405R A R B λλλλ-≠⎧⇔==⇔⇒≠-≠⎨+≠⎩;(2)当45λ=-时,()2()3R A R B =≠=,方程组无解;(3)当1λ=时,1121(|)00110000rB A b ---⎛⎫⎪=−−→ ⎪ ⎪⎝⎭,方程组的解13211x x x =⎧⎨=+⎩,令2x k =,则方程组的通解(0,1,1)(1,0,1),TT x k k =+为任意常数.方法二:特殊情形. (54)(1)A λλ=+-.(1)当4,15λλ≠-≠时,方程组有唯一解;(2)当45λ=-时,()2()3R A R B =≠=,方程组无解;(3)当1λ=时,1001(|)01110000rB A b ⎛⎫ ⎪=→-- ⎪ ⎪⎝⎭,()()23R A R B ==<,方程组有无穷多解,且通解为(0,1,1)(1,1,0),TT x k k =+-为任意常数.三.与解的结构相关问题 例8 若n 阶矩阵11(,,,)n n A ααα-= 的前1n -个列向量线性相关,后1n -个列向量线性无关,12n βααα=+++ .证明:(1)Ax β=必有无穷多解;(2)若12(,,,)Tn k k k 是Ax β=的任一解,则1nk =.证 (1)2,,n αα 线性无关,则21,,n αα- 线性无关,又121,,,n ααα- 线性相关,所以1α可由21,,n αα- 线性表示,则()1R A n =-.因为12n βααα=+++ ,则()()1R B R A n n ==-<,所以Ax β=必有无穷多解.(2)121,,,n ααα- 线性相关,存在一组不全为零的数121,,,n λλλ- ,使得1122110n n λαλαλα--+++= ,即11221100n n n λαλαλαα--++++⋅= ,又()1R A n =-,则121(,,,,0)Tn λλλ- 为0Ax =的基础解系.因为12n βααα=+++ ,则(1,1,,1)T 是Ax β=的一个特解,故Ax β=的通解为111,101n x c c R λλ-⎛⎫⎛⎫⎪ ⎪⎪ ⎪=+∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 若12(,,,)Tn k k k 是Ax β=的解,则1nk =.例9 设A 为(1)m m -⨯矩阵, j D 是去掉A 的第j 列所得1m -阶矩阵的行列式,证明:(1)向量112(,,,(1))m T m D D D +-- 是0Ax =的解向量;(2)当12,,,m D D D 不全为零时,112(,,,(1))m T m D D D +-- 是0Ax =的一个基础解系.证 令1211121(1)1(1)2(1)mT m m m m m m b b b a a a b B A a a a ---⎛⎫ ⎪⎛⎫ ⎪== ⎪ ⎪⎝⎭⎪⎪⎝⎭,则(1,2,,)j D j m = 分别为B中第一行元素的余子式,而112,,,(1)m m D D D +-- 分别为B中第一行元素的代数余子式,由行列式按行(或列)展开定理,有11122()(1)0,1,2,,m i i im m a D a D a D i m ++-++-== ,则112(,,,(1))m T m D D D +-- 是0Ax =的解向量.(2) 当12,,,m D D D 不全为零时,则A 至少有一个1m -子式不为零,所以()1R A m =-,从而Ax =的基础解系含一个解向量,又112(,,,(1))0m T m D D D +--≠ ,故112(,,,(1))m T m D D D +-- 是0Ax =的一个基础解系.例10 设非齐次线性方程组Ax b =,其中A 为m n ⨯矩阵, ()(|)R A R A b r ==,求由Ax b=的所有解向量组成的向量组的一个极大无关组及该向量组的秩.解 要点:设0Ax=的一个基础解系为12,,,n r ξξξ- ,Ax b =的一个特解为η,则Ax b =的所有解向量组成的向量组的一个极大无关组为12,,,,,n r ηηξηξηξ-+++ 该向量组的秩为1n r -+. 例11 设A 为m n ⨯矩阵,证明:Ax B =有解的充分必要条件是对0T A y =的任一解0y 都有00T B y =.证 必要性:设0Ax B =,则000000()()00T T T T TB y Ax y x A y x ====;充分性: 对T A y =的任一解y 都有00T B y =,则0T A y =与0,0TT A y B y ⎧=⎪⎨=⎪⎩同解,所以()()(|)T TT A R A R R A R A B B ⎛⎫=⇒= ⎪⎝⎭,即Ax B =有解.四.两个线性方程组的公共解的问题例11 (1.求公共解的方法之一:已知线性方程组,Ax Bx αβ==,则它们的全部公共解即为线性方程组,Ax Bx αβ=⎧⎨=⎩的解.)设两个四元齐次线性方程组:12240,()0x x x x +=⎧I ⎨-=⎩与1232340,()0x x x x x x -+=⎧II ⎨-+=⎩问方程组()I 与()II 是否有非零的公共解?若有,求出所有公共的非零解;若没有,说明理由.解 讨论方程组12241232340,0,0,0x x x x x x x x x x +=⎧⎪-=⎪⎨-+=⎪⎪-+=⎩是否有非零解.1100100101010101111000120111000r A ⎛⎫⎛⎫⎪ ⎪--⎪ ⎪=→ ⎪ ⎪-- ⎪ ⎪-⎝⎭⎝⎭,因为()34R A =<,所以方程组有非零解,即方程组()I 与()II 有公共的非零解,且11,021x k k -⎛⎫ ⎪ ⎪=≠ ⎪ ⎪⎝⎭为所有公共的非零解.(2. 求公共解的方法之二:已知线性方程组Ax α=的通解1122x k k ξξη=++和线性方程组Bx β=,则它们的全部公共解即为线性方程组1122,x k k Bx ξξηβ=++⎧⎨=⎩的解.其求法是:解含12,k k 是未知变量的线性方程组1122()B k k ξξηβ++=,得12,k k ,则所求的全部公共解为1122x k k ξξη=++.3. 求公共解的方法之三: 已知线性方程组Ax α=的通解11221x k k ξξη=++和线性方程组Bx β=的通解11222x l l γγη=++,则它们的全部公共解即为线性方程组1122111222,x k k x l l ξξηγγη=++⎧⎨=++⎩的解. 其求法是:解含12,k k 及12,l l 是未知变量的线性方程组1122111222k k l l ξξηγγη++=++得12,k k (或12,l l ),则所求的全部公共解为11221x k k ξξη=++(或11222x l l γγη=++).)五.线性方程组解的应用 例12 已知三平面123:,:,:x y z y z x z x y πγβπαγπβα=+=+=+,证明:它们至少相交于一直线22221αβγαβγ⇔+++=.证 显然123,,πππ过坐标原点, 它们至少相交于一直线⇔齐次线性方程组0,0,0x y z x y z x y z γβγαβα-++=⎧⎪-+=⎨⎪+-=⎩有非零解,则1101γβγαβα--=-,即22221αβγαβγ+++=. 例13 证明:如果非齐次线性方程组11112211211222221122,,n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 有解,则向量12(,,,)T n b b b β= 与齐次线性方程组1112121121222211220,0,0m m m mn n nm m a y a y a y a y a y a y a y a y a y +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的解空间正交. 证 令12(,,,),(1,2,,)T j j j mj a a a j n α== ,非齐次线性方程组1122n n x x x αααβ+++=有解,则β可由12,,,n ααα 线性表示.令12(,,,)T m y y y y = ,则齐次线性方程组可表示为120,0,0,T TT ny y y ααα⎧=⎪=⎪⎨⎪⎪=⎩ 即12,,,n ααα 与齐次线性方程组的解正交,从而11221[,]()()0nTT n n i i i y x x x y x y βαααα==+++==∑ ,即β与齐次线性方程组的任一解正交,则β与齐次线性方程组的解空间正交.。
线性代数讲义

5.7 线性变换的不变子空间 5.7.1 不变子空间的概念 5.7.2 线性变换的不变子空间与表示方阵化简 一、单个不变子空间与准上三角矩阵表示 二、不变子空间直和分解与准对角矩阵表示 5.7.3 不变子空间的类型
因式、完全相同的最大公因式;
(1′) 若[ f1(), f2 (), , fs ()]T 有限次初等行变换[g1(), g2 (), , gs ()]T ,则多 项式组(I)与(II)有完全相同的公因式、完全相同的最大公因式;
(2) [ f1(), f2 (), , fs ()] 可经过有限次初等列变换化为[d (), 0, , 0] 的形式, 其中 d () 是多项式组(I)的一个最大公因式;
一、 A 的值域 二、 A 的核 三、 B C( A ) 的值域 四、 B C( A ) 的核
五、特征子空间 六、根子空间 七、若尔当子空间 八、贾柯勃逊子空间 九、弗罗贝尼乌斯子空间 5.7.4 不变子空间的若干重要结论 一、不变子空间的维数 二、非减次线性变换的全体不变子空间
-1-
- 189 -
若 A() 经过有限次初等列变换变成 B() ,则称 A() 与 B() 列相抵.
若 A() 经过有限次初等变换变成 B() ,则称 A() 与 B() 相抵,记作 A() B() .
矩阵之间的相抵关系、行相抵关系、列相抵关系均满足反身性、对称性、传递性,
都是等价关系.
宋浩线代辅导讲义

宋浩线代辅导讲义一、引言宋浩线代辅导讲义是为了帮助学生更好地理解和掌握线性代数的基本概念和方法而编写的。
线性代数是数学中非常重要的一个分支,它在各个领域都有广泛的应用,如物理学、工程学、计算机科学等。
本讲义将从基础概念开始介绍,并逐步深入,帮助学生建立起对线性代数的系统性理解。
二、线性方程组与矩阵2.1 线性方程组2.1.1 定义与表示定义:线性方程组是由一系列线性等式组成的方程组。
例如,下面是一个包含三个未知数x、y、z的线性方程组:2x + y - z = 4x - y + 3z = -13x + 2y + z = 72.1.2 解的存在唯一性对于一个线性方程组,它可能有三种解的情况:•无解:当方程组中存在矛盾等式时,即出现了0=1这样不可能成立的等式。
•有唯一解:当方程组中的方程数量等于未知数的数量,并且方程组的系数矩阵满秩时,方程组有唯一解。
•有无穷多解:当方程组中的方程数量小于未知数的数量,并且方程组的系数矩阵不满秩时,方程组有无穷多解。
2.2 矩阵与向量2.2.1 矩阵的定义与运算定义:矩阵是一个按照长方阵列排列的数表。
一个m×n的矩阵有m行n列。
例如,下面是一个3×3的矩阵:1 2 34 5 67 8 9矩阵可以进行加法、减法和乘法等运算。
其中,加法和减法要求两个矩阵具有相同的行数和列数,乘法则需要满足第一个矩阵的列数等于第二个矩阵的行数。
2.2.2 向量与线性组合定义:向量是一种特殊类型的矩阵,它只有一列。
向量可以表示为:v = [v1, v2, ..., vn]其中vi表示向量v中第i个元素。
线性组合是指将若干个向量按照一定的权重进行加权求和的操作。
例如,对于向量v1和v2,它们的线性组合可以表示为:c1 * v1 + c2 * v2其中c1和c2为常数。
2.3 矩阵的转置与逆2.3.1 矩阵的转置定义:矩阵的转置是将矩阵的行与列互换得到的新矩阵。
例如,对于一个3×2的矩阵A,其转置矩阵记为A^T,可以表示为:A^T = [a11, a21, a31;a12, a22, a32]2.3.2 矩阵的逆定义:对于一个n×n的方阵A,如果存在一个n×n的方阵B,使得AB=BA=I(单位矩阵),则称B为A的逆矩阵。
线性代数讲义-复习知识树

线性代数绪论一、线性代数研究的核心问题代数——用字母代替数;代数学——关于字母运算的学说,研究的中心内容:解方程。
初等代数(用字母代替数):)1(一元一次方程)2(行列式解法消元法四元一次方程组三元一次方程组二元一次方程组无一般根式解一元五次及更高次方程根式解或求根公式一元四次方程一元三次方程一元二次方程⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−→−⎪⎭⎪⎬⎫)2()1(问题一:如何求解含更多个未知数的一次方程组?1.Varga ,1962年提到在Bettis 原子能实验室已经解了108000个未知数的方程组;2.70年代末,我国“全国天文大地网首次整体平差计算”课题,核心部分是求解一个含16万个未知数31万个方程式的矛盾方程组。
一般地,如何求解含n 个未知数m 个一次方程的方程组:⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111其中未知数之间的关系由加法与数乘来实现,称这种关系为线性关系,称相应的方程组为线性方程组。
线性代数如何求解线性方程组发展−−→−线性代数研究的核心问题——求解线性方程组。
字母——代替代数量(如行列式、向量、矩阵、张量等)。
线性代数定义——研究具有线性关系的代数量的一门学科。
问题二:一元高次方程及多元高次方程组(简称为代数方程(组))的有关问题,如:根的个数、根的性质(实根、虚根、重根等)、根的分布(上界与下界、分布区域等)、根的近似计算、公共根等。
研究代数方程(组)−−→−发展多项式代数⎭⎪⎬⎫→→→研究代数结构抽象代数研究代数方程(组)多项式代数等研究线性方程组的求解线性代数高等代数二、线性代数的重要性1.数学基础课之一数学系: 数学分析(252学时)高等代数(128学时)空间解析几何(48学时)工科类: 高等数学(192学时)线性代数(40学时)空间解析几何(高等数学含14学时)2.工程应用的基础1)线性模型——利用线性代数的理论直接处理;2)非线性模型——利用一系列的线性运算逐步完成;3)高维问题——利用线性代数中的概念和方法,书写上十分简洁,理论上高度概括,容易抓住问题的本质;4)计算机为处理线性代数问题提供了强有力的工具。
线性代数讲义(第一章)

an1 an2 ann
解 展开式的一般项为 (-1)t( j1 j2jn ) a1 j1 a2 j2 anjn .
不为零的项只有 (-1)t(12n) a11a22 ann.
a11 0
0
a21 a22 0 1 t12na11a22 ann
1
1
a2 a a 1
1
1
b2 b b 1
1
1
c2 c c 1
1
1
d2 d d 1
a
b abcd
c
d
11
1 a2 a
a
1
1 b2
1
1 c2
1
b
b 1
13
c
c
1
1 d2
1 d
d
11 1 a2 a
1
1 b2
1 b
1
1 c2
1 c
1
1 d2
1 d
0.
性质5 把行列式的某一列(行)的各元素乘以 同一数然后加到另一列(行)对应的元素上去,行 列式不变.
当 a11a22 a12a21 0 时, 方程组的解为
x1
b1a22 a11a22
a12b2 , a12a21
x2
a11b2 a11a22
b1a21 . a12a21
(3)
由方程组的四个系数确定.
为便于记忆,引入记号
a D 11
a21
a 12
a a11 22 a a 12 21
三阶行列式的计算: 对角线法则
a11 a12 a13 a21 a22 a23 a31 a32 a33
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数复习讲义
第一讲 行列式
一 排列与逆序数(P4)
级排列,逆序,逆序数的概念;
二 行列式概念(P4)
定义
三 余子式,代数余子式的概念;(P15)
三 行列式的性质(P7-9)
计算行列式的理论依据。
四 展开定理(P15)
五 方阵的行列式(P48)
设A,B 是阶n 方阵,k 为实数,则有下列结论:
六 行列式的计算
计算依据:
1.行列式性质
2.展开定理
注意事项:
要在审题方面多花工夫,根据行列式元素的规律确定计算方法,切忌拿到题匆匆忙忙地盲目计算。
第二讲 矩阵
一 矩阵的概念
矩阵的概念,以及三角矩阵,对角矩阵,数量矩阵,单位矩阵,,对称矩阵 ,反对称阵 ,正交矩阵 ,伴随矩阵,分块矩阵等
n n n np p p p p p p p p nn n n n n
a a a a a a a a a a a a 21212121)(212222111211)1(∑-=τ⎪⎩⎪⎨⎧≠==+++j i j i D A a A a A a jn in j i j i ,0,2211 ⎪⎩⎪⎨⎧≠==+++j i j i D A a A a A a jn in j i j i ,0,2211 ||||A k kA n =1
||||-*=n A A ||||||B A AB ⋅=A A T =A A T -=E A A T =
特殊矩阵的概念。
相关结论:
1.对称矩阵的行列式等于其转置矩阵的行列式。
2.奇数阶反对称矩阵的行列式为零。
(P12之例2)
二 矩阵的运算
加法,减法,数乘,乘法,转置
三 运算律:散见于P38-45.重点记忆以下算律
1.
2.
3.
四 逆矩阵
1.定义(P50)
2.性质(P50-51):
3.计算方法:
(1)初等变换法: (2)公式法:
(3)定义法:对于矩阵A,寻找矩阵B,使得
AB=E 或BA=E
五 矩阵的初等变换与初等矩阵
1.初等变换(三类):P53定义1
2.初等矩阵(三类):P54定义2
3.初等矩阵与初等变换之间的关系:P55定理1
典型例题:P64作业1
第三讲 向量组
一 若干概念
1.n 维行向量, n 维列向量。
2.向量内积:
3.向量长度
4.向量正交 :
BA AB ≠)B A B A B A -+≠-)((22n
n n B A AB ≠)(2
222B AB A B A +±≠±)(0
00===B A AB 或不能推出T
T T A B AB =)(1
11)(---=A B AB )
(行初等变换1)(-−−−→−A E E A *-=A A A ||11n
n T b a b a b a +++= 2211βα2
2221||n T a a a +++== ααα0
=βαT
5.正交向量组和规范正交向量组
6.Schmidt 正交化方法:P140
二 向量组线性相关性的概念与原理
1.线性相关和线性无关的定义:P84
2.线性组合或线性表示的定义:P86
3.判断 是否线性相关的方法: (1) 最简梯矩阵 (2)若 线性相关(无关),则 也线性相关(无关)。
4.向量组线性相关性的若干结论:P87-91;定理1-4及其推论。
例如:
⑴包含零向量的向量组线性相关;
⑵线性无关向量组的扩展组线性无关;
⑶分量对应成比例的两个向量线性相关;
三 向量组的极大无关组和秩
1.极大无关组和秩的概念(P93和P95)
2.求极大无关组和秩的方法:
(1)
最简梯矩阵
(2) 的极大无关组所对应的
的部分组即为 的极大无关组。
(3)极大无关组所包含的向量个数即为向量组的秩。
典型例题:P94例1
第四讲 线性方程组
一 线性方程组的解的判定
1.对于齐次方程组 ,有
当 时,方程组仅有零解。
当 时,方程组有非零解。
2.对于非齐次方程组 ,有
当 时,方程组有解。
当 时,方程组无解。
二 线性方程组解的性质
P112之命题1;P120之命题1;
三 线性方程组解的结构
P114之定理1;P120之定理1,2;
第五讲 方阵的对角化
一 矩阵的特征值和特征向量
1.特征值和特征向量的定义(P127)
2.特征值和特征向量的求法:
(1)解特征方程 ,得到 的全部特征根。
(2)解方程组 ,得到其基础解系,即为A
的属于 的线性无关特征向量,而它们的线性组合即为 的属于
的全部特征向量。
3.结论:设 , 为其特征根,则 s ααα,,,
21 )
()(行s s βββααα,,,,,,2121 −→−s βββ,,,21 s ααα,,,21 )(
)(行s s βββααα,,,,,,2121
−→−s βββ,,,21 s ααα,,,21 s ααα,,,21 01=⨯⨯n n m X A n A R n m =⨯)(n A R n m <⨯)(b X A n n m =⨯⨯1)((b A R A R =))((b A R A R ≠)0||=-A E λ0)(=-X A E i λi λn n ij a A ⨯=)(n λλλ,,,21
二 相似矩阵
1.定义(P132)
2.性质(P132命题2)
三 方阵可对角化的条件:
P132定理1,P133推论,P135定理2.
四 一般矩阵 A 对角化的方法:
(1)求出 A 的全部特征根和全部线性无关的 特征向量。
(2)以全部线性无关特征向量为列向量构造可逆矩阵 P ,以全部特征值为主对角元构造
对角阵 ,则
五 实对称矩阵的对角化方法
(1)求出 A 的全部特征根和全部线性无关的特征向量。
(2)把特征向量分别规范正交化。
(3)以全部规范正交化过的线性无关特征向量为列向量构造正交矩阵 P ,以全部特征值为主对角元构造对角阵 ,则
第六讲 二次型
一 二次型
1.二次型与其系数矩阵:P153
2.线性变换:P154
二 化二次型为标准形的方法
1.找到正交矩阵 P 和对角阵 ,使得
2.令正交变换 ,则二次型 在此变换下化为标准型
三 正定二次型与正定阵
1.概念:P150和P157.
2.判定方法:
(1)P151定理1.
(2)P150定义1.
)(221121A tr nn n =++=+++αααλλλ |
|21A n =λλλ ΛΛ
=-AP P 1ΛΛ==-AP P AP P T 1ΛΛ==-AP P AP P T 1PY X =AX X X f T =
)(2222211)(n n T y y y Y Y Y f λλλ+++=Λ=。