经管理学院线性代数总复习题(完整资料).doc
线性代数(经管类)

试题类型:1单选题 难易程度:1 2 3 4 5 试题内容: 试题答案: 试题解析:第一章 行列式1.=4321( )A .-4B .-2C .2D .4难易:1 答案:B解析:2-32-41=⨯⨯2.199819992000200120022003200420052006=( ) A .-1 B .0 C .1 D .2难易:2 答案:B解析:0120051120021119991-200620052004200320022001200019991998==3.123024001-=( ) A .1 B .2 C .-1 D .-2难易:2 答案:D解析:-21042-110042-0321=⨯=4. 已知4阶行列式4D 第1行的元素依次是1,2,-1,-1,它们的余子式依次为2,-2,1,0,则4D =( ) A .-5 B .-3 C .3D .5难易:3 答案:D 解析:5011-2--22114141313121211114=+⨯⨯+⨯=-+-=)(M a M a M a M a D5. 设多项式11-1-11-11-11-1-1101-0)(xx f =,则)(x f 的常数项为( )A .-4B .-1C .1D .4难易:3 答案:D解析:42000201-1-1-1-11-11-111-1-1-1-11-1-11-11-11-1-1101-0)0(0,0)(=⨯=⨯====f x x x f 带入行列式中得到:将的常数项,则求 6. 已知3元齐次线性方程组⎪⎩⎪⎨⎧=++=++=+0320320-321321321x x x ax x x x x x 有非零解,则a=( )A .-2B .-1C .2D .1难易:3答案:C 7. 已知行列式12211=b a b a ,22211=c a c a ,则=++222111c b a c b a ( )A .-3B .-1C .1D .3难易:2 答案:D 8.321=( )A .-6B .6C .7D .-7难易:1 答案:A9.齐次线性方程组只有零解当且仅当它的系数行列式|A|( ) A .|A|=0 B .|A|>0 C .|A|≤0 D .|A|≠0难易:2 答案:D10.若n 个方程的n 元线性方程组的系数行列式0≠=nij a D ,则方程有A .唯一解B .无穷解C .无解难易:2 答案:A 11.()的根是则方程设0)(f ,1312f =--=x x x ( )A .4B .-4C .5D .-5难易:2 答案:C12.二阶行列式35-42=D 的值A .26B .-26C .20D .-20难易:2 答案:A13.三阶行列式981564321=D 的值A .-28B .-30C .30D .28难易:2 答案:C14.3阶行列式222cc1b b 1a a 1的值为( )A. (b-a)(c-a)(c-b)B.(b+a)(c-a)(c-b)C.(b-a)(a-c)(c-b)D.(b-a)(a-c)(c+b) 难易:2 答案:A第二章 矩阵15.已知矩阵⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=17422365,13822103B A ,则=+B A 2( ) A.⎥⎦⎤⎢⎣⎡-112166651210 B .⎥⎦⎤⎢⎣⎡-117166651213C.⎥⎦⎤⎢⎣⎡-11116665123 D .⎥⎦⎤⎢⎣⎡-1117166651213 难易:2 答案:B16.已知()()121,102==B A T,则=AB ( )A .201402201⎛⎫ ⎪ ⎪ ⎪⎝⎭B .242000121⎛⎫ ⎪ ⎪ ⎪⎝⎭C .3D .无法计算难易:2 答案:B17.设3阶矩阵⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a a a a a a a a A ,若存在初等矩阵P ,使得⎪⎪⎪⎭⎫⎝⎛=3332312322213313321231112-2-2-a a aa a a a a a a a a PA ,则P=( ) A .⎪⎪⎪⎭⎫ ⎝⎛102-010001 B .⎪⎪⎪⎭⎫⎝⎛1000102-01C .⎪⎪⎪⎭⎫ ⎝⎛100012-001 D .⎪⎪⎪⎭⎫⎝⎛10001002-1 难易:3 答案:B18.设n 阶矩阵ABC 满足ABC=E,则1-B =( ) A .11--C A B .11--A C C .AC D .CA难易:3 答案:D19.设AB 、为n 阶方阵,下列各形式不一定成立的是( ) A.BA AB = B .T T T A B AB =)(C .EA AE =D .BA AB = 难易:3 答案:D20.设矩阵()⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛==654321,4321,2,1C B A ,则下列矩阵运算中有意义的是( ) A.ACB B .ABC C .BAC D .CBA 难易:1 答案:B21.设A 为3阶矩阵,且2=A ,则=1-2-A ( )A.-4 B .-1 C .1 D .4 难易:3 答案:A22.设A,B 为任意n 阶矩阵,E 为n 阶单位矩阵,O 为n 阶零矩阵,则下列各式中正确的是( )A. ()()22B A B A B A -=-+ B .()222B A AB =C .()()E A E A E A -=-+2D .由AB=O 必可推出A=O 或B=O 难易:3 答案:C23.设⎪⎪⎭⎫⎝⎛-=*0320A ,则=-1A ( )A. ⎪⎪⎭⎫⎝⎛-02/13/10B .⎪⎪⎭⎫ ⎝⎛-03/12/10 C. ⎪⎪⎭⎫ ⎝⎛-03/12/10D .⎪⎪⎭⎫ ⎝⎛-02/13/10 难易:3 答案:A24.设A 为n 阶矩阵,如果E A 21=,则=A ( ) A . 21 B. 121-n C . n 21D .2难易:2 答案:C25.设A 为3阶矩阵,且0≠=a A ,将A 按列分块为),,(321ααα=A ,若矩阵),2,(3221αααα+=B ,则=B ( )A .0B .aC .a 2D .a 3 难易:3 答案:C26. ⎪⎪⎪⎪⎪⎭⎫⎝⎛=412320101-321A 的等价标准形( ) A.()0EB.()00EC.⎪⎪⎪⎭⎫⎝⎛00ED.⎪⎪⎭⎫ ⎝⎛0E难易:3 答案:D27. ⎪⎪⎪⎭⎫ ⎝⎛=1131-12021A 的逆矩阵( )A.⎪⎪⎪⎭⎫ ⎝⎛3/85/8-1/81/8-1/8-5/81/41/41/4- B.⎪⎪⎪⎭⎫ ⎝⎛3/85/8-1/81/8-1/85/81/41/41/4 C.⎪⎪⎪⎭⎫ ⎝⎛3/8-5/8-1/81/8-1/85/81/4-1/41/4 D.⎪⎪⎪⎭⎫⎝⎛3/85/8-1/8-1/81/85/81/41/41/4难易:3 答案:A28. ⎪⎪⎪⎭⎫⎝⎛=44-311-21-12013A 的秩为( )A.r(A)=1B.r(A)=2C.r(A)=3D.r(A)=0 难易:2 答案:B29. ⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛=172543421362B A ,则AB=( ) A 、⎪⎪⎪⎭⎫⎝⎛143614161911165018B 、⎪⎪⎭⎫ ⎝⎛23274228 C 、⎪⎪⎭⎫ ⎝⎛42282372D 、⎪⎪⎭⎫ ⎝⎛42282372难易:2 答案:A30.相乘可以交换与满足什么条件时,当⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=y x B A y x 213421,A 、y=x+1B 、y=-x+1C 、y=-x-1D 、 y=x-1 难易:3 答案:A31.设n 阶矩阵A ,B ,C 满足ABC=E ,则A. 111---=C B AB. 111---=B C AC. CA B =-1D. AC B =-1 难易:3第三章 向量空间32. 当t 为何值时,向量组()()()t ,3,51-,3,10,1,1321===ααα,,线性相关( )A . 3B .1C .2D .-1难易:3 答案:B33.向量组T T T t )5,4,0(,),0,2(,)1,2,1(121-==-=ααα的秩为2,则=t ( ) A .1 B .3 C .-2 D .-1 难易:3 答案:B34.设向量组s ααα,...,,21线性无关,并且可由向量组t 21,...,,βββ线性表出,则s 与t 的大小关系是( )A. S ≤tB.S >t C .S=t D .t ≤S难易:4 答案:A35.设向量组321,,ααα线性无关,则下列向量组中线性无关的是( ) A.2121,,αααα+ B.2121,,αααα- C.133221,,αααααα--- D.133221,,αααααα+++答案:D36.设向量组()()TT,0,1000,121==αα,,,下列向量中可以由21αα,线性表出的是( )A.()T00,2,B.()T42,3-, C.()T01,1, D.()T01-,0, 难易:3 答案:A37. 设向量组s ααα,...,,21线性相关,则必可推出( ) A.s ααα,...,,21中至少有一个向量为零向量 B.s ααα,...,,21中至少有两个向量成比例C.s ααα,...,,21中至少有一个向量可由其余向量线性表出D.s ααα,...,,21中每一个向量都可由其余向量线性表出难易:3 答案:C38. 设A 是n 阶矩阵(n ≥2),0=A 则下列结论中错误的是( ) A.r(A)<nB.A 必有两行元素成比例C.A 的n 个列向量线性相关D.A 有一个行向量可由其余的n-1个行向量线性表出难易:3 答案:B39. 向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=110001-2-10642302-1-032154321ααααα,,,,的秩是( ) A.5 B.4 C.3 D.2难易:2 答案:C 40. 设向量线性无关,线性相关,则下列结论中错误的是( ) A.21,a a 线性无关B.4a 可由21,a a 线性表出C.4321,,,a a a a 线性相关D.4321,,,a a a a 线性无关难易:4 答案:D41. 设向量组)3,2,1(1=α,)2,1,0(2=α,)1,0,0(3=α,)6,3,1(=β,则( ) A.βααα,,,321线性无关B .β不能由321,,ααα线性表示C .β可由321,,ααα线性表示,且表示法惟一D .β可由321,,ααα线性表示,但表示法不惟一难易:3 答案:C42.向量组()()()3,2,12,4,21,2,1321===ααα,,的秩( )A .1B .2C .3D .0 难易:2 答案:B321,,a a a 421,,a a a43.设()()()1,0,2-,1-0,0,1,2-1-,01,1===γβα,,, 则 γβα3-2+=( ) A. ()4-,0,90,B .()4-,9,00,C .()4-,0,50,D .()4,0,50, 难易:2 答案:A44.已知()()为则,,αβαβα,2,1,1,2431-,23,132TT=+=+( ) A. ()T10-,5-,9-,2 B .()T 10,5-,9-,2 C .()T 10,5,9-,2 D .()T10,5,9-,2-难易:3 答案:B 45.向量组()()()3,4,6,0,1-5,0,3,2,13,0,4,1,2321===ααα,,的秩( )A.1 B .2 C .3 D .0 难易:3 答案:C46.向量组⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛132,121,32,13a b 的秩为2,则a,b 为( )A.a=2 b=5 B .a=5 b=2 C .a=-2 b=-5 D .a=-2 b=5 难易:2 答案:A第四章 线性方程组47.设A 是n m ⨯矩阵,则方程组0=Ax 有非零解的充要条件是( ) A.n A R =)( B .n A R <)( C .m A R =)( D .m A R <)( 难易:248.已知方程组⎪⎩⎪⎨⎧=+-+=-=++0)1(020232132321kx x k x x x x kx x 有非零解,则=k ( ) B .-1 B .-1或4 C .1或4 D .4 难易:3 答案:D49.设三元线性方程组b Ax =有解,且2)(=A R ,基础解系中解向量个数为( ) A .3 B .2 C .1 D .0 难易:2 答案:C50.设A 是n m ⨯矩阵,则方程组b Ax =有唯一解的充要条件是( ) A .n b A R A R ==),()( B .n b A R A R <=),()( C .m b A R A R ==),()( D .m b A R A R <=),()( 难易:2 答案:A51.齐次线性方程组⎩⎨⎧=+=++0 032321x x x x x 的基础解系中解向量个数为( )A .3B .2C .1D .0难易:3 答案:C52.齐次线性方程组021=+++n x x x 的基础解系中解向量个数为( ) A .0 B .1 C . n D . 1-n 难易:353.设3元线性方程组b Ax =,已知2),()(==B A r A r ,其两个解21,ηη满足T T k )1,2,3(,)1,0,1(2121--=--=+ηηηη,k 为任意实数,则方程组的通解( ) A.T T k )1-,2,3()1,0,1(21-+- B. T T k )1,0,1()1,2,3(21-+-- C. T T k )1,2,3()1,0,1(--+- D. T T k )1,0,1()1,2,3(-+-- 难易:4 答案:A54.设3元非齐次线性方程组b Ax =的增广),(b A 经初等行变换可化为⎪⎪⎪⎭⎫ ⎝⎛-+---→1)2)(1(0021101301),(k k k b A若该方程无解,则数=k ( )A .2B .1C . -1D . -2 难易:4 答案:D55.设3元非齐次线性方程组12()2,(1,2,0),(1,3,1)T T Ax b r A a a ===-=满足为其两个解,则其导出组0Ax =的通解为( )A .()T1-1-2-,,=ξ B. ()为任意实数,,k k T,150=ξ C .()为任意实数,,k k T,1-1-2-=ξ D .()T150,,=ξ 难易:4 答案:C56.设A 为4×5矩阵且3)(=A r ,则齐次线性方程组0=Ax 的基础解系中所含向量的个数为( )A .1B .2C .3D .4答案:B57. 设线性方程组1231231232000x x x kx x x x x x ++=⎧⎪++=⎨⎪-+=⎩有非零解,则k 的值为( )A . -2B . -1C .1D . 2 难易:3 答案:D58. 设有非齐次线性方程组b Ax =,其中A 为n m ⨯矩阵,且1)(r A r =,2),(r b A r =,则下列结论中正确的是( )A. 若m r =1,则0=Ax 有非零解 B .若n r =1,则0=Ax 仅有零解 C. 若m r =2,则b Ax =有无穷多解 D .若n r =2,则b Ax =有唯一解 难易:3 答案:B59. 设非齐次线性方程组⎪⎩⎪⎨⎧=-+=-+=++2324321321321ax x x ax x x x x x 无解,则数=a ( ) A . -2 B . -1 C .1 D . 2 难易:2 答案:B60. 设四元线性方程组b Ax =有解,且2)(=A R ,基础解系中解向量个数为( ) A .3 B .2 C .1D .0难易:2 答案:B第五章 特征值与特征向量61.已知向量T k )0,1,(=α和T ) 1 , 2 , 1(=β正交,则=k ( ) A .2 B .3C .-2D .-3难易:2 答案:C62.设⎪⎪⎪⎭⎫ ⎝⎛--=200710342A ,则E A 2+的一个特征值为( )A .2B .4C .-2D .-1难易:4 答案:B63.设三阶方阵A 的特征值为3,2,2,则=A ( ) A .7 B .-7 C .12 D .14难易:2 答案:C64.设3阶矩阵A 的3个特征向量是1,0.-2,相应的特性向量依次为⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛011101111,,,令⎪⎪⎪⎭⎫ ⎝⎛=110101111P ,则AP P -1为( )A.⎪⎪⎪⎭⎫ ⎝⎛02-1B.⎪⎪⎪⎭⎫ ⎝⎛102-C.⎪⎪⎪⎭⎫ ⎝⎛012-D.⎪⎪⎪⎭⎫ ⎝⎛2-01难易:2 答案:B65.下列矩阵不能对角化的是( )A.⎪⎪⎭⎫ ⎝⎛0221B.⎪⎪⎭⎫ ⎝⎛0221C.⎪⎪⎭⎫ ⎝⎛1022D.⎪⎪⎭⎫⎝⎛0122 难易:4 答案:B66.设A 为可逆矩阵,则与A 有相同特征值的矩阵为( ) A.T A B.2A C.1-A D.*A 难易:3 答案:A67.设3=λ是可逆矩阵A 的一个特征值,则矩阵1-41⎪⎭⎫⎝⎛A 有一个特征值为( )A.34-B. 43-C.43D.34 难易:3 答案:D68. 设矩阵⎪⎪⎪⎭⎫⎝⎛=110101011A ,则A 的特征值为( )A.1,0,1B. 1,1,2C.-1,1,2D.-1,1,1 难易:3 答案:C69.已知三阶矩阵A 的特征值为1,1,-2,则E A A 432-+的值为( ) A.1 B. -2 C.0 D.2 难易:3 答案:C第六章 实二次型70.若()2221231231323,,2322f x x x x x x x x tx x =++-+是正定二次型,则t 满足( )A.2t ≤B.2t 2-<<C.2-t >D.2t 2-t >且< 难易:3 答案:B71.下列各式哪个是二次型( ) A.023212221=+-+x x x x x B.23222--+z y xC. 322121x x x x ++ D.xz xy y x42322+-+难易:3 答案:D72.以下关于正定矩阵叙述正确的是( )A.正定矩阵的乘积一定是正定矩阵B.正定矩阵的行列式一定小于零C.正定矩阵的行列式一定大于零D.正定矩阵的差一定是正定矩阵 难易:3 答案:C73.设二次型()2322321-,,x x x x x f =则f( )A.正定B. 不定C.负定D.半正定 难易:3答案:B74.二次型()323121321-,,x x x x x x x x x f +=的矩阵是( )A. ⎪⎪⎪⎭⎫ ⎝⎛02/12/1-2/102/1-2/12/1-0B. ⎪⎪⎪⎭⎫ ⎝⎛002/1-2/12/12/1-2/12/1-0C.⎪⎪⎪⎭⎫ ⎝⎛02/12/1-2/102/12/1-2/10 D.⎪⎪⎪⎭⎫⎝⎛02/12/12/102/12/12/10 难易:3 答案:C75.3121232221224-6-2-x x x x x x x f ++=的正定性为( ) A 、正定 B 、半正定 C 、半负定 D 、负定 难易:3 答案:D76.二次型()31212322213212462-,,x x x x x x x x x x f +-+=秩为( )A 、2B 、3C 、1D 、0 难易:2 答案:B77. 对称矩阵⎪⎪⎭⎫ ⎝⎛=0110A 对应的二次型为( )A 、212x x f =B 、2221x x f += C 、2221-x x f = D 、21x x f =难易:2 答案:A78. 已知3阶实对称矩阵A 的特征多项式)5)(2)(1(-+-=-λλλλA E ,则二次型Ax x x x x f T =),,(321的正惯性指数为( )A. 1B. 2C. 3D.0 难易:3 答案:B79.二次型212221212),(x x x x x x f +--=的规范形为( ) A. 2121-y ),(=x x f B. 2121y ),(=x x f C. 222121y y ),(+=x x f D.222121y y ),(-=x x f 难易:3 答案:A80.yz xz xy z y x f 44-2-7-222-+=的矩阵为( )A 、⎪⎪⎪⎭⎫ ⎝⎛7-22-2112-1-1B 、⎪⎪⎪⎭⎫ ⎝⎛7-2-2-2-11-2-1-1C 、⎪⎪⎪⎭⎫ ⎝⎛72-2-2-11-2-1-1D 、⎪⎪⎪⎭⎫⎝⎛7-2-2-2112-1-1难易:2 答案:B。
线性代数(经管类)试题

全国2013年10月高等教育自学考试线性代数(经管类)试题课程代码:04184请考生按规定用笔将所有试题的答案涂、写在答题纸上。
说明:在本卷中,A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A |表示方阵A 的行列式,r(A )表示矩阵A 的秩.选择题部分注意事项:1. 答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2. 每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
一、单项选择题(本大题共5小题,每小题1分,共5分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.设行列式1122a b a b =1,1122a c a c =-2,则111222a b c a b c ++=A .-3B .-1C .1D .32.设矩阵A =1001021003⎛⎫ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,则A -1= A .001020300⎛⎫ ⎪ ⎪ ⎪⎝⎭B .100020003⎛⎫⎪ ⎪ ⎪⎝⎭C .300020001⎛⎫ ⎪ ⎪ ⎪⎝⎭D .003020100⎛⎫ ⎪ ⎪ ⎪⎝⎭3.设A 为m ×n 矩阵,A 的秩为r ,则 A .r =m 时,Ax =0必有非零解B .r =n 时,Ax =0必有非零解C .r<m 时,Ax =0必有非零解D .r<n 时,Ax =0必有非零解4.设4阶矩阵A 的元素均为3,则r(A )= A .1 B .2 C .3D .45.设1为3阶实对称矩阵A 的2重特征值,则A 的属于1的线性无关的特征向量个数为 A .0 B .1 C .2D .3非选择题部分注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2021年线性代数(经管类)复习试题(含答案)

第 3 页 共7 页
线代复习题参考答案
1. ___= a =__3a _____. 2.__-1____;
3._
9 15
3
6
______.
4. _____ k3 _______. 5. _ 1 ____;16
4
6. _____ A31A21A11 ________.
7. _____5 ____._____ 8 ____.
20. 向量组1 (1,1, k),2 (2, 2,6) 线性相关,则 k __________。 21.二次型 f (x1,,x3)= x12 x22 2x1 x3 的规范形为_____. 22. 向量 (1, 2,3,0), (t,1,1,2) 正交,则t ____________ . 23. 已知 3是方阵 A 的特征值,则 A 3E _______.
8. _____3,4____.
1 1 0
9.
___
1
2
3
___.
0 3 1
10. __ n ____ ;_____ n ____.
11. ______a2 b2 _______.
12. _k -2_______.k 2;
13. n-r .
14. _ 6;1_____.
15. _______2____.
1 0 0 1 1 1
24.
P 1BP
0
2
0
,
P
0
1
1 ,
0 0 3 0 0 1
则矩阵 B 的属于特征值 2 的特征向量是__________.
1 2 0
25.
A
2
5
0
,则
A1
=_
04184 线性代数(经管类)习题集及答案

西华大学自学考试省考课程习题集课程名称:《线性代数》课程代码:04184专业名称:工商企业管理专业代码:Y020202目录第一部分习题一、选择题 3二、填空题8三、计算题11四、证明题15第二部分标准答案一、选择题16二、填空题16三、计算题16四、证明题31第一部分 习题 一、选择题1、若n 阶方阵A 的秩为r ,则结论( )成立。
A. 0||≠A B. 0||=A C. r >n D. n r ≤2、下列结论正确的是( )A. 若AB=0,则A=0或B=0.B. 若AB=AC,则B=CC.两个同阶对角矩阵是可交换的.D. AB=BA 3、下列结论错误的是( )A. n+1个n 维向量一定线性相关.B. n 个n+1维向量一定线性相关C. n 个n 维列向量n ααα,,,21 线性相关,则021=n αααD. n 个n 维列向量n ααα,,,21 ,若021=n ααα 则n ααα,,,21 线性相关,4、若m c c c b b b a a a =321321321,则=321321321333222c c c b b b a a a ( ) A. 6m B.-6m C. m 3332 D. m 3332- 5、设A,B,C 均为n 阶方阵,AB=BA,AC=CA,则ABC=( ) A. ACB B. CAB C. CBA D. BCA6、二次型3221222132124),,(x x x x x x x x x f -++=的秩为( )A 、0B 、1C 、2D 、3 7、若A 、B 为n 阶方阵,下列说法正确的是( ) A 、若A ,B 都是可逆的,则A+B 是可逆的 B 、若A ,B 都是可逆的,则AB 是可逆的 C 、若A+B 是可逆的,则A-B 是可逆的 D 、若A+B 是可逆的,则A ,B 都是可逆的8、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A ,则=*A ( ) A 、⎪⎪⎭⎫ ⎝⎛--a c b d B 、⎪⎪⎭⎫ ⎝⎛--a b c dC 、⎪⎪⎭⎫ ⎝⎛--a c b dD 、⎪⎪⎭⎫⎝⎛--a b c d 9、关于初等矩阵下列结论成立的是( )A. 都是可逆阵B. 所对应的行列式的值为1C. 相乘仍为初等矩阵D. 相加仍为初等矩阵10、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=4321A ,则=*A ( )A 、⎪⎪⎭⎫⎝⎛--1324 B 、⎪⎪⎭⎫ ⎝⎛--1234 C 、⎪⎪⎭⎫ ⎝⎛--1324 D 、⎪⎪⎭⎫⎝⎛--1234 11、设21,ββ是非齐次线性方程组β=AX 的两个解,则下列向量中仍为方程组β=AX 解的是( )A 、21ββ+B 、21ββ-C 、3221ββ+ D 、32321ββ- 12、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关13、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关14、0=AX 是非齐次方程组β=AX 的对应齐次线性方程组,则有( ) A 、0=AX 有零解,则β=AX 有唯一解 B 、0=AX 有非零解,则β=AX 有无穷多解 C 、β=AX 有唯一解,则0=AX 只有零解 D 、β=AX 有无穷多解,则0=AX 只有零解15、设A ,B ,C 均为二阶方阵,且AC AB =,则当( )时,可以推出B=CA 、⎪⎪⎭⎫ ⎝⎛=0101AB 、⎪⎪⎭⎫ ⎝⎛=0011AC 、⎪⎪⎭⎫ ⎝⎛=0110AD 、⎪⎪⎭⎫⎝⎛=1111A16、若m c c c b b b a a a =321321321,则=231231231333222c c c b b b a a a ( )A. 6mB.-6mC. m 3332D. m 3332- 17、如果矩阵A 的秩等于r ,则( )。
(完整word版)线性代数试题及答案

线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
(完整版)线性代数复习——选择题.doc

《线性代数》复习一:选择题a11 a12 a13 2a11 2a12 2a131.如果a21 a22 a23 = M,则2a21 2a22 2a23 = ()a31 a32 a33 2a31 2a32 2a33A. 8MB. 2MC. MD.6M2. 若 A,B 都是方阵,且 |A|=2, |B|=-1,则 |A -1B|= ()A. -2B.2C. 1/2D. –1/23. 已知可逆方阵 A 1 3 7则 A ()1 2A. 2 7B.2 7C.3 7D.3 7 1 3 1 3 1 2 1 24. 如果 n 阶方阵 A 的行列式 |A| 0 则下列正确的是()A.AOB. r(A)> 0C. r(A)< nD. r( A) 05. 设 A B 均为 n 阶矩阵 A O 且 AB O 则下列结论必成立的是()A. BA OB. B OC. (A B)( A B) A2 B2D. (A B)2 A2 BA B26. 下列各向量组线性相关的是()A. 1 (1 0 0) 2 (0 1 0) 3 (0 0 1)B. 1 (1 2 3) 2 (4 5 6) 3 (2 1 0)C. 1 (1 2 3) 2 (2 4 5)D. 1 (1 2 2) 2 (2 1 2) 3 (2 2 1)7. 设 AX b 是一非齐次线性方程组 1 2 是其任意 2 个解则下列结论错误的是()A. 1 2是 AX O 的一个解 B. 1 12是 AX b 的一个解+ 2 1 2C. 1 2是AX O 的一个解D.2 1 2是AX b 的一个解8. 设 A为 3阶方阵 A的特征值为 1 2 3 则 3A 的特征值为()A. 1/6 1/3 1/2B. 3 6 9C.12 3D. 1 1/2 1/39. 设 A 是 n 阶方阵且 |A| 2 A*是 A 的伴随矩阵则 |A*| ()A. 1B. 2nC. 1D. 2n 12 2 n 11 y 210. 若 x z 3 正定则 x y z 的关系为()0 0 1A. x+y zB. xy zC. z xyD. z x+y参考答案 :1.A 2.D 3. B 4. C 5. D 6. B 7. A 8. B 9. D 10. C1. 设30 ,则取值为()2 1A. λ=0 或λ=-1/3B. λ=3C. λ≠0 且λ≠ -3D. λ≠02. 若 A 是 3 阶方阵,且 |A|=2, A* 是 A 的伴随矩阵,则 |A A* |=()A. -8B.2C.8D. 1/23. 在下列矩阵中可逆的是()0 0 01 1 0 1 1 0 1 0 0 A. 0 1 0B.2 2 0 C. 0 1 1D. 1 1 10 0 10 0 1 1 2 11 0 14. 设 n 阶矩阵 A 满足 A 2 2A+3E O 则 A 1 ( )A. EB. 1C. 2A 3ED. A(2E A)31 a a a5. 设 Aa 1 a aa a 1 a ,若 r(A) 1, 则 a ( )aaa 1A.1B.3C.2D.46.x 1 x 2 x 3 0,若齐次线性方程组x 1 x 2x 3 0, 有非零解则常数( )x 1 x 2 x 3 0A.1B.4C.2D.1 7. 设 A B 均为 n 阶矩阵则下列结论正确的是( )A. BA ABB.(A B)2 A 2BA ABB 2C. (A B)(A B) A 2B 2D. (A B)2A 22 AB B 28. 已知 1(10 0) 2(200)3 (0 0 3) 则下列向量中可以由123 线性表示的是()A. (1 2 3)B.(12 0)C. (0 2 3)D. (3 0 5)9. n 阶方阵 A 可对角化的充分条件是()A. A 有 n 个不同的特征值B.A 的不同特征值的个数小于 nC. A 有 n 个不同的特征向量D. A 有 n 个线性相关的特征向量10. 设二次型的标准形为fy 12y 223 y 32 ,则二次型的正惯性指标为()A.2B.-1C.1D.3参考答案 : 1.A 2. C 3. D 4. B 5. A 6. A 7. B 8. D 9. A 10. A1. 设A 是4 阶方阵,且 |A|=2,则 |-2A |=( )A. 16B. -4C. -32D. 32 2. 3 4 6行列式 k 5 7 中元素 k 的余子式和代数余子式值分别为()1 2 8A. 20, -20B.20,20C. -20,20D. -20,-203. 已知可逆方阵 A2 7则 A1)1 3 (A.2 7B.2 7C.3 7 D.371 31 31 2 124. 如果 n 阶方阵 A 的行列式 |A | 0则下列正确的是()A.AOB. r (A )> 0C. r(A)< nD. r(A ) 05. 设 A B 均为 n 阶矩阵 则下列结论中正确的是()A. (A B)(A B) A2 B 2B. (AB )k A k B kC. |kAB | k|A | |B |D. |(AB )k| |A |k |B|k6. 设矩阵 A n n的秩 r(A ) n 则非齐次线性方程组 AX b()A. 无解B. 可能有解C. 有唯一解D. 有无穷多个解7. 设 A 为 n 阶方阵 A 的秩 r(A) r n 那么在 A 的 n 个列向量中()A.必有 r 个列向量线性无关B.任意 r 个列向量线性无关C. 任意 r 个列向量都构成最大线性无关组D. 任何一个列向量都可以由其它r 个列向量线性表出8.已知矩阵 A4 4的四个特征值为 4, 2, 3, 1,则 A =()A.2B.3C.4D.249. n 阶方阵 A 可对角化的充分必要条件是()A. A 有 n 个不同的特征值B. A 为实对称矩阵C. A 有 n 个不同的特征向量D. A 有 n 个线性无关的特征向量10. n 阶对称矩阵 A 为正定矩阵的充要条件是()A. A 的秩为 nB. |A| 0C. A 的特征值都不等于零D. A 的特征值都大于零参考答案 : 1.D 2. A 3. D 4.C 5.D 6.C 7.A 8.D 9.D 10.D3 4 61. 行列式 2 5 7 中元素y的余子式和代数余子式值分别为()y x 8A. 2,-2B. –2, 2C. 2,2D. -2, -22. 设 A B 均为 n(n 2)阶方阵则下列成立是()A. |A+B| |A |+|B|B. AB BAC. |AB | |BA |D. (A+B) 1 B 1+A 13. 设 n 阶矩阵 A 满足 A2 2A E 则(A-2E ) 1 ()A. AB. 2 AC. A+2ED. A-2E4. 矩阵A 1 1 1 12 2 2 2 的秩为()3 3 3 3A.1B.3C.2D.45. 设 n 元齐次线性方程组AX O 的系数矩阵 A 的秩为 r 则方程组 AX 0 的基础解系中向量个数为()A. rB. n- rC. nD. 不确定6. 若线性方程组x1 x2 2x3 1无解则等于()x1 x2 x3 2A.2B.1C.0D. 17. n 阶实方阵 A 的 n 个行向量构成一组标准正交向量组,则 A 是()A. 对称矩阵B. 正交矩阵C. 反对称矩阵D.| A |= n8. n 阶矩阵 A 是可逆矩阵的充要条件是()A. A 的秩小于 nB. A 的特征值至少有一个等于零C. A 的特征值都等于零D. A 的特征值都不等于零9. 设 1 2 是非齐次线性方程组Ax=b 的任意 2 个解则下列结论错误的是()A.1+ 2 是 Ax =0 的一个解 B. 1 η1η2 1 2 2是 Ax =b 的一个解C.12 是 Ax =0 的一个解D. 2 1 2 是Ax=b的一个解10.设二次型的标准形为f y12y223y32,则二次型的秩为()A.2B.-1C.1D.3参考答案 : 1. D 2.C 3.A 4.A 5.B 6.A 7.B 8.D 9.A10.D1.a b 0设 D b a 0 0 ,则 a, b 取值为()1 0 1A. a=0, b≠ 0B. a=b=0C. a≠ 0, b=0D. a≠0, b≠ 02. 若 A 、B 为 n 阶方阵且AB=O 则下列正确的是()A. BA OB. |B | 0 或|A| 0C.B O或A OD. (A B)2 A2 B23. 设A是3 阶方阵,且 | A | 2,则|A 1|等于()A. 2B. 1C.2D.1 2 24. 设矩阵 A B C满足AB AC 则 B C 成立的一个充分条件是()A. A 为方阵B. A 为非零矩阵C. A 为可逆方阵D. A 为对角阵5. 如果 n 阶方阵 A O 且行列式 |A| 0 则下列正确的是()A. 0<r( A) < nB. 0 r(A) nC. r(A )= nD. r(A) 07 x1 8x2 9x3 06. 若方程组x2 2 x3 0 存在非零解则常数 b ()2 x2 bx3 0A.2B.4C.-2D.-47. 设 A 为 n 阶方阵且 |A| 0 则()A.A 中必有两行 (列 )的元素对应成比例B.A 中任意一行 (列 )向量是其余各行 (列) 向量的线性组合C.A 中必有一行 (列 )向量是其余各行 (列 )向量的线性组合D.A 中至少有一行 (列 ) 的元素全为零8. 设A为 3阶方阵 A 的特征值为 1 2 3 则 3A 的特征值为()A. 1/6 1/3 1/2B. 369C.123D. 1 1/2 1/39. 如果 3阶矩阵 A 的特征值为 -1,1,2 ,则下列命题正确的是()A. A 不能对角化B. A 0C. A 的特征向量线性相关D. A 可对角化10. 设二次型的标准形为 f y12 y22 3 y32,则二次型的正惯性指标为()A.2B.-1C.1D.3参考答案:1.B 2.B 3. B 4. C 5.A 6.D 7.C 8.B 9.D10.Ca11 a12a13 4a a a a11 11 12 131. 如果 a21 a22a23 =M,则 4a21 a21 a22 a23 =()a31 a32a33 4a31a31a32a33A. -4MB. 0C. -2 MD. M2. 设 A ij 是 n 阶行列式 D |a ij |中元素 a ij的代数余子式则下列各式中正确的是()nB. n nD.nA. a ij A ij 0 a ij A ij 0 C. a ij A ij D a i1A i 2 Di 1 j 1 j 1 i 11 0 02 0 03. 已知A 0 1 0 ,B 2 2 1 ,则 |AB |=()3 0 1 3 3 3A.18B.12C.6D.364. 方阵 A 可逆的充要条件是()A.AOB. |A| 0C. A* OD. |A| 15. 若 A 、B 为 n 阶方阵 A 为可逆矩阵且 AB O 则()A. B O 但 r( B) nB. B O 但 r(A) n, r (B ) nC. B OD. B O 但 r(A) n, r(B) n6. 设 1 2 是非齐次线性方程组AX b 的两个解则下列向量中仍为方程组解的是()A. 1 2B. 1 2C. 1D.+2(β1 2β2)7. n 维向量组 1 2 s线性无关为一 n 维向量则()A. 12 s 线性相关B. 一定能被12C. 一定不能被12 s 线性表出D. 当 s n 时一定能被8. 设 A 为三阶矩阵 A 的特征值为 2 1 2 则A 2E 的特征值为(3β2β1 25s线性表出12s 线性表出)A. 212B.-4-10C.124D.41-49.若向量α=( 1, -2,1)与β=( 2, 3, t)正交,则 t=()A.-2B.0C.2D.41 y 210. 若x z 3 正定则 x y z 的关系为()0 0 1A. x+y zB. xy zC. z xyD. z x+y参考答案:1.A 2.C 3.C 4.B 5.C 6.D 7.D 8.B 9.D 10.C3 4 6中元素 x 的余子式和代数余子式值分别为(1. 行列式 2 5 7 )y x 8A. –9, -9B. –9,9C. 9, -9D. 9,91 1 1 12.2 3 4 53 3 3 3 =( )4 3 4 4A.2B.4C.0D.1 3. 设A 为4 阶矩阵 |A | 3 则其伴随矩阵A *的行列式 |A *| ()A.3B.81C.27D.9 4. 设 A B 均为 n 阶可逆矩阵则下列各式中不正确的是()A. (A+B)T A T +B TB.(A +B) 1 A 1+B 1C.(AB)1B 1A 1D. (AB )T B T A T 5. 设 n 阶矩阵 A 满足 A 2 +A +EO 则(A+E ) 1( )A. AB. -(A+E )C. –AD. -(A 2+A )6. 设 n 阶方阵 A B 则下列不正确的是( )A. r(AB )r(A)B. r(AB )r(B)C. r( AB ) min{ r(A ), r(B )}D. r(AB )>r (A )7. 已知方程组 AX b 对应的齐次方程组为 AX O , 则下列命题正确的是()A. 若AX O 只有零解 则 AX b 有无穷多个解B. 若AX O 有非零解 则 AX b 一定有无穷多个解C. 若AX b 有无穷解 则 AX O 一定有非零解D. 若AXb 有无穷解 则 AXO 一定只有零解8.10 1已知矩阵 A 02 0 的一个特征值是 0 则 x ( )1 0 xA.1B.2C.0D.31 09.与A02 1 相似的对角阵是()0 1 21111A.Λ1B.Λ2C. Λ1 D. Λ 1 333 410. 设 A 为 3 阶方阵 A 的特征值为 1 0 3则A 是()A. 正定B.半正定C.负定D. 半负定参考答案 : 1. C 2. C3. C4. B5. C6. D7. C8.A 9.A 10.B1. 设 A B 都是 n 阶方阵A. 若|A| 0 则A Ok 是一个数 B. |kA|则下列(|k| |A |)是正确的。
《线性代数(经管类)》综合测验题库完整

《线性代数(经管类)》综合测验题库一、单项选择题1.下列条件不能保证n阶实对称阵A为正定的是( )A.A-1正定B.A没有负的特征值C.A的正惯性指数等于nD.A合同于单位阵2.二次型f(x1,x2,x3)= x12+ x22+x32+2x1x2+2x1x3+2x2x3,下列说确的是( )A.是正定的B.其矩阵可逆C.其秩为1D.其秩为23.设f=X T AX,g=X T BX是两个n元正定二次型,则( )未必是正定二次型。
A.X T(A+B)XB.X T A-1XC.X T B-1XD.X T ABX4.设A,B为正定阵,则( )A.AB,A+B都正定B.AB正定,A+B非正定C.AB非正定,A+B正定D.AB不一定正定,A+B正定5.二次型f=x T Ax经过满秩线性变换x=Py可化为二次型y T By,则矩阵A与B( )A.一定合同B.一定相似C.即相似又合同D.即不相似也不合同6.实对称矩阵A的秩等于r,又它有t个正特征值,则它的符号差为( )A.rB.t-rC.2t-rD.r-t7.设8.f(x1,x2,x3)= x12-2x1x2+4x32对应的矩阵是( )9.设A是n阶矩阵,C是n阶正交阵,且B=C T AC,则下述结论( )不成立。
A.A与B相似B.A与B等价C.A与B有相同的特征值D.A与B有相同的特征向量10.下列命题错误的是( )A.属于不同特征值的特征向量必线性无关B.属于同一特征值的特征向量必线性相关C.相似矩阵必有相同的特征值D.特征值相同的矩阵未必相似11.下列矩阵必相似于对角矩阵的是( )12.已知矩阵有一个特征值为0,则( )A.x=2.5B.x=1C.x=-2.5D.x=013.已知3阶矩阵A的特征值为1,2,3,则|A-4E|=( )A.2B.-6C.6D.2414.已知f(x)=x2+x+1方阵A的特征值1,0,-1,则f(A)的特征值为( )A.3,1,1B.2,-1,-2C.3,1,-1D.3,0,115.设A的特征值为1,-1,向量α是属于1的特征向量,β是属于-1的特征向量,则下列论断正确的是( )A.α和β线性无关B.α+β是A的特征向量C.α与β线性相关D.α与β必正交16.设α是矩阵A对应于特征值λ的特征向量,P为可逆矩阵,则下列向量中( )是P-1AP对应于λ的特征向量。
线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6、设 是非齐次线性方程组 Ax=b的一个解, 是其对应的齐次线性方程组的一个基础解系,证明: , 线性无关
7、设 为 阶矩阵,且 为对称阵,证明 也是对称阵.
8、如果向量组 线性无关。试证:向量组 线性无关。
(A) ; (B) ;
(C) ; (D) 。
12、当 =()时, 的值为0 。
(A)9(B)11 (C)13(D)15
13、设A是 阶方阵,且 ,则 ( ).
(A)4 ; (B) ; (C) ; (D)不能确定。
14、设 均为3阶矩阵,若 可逆,秩( )=2,那么秩( )=( ).
(A)0(B)1
(C)2(D)3
17、设线性方程组为 ,问: 、 取何值时,方程组无解、有惟一解、有无穷多解?并在有无穷多解时求出其通解。
18、计算n+1阶行列式
四、证明题
1、设 为可逆对称矩阵,证明 也为对称矩阵。
2、 线性无关,证: , , 线性无关。
3、设 为 阶实对称矩阵,且满足条件 ,证明 正定矩阵。
4、设 均为n阶可逆阵,证明 。
【最新整理,下载后即可编辑】
宜春学院经管理学院线性代数总复习题
一、填空题
1、设矩阵 ,则 ;
2、设A= 且 , 则X=。
3、设四阶行列式 ,则 的符号为=;
4、4阶方阵A的行列式 ,则 ;
5、向量组 , 的秩为。
6、向量组 的秩=;
7、齐次线性方程组 的一基础解系为。
8、已知 的特征值为1,2,5, ,则 =。
(A)3 (B) 4 (C) (D) 5
8、设 为 阶正定矩阵, 为 阶单位矩阵,则以下不是正定矩阵是( )
(A) (B) (C) ( 为任意实数) (D)
9、下列矩阵中,是正交矩阵。
(A) ,(B) ,(C) ,(D)
10、设A为4阶矩阵且 ,则 ( )
(A)4 (B) (C) (D)8
11、若 表示任意两个 阶方阵, 表示 阶零方阵,下列结论一定正确的是( );
(C)|A-1|A-1(D) A
19、下列等式中正确,且它们的秩相等,即, ,则( )
A B
C D
21、设矩阵 , 仅有零解的充要条件是( )
A. 的行向量组线性无关B. 的行向量组线性相关
C. 的列向量组线性无关D. 的列向量组线性相关
22、设A为n阶可逆矩阵, 是A的一个特征值,则 A*的特征值之一是( )
(A) (B) (C) (D)
23、设A为 矩阵,则齐次线性方程组Ax=0仅有零解的充分条件是( )
(A)A的列向量组线性无关 (B)A的列向量组线性相关
(C)A的行向量组线性无关 (D)A的行向量组线性相关
24、矩阵 的秩为( )
(A) 2 (B) 3 (C) 4 (D) 5
25、设 n阶方阵A,B,C满足关系式ABC=E,其中E是n阶单位矩阵,则必有( )
9、当t取值在范围内时,二次型 是正定的。
10、二次型 ,当 满足时是正定的。
11、设 阶方阵 的转置伴随矩阵为 ,且 ,则 .
12、设A为n阶可逆矩阵,若行列式 ___________.
13、设三阶方阵 ,已知 线性相关,则 _____________。
14、设m×n矩阵A,且秩(A)=r,D为A的一个r+1阶子式,则D=______.
3、已知线性方程组
(1)讨论a取何值时,方程组有唯一解?有无穷多解?无解?
(2)方程组有无穷多解时,求其通解(用基础解系表示)
4、设3阶方阵 ,(1)求方阵 的特征值;(2)求方阵 的特征向量。
5、已知3维向量空间 的一组基 和一个向量 ,(1)求 在基 下的坐标;
(2)利用基 构造 的一组标准正交基。
2、设 为n维向量组,且秩 ,则( ).
(A)任意r个向量线性无关 (B)任意r+1个向量线性相关
(C)该向量组存在唯一的最大无关组 (D)该向量组在s>r时,有若干个最大无关组
3、齐次线性方程组 的基础解系含( )个线性无关的解向量:
(A)1 (B)2 (C)3 (D)4
4、已知 ,则 ().
(A)3k(B)-3k(C)-15k(D)-5k
15、若 为2006阶方阵,且 ,则 .
16、向量组 的一个极大无关组是______.
17、设 是三阶方阵,已知 的两个特征值为 ,且 ,则 。
18、若3元齐次线性方程组 的基础解系含2个解向量,则矩阵A的秩等于
.
19、设 ,则 的特征值为.
20、行列式 中元素 的代数余子式=。
21、排列534621的逆序数=。
29、设 矩阵 ,其中 均为4维列向量,且已知行列式 ,则行列式 .
30、已知向量组 ,则该向量组的秩是,最大线性无关组是.
31、已知 与 相似,则x=.
32、当t取值在范围内时,二次型 为正定的。
二、选择题
1、若由AB=AC必能推出B=C,其中A,B,C为同阶方阵,则A应满足().
(A) (B)A=O(C) (D)
6、求x的值使 。
7、 ,求矩阵 。
8、方程组
(1)讨论 取何值时,方程组有解?无解?
(2)方程组有解时,求其通解(用基础解系表示)
9、二次型
(1)写出该二次型的矩阵 ,并求 的特征值、特征向量;
(2)求一正交变换x=Py将二次型 化为标准型。
10、已知 中的两基 和
(1)求由基 到基 的过渡阵;
(2)已知 在基 下的坐标为 ,求 在基 下的坐标。
22、在4阶行列式中包含因子 且带正号的项是。
23、设 是4阶方阵,且 =5,则 =。
24、设 矩阵 有一个4阶非零子式,则 。
25、设 元齐次线性方程组 ,则当 时, 有非零解。
26、若向量组 , , 线性相关,则 。
27、若线性无关的向量组 能由 线性表示 ,则 与 之间关系为 。
28、设4阶方阵 的特征值为5,2,1,2,则行列式 =。
(A)ACB=E(B)CBA=E(C)BAC=E(D)BCA=E
26、n阶方阵A具有n个不同的特征值是A与对角阵相似的( )
(A)充要条件 (B) 充分而非必要条件
(C) 必要而非充分条件 (D) 既非充分也非必要条件
三、计算题
1、计算 阶行列式 。
2、用初等行变换求解矩阵方程 ,其中 为三阶单位矩阵。
5、设A与C为n阶方阵,B为n阶对称方阵,则方阵( )为对称阵.
(A) (B) (C) (D)
6、A与B分别代表一个线性方程组的系数阵和增广阵,若此方程组无解,则().
(A)R(A)=R(B)(B)R(A)<R(B)(C)R(A)>R(B)(D)R(A)与R(B)无关
7、设 ,且A的特征值为1,2,3,则 ( )
11、已知 计算 的值,其中 为 中元 对应的代数余子式。
12、解线性方程组
13、判断矩阵 是否可对角化,若能对角化,求出相应的矩阵 和对角矩阵 。
14、给定 的基
(1)将其化为 的一组标准正交基 ;
(2)求向量 在这组标准正交基下的坐标。
15、求矩阵 的逆矩阵
16、设向量组 , , ,求该向量组的秩,并求它的一个最大无关组。
15、设A是 阶方阵,则下列正确的是( )。
(A) (B)
(C) (D)
16、下列哪个数是矩阵 的特征值? ( )
(A) 1 (B) 0
(C) -1 (D) -2
17、矩阵 的逆矩阵是( )
(A) (B)
(C) (D)
18、设 为n阶方阵, 为 的转置伴随矩阵,且 ,则 ().
(A) A(B) A*