半导体制冷器的高精度温度控制系统
半导体制冷循环恒温浴

半导体制冷循环恒温浴
半导体制冷循环恒温浴是一种常见的温度控制方法,常用于实验室和工业生产中。
它通过利用半导体材料的特性,通过电流和热传导来调节温度,从而实现恒温的目的。
半导体制冷循环恒温浴的工作原理是基于半导体材料的Peltier效应。
当电流通过半导体材料时,会产生热量和冷量。
通过合理的电流控制,可以使半导体材料的一侧变冷,另一侧变热。
这样,就可以通过将待控制物体放置在冷侧或热侧来调节其温度。
在半导体制冷循环恒温浴中,通常会使用温度传感器来实时监测温度,并通过控制电流的大小和方向来调节半导体材料的工作状态。
当温度偏离设定值时,控制系统会自动调整电流,使半导体材料的冷热侧温度保持恒定。
这种恒温浴可根据实际需要调节温度范围,通常可达到几摄氏度的精度。
半导体制冷循环恒温浴具有许多优点。
首先,它具有高精度和稳定性,可以满足对温度要求较高的实验和生产过程。
其次,半导体制冷循环恒温浴体积小巧,便于携带和安装,适用于各种场合。
此外,它还具有响应速度快、能耗低、操作简便等特点。
半导体制冷循环恒温浴在实际应用中有着广泛的用途。
例如,在科学研究中,它常用于生物实验、材料实验等需要精确温度控制的场合。
在工业生产中,它可以用于半导体器件的制造、光电子元件的
生产等领域。
半导体制冷循环恒温浴是一种有效的温度控制方法。
通过利用半导体材料的特性,它可以实现恒温的目的,并在实验室和工业生产中发挥重要作用。
随着科技的不断进步,相信半导体制冷循环恒温浴会在更多领域得到应用,并为人类的科学研究和生产活动提供更好的支持。
精密半导体制冷控制系统设计

传统致冷 , 半导体致冷有体积小、 轻便抗震 、 可靠性 高、 维护 成 本 低、 于控 制 、 Байду номын сангаас 环 保 等诸 多 优 便 绿
点 引。
D t t ) T C致冷及其驱动模块 ( E ) 电源及管 e c r 、E eo TC 、
理模块( o e Spl) 键 盘输入 及液晶显示模 块 Pw r up 、 y
i ds fl . e Ke r y wo ds: s mio d co e rg rto y t m ;MS 43 e c n u trr fie ain s se P 0 MCU;PI c n rl D o to ;TEC
自2 0世纪 5 0年代 起 , 导体 制冷 技 术 因为 其 半 独特 的优点开辟 了制冷 技术 的一 个新 分 支 , 决 了 解 许 多场 合 的制 冷难题 。它 已广 泛用 于 国防 、 工业 、 农 业、 医疗 和 日常生 活等 各领 域 … 。传 统 的致 冷 方式 存在体 积大 、 功耗 高 、 密 度 不够 、 响环境 等 多 方 精 影 面问题 , 使其 在部 分场 合 的应用 受 到 限制 。相 比于
2 1 年第1 01 1 期
中图 分 类 号 :M9 50 : M 2 .2 T 2 .2 T 9 1 5 文献 标 识 码 : A 文 章 编 号 :0 9— 5 2 2 1 ) 1— 04— 4 10 2 5 (0 1 1 08 0
精 密 半导 体 制 冷控 制 系统 设 计
王 沛 ,郭建强 , 晓蓉 , 高 王 黎 , 王泽勇
低电压、 无铅化器件实现绿色环保节能 ; ④功能完善 的 M P单片 机技术 , S 数字 PD闭环控 制 实现 精密 温 I
基于半导体制冷片的温度采集控制系统的设计

De s i g n o f t e mp e r a t ur e a c qu i s i t i o n a n d c o nt r o l s y s t e m ba s e d o n s e mi c o ndu c t o r c hi l l i ng pl a t e
Ab s t r a c t : Ac c o r d i n g t o t h e i n h e r e n t a d v a n t a g e o f s e mi c o n d u c t o r c h i l l i n g p l a t e ,t h e t e mp e r a t u r e a c q u i s i t i o n a n d
a c q u i s i t i o n mo d u l e a n d s e mi c o n d u c t o r d i r v e r c i r c u i t .T e mp e r a t u r e a c q u i s i t i o n mo d u l e i s c o n s t i t u t e d b y P T I O 0 a n d i t s mo d u l a t o r c i r c u i t a n d A/ D c o n v e r s i o n c i r c u i t .I R2 1 1 0 a n d I RF Z 4 4 N c o mp is r e d t h e s e mi c o n d u c t o r d r i v e r c i r c u i t ;
基 于半 导体 制冷 片 的 温 度 采集 控 制 系统 的设计
李会冬 ,张建 民,王浩 州
基于单片机的半导体制冷智能控制

图2:温度控制系统稳定性曲线 (请在此处插入温度控制系统稳定性曲线图) 从图2可以看出,系统在达到目标温度后,保持稳定状态,未见明显波动。 这表明基于半导体制冷技术的温度控制系统具有良好的稳定性。
通过实验验证,我们可以得出以下结论: 1、基于半导体制冷技术的温度控制系统具有快速响应和高精度控制优点。
一、半导体制冷技术概述
半导体制冷技术是一种利用半导体材料的热电效应实现制冷的技术。其基本 原理是,通过直流电在半导体材料中产生的珀尔帖效应,实现吸热和放热过程, 从而达到制冷效果。相较于传统制冷技术,半导体制冷技术具有体积小、效率高、 无噪声等优点,因此被广泛应用于微型制冷领域。
二、单片机在半导体制冷智能控 制中的应用
4、监控实验过程:在实验过程中,通过数据采集卡实时监测温度变化情况, 观察系统响应速度和稳定性。
五、实验结果与分析
实验结束后,收集实验数据并绘制曲线图,对实验结果进行分析。以下是实 验结果的相关图表:
图1:温度控制系统响应曲线 (请在此处插入温度控制系统响应曲线图) 从图1可以看出,系统在初始温度为25℃时,启动后在5分钟内迅速达到目标 温度-10℃,表明系统具有快速响应特性。
2、通过反馈控制和优化控制策略,可以实现系统的稳定运行和精确的温度 控制。
3、本研究为科学研究和工业生产中的温度控制提供了新的解决方案,具有 实际应用价值。
感谢观看
2、程序设计
基于单片机的半导体制冷智能控制系统的程序设计主要包括温度检测、故障 诊断、报警输出、节能优化等模块。程序设计中要充分考虑系统的稳定性、可靠 性和节能性。同时,程序设计应采用模块化思想,便于日后维护和升级。
3、硬件选择与调试
在硬件选择方面,应选用性能稳定、可靠性高的元器件。对于半导体制冷器, 应选择合适的型号和规格,以满足实际需求。在硬件调试过程中,应进行逐个元 器件的调试,确保每个部件都能正常工作。同时,要对整个系统进行联调,确保 各部分协调一致,实现稳定的制冷效果。
采用半导体制冷片的温控系统的设计

采用半导体制冷片的温控系统的设计半导体制冷片的温控系统是一种常见的用来控制温度的技术,它利用半导体物质的特性,通过通过电流的通过来实现温度的控制。
首先,我们需要了解半导体制冷片的工作原理。
半导体制冷片是一种基于Peltier效应的制冷技术。
当电流通过半导体材料时,热量会从一个一端吸收,然后从另一端释放。
这样就可以实现温度的调控。
在设计温控系统时,我们需要考虑以下几个方面:1.温度传感器:温度传感器用于感知当前的温度值并将其传递给控制器。
常用的温度传感器有热电偶和热敏电阻等。
2.控制器:控制器是整个系统的核心,它会根据传感器得到的温度值来判断是否需要制冷或制热。
根据温度变化的速度和幅度来调整半导体制冷片的电流,以实现精确的温度控制。
3.电源:半导体制冷片需要一个特定的电源来提供工作电流。
一般情况下,我们会使用可调电源来提供合适的电流给制冷片。
4.散热器:半导体制冷片在工作过程中会产生大量的热量,为了保持制冷系统的稳定性,我们需要使用散热器将多余的热量散发出去。
在实际的应用中1.常规型:常规型温控系统使用一个PID控制器或者其他类似的控制算法来实现温度的调控。
PID控制算法根据当前的温度误差、误差的变化速度和误差的累积值来调整半导体制冷片的工作电流,以达到温度的稳定控制。
2.自适应型:自适应型温控系统则是根据实际的温度变化情况来自动地选择合适的控制策略。
例如,系统可以根据当前的温度变化速度和幅度来自动调整控制算法的参数,使得温度的控制更为精确。
在设计半导体制冷片的温控系统时,我们需要根据具体的应用需求来选择合适的温控策略,并进行相应的硬件和软件设计。
同时,我们还需要对温控系统进行充分的测试和验证,以确保系统的稳定性和可靠性。
总结而言,半导体制冷片的温控系统是一种实现温度控制的重要技术,它可以广泛应用于各种需要精确温度控制的领域。
在设计温控系统时,我们需要考虑传感器、控制器、电源和散热器等关键因素,并选择合适的控制算法来实现稳定的温度调控。
基于可控硅移相控制的高精度半导体制冷温控系统

i . ℃ . a o d pop cs s0 1 h sg o rs e t.
Ke r s s mio d co erg rt r t mp r t r e e t n t y itr p a e t mp r t r o t l y wo d : e c n u trr f e ao ;e e au e d t ci ;h rs h s ; i o o e e au e c n r o
FAN n- a , E n— a Ha b i XI Ha hu
( e at n fEeto i a dC mmu i t nE g er g Not hn l ti P we iesy, adn 70 3 C ia D p rme t lcrnc n o o nci n i ei , rhC iaEe r o rUnvri B o ig0 10 , hn ) ao n n c c t
201 焦 2
仪 表 技 术 与 传 感 器
I sr me t Te h i u a d S n o n tu n c nq e n e sr
2 2 01
第 5期
N . o5
基 于可 控 硅移 相 控 制 的 高精 度 半 导体 制冷 温控 系统
范寒 柏 , 汉 华 谢
半 导体制冷主要是珀 尔帖效应 的应 用 , 因其具有 加热制 冷 双 向工 作 、 无震 动、 无噪音 、 可靠性高 、 安装 容易 、 热惯 性小 等特
点, 一经 问世 , 便受 到科 学界 普遍关 注 。半 导体 的致 冷 量与其 工作 电流成 正 比, 改变工作电流 的方 向即可实 现制冷 和加热 的
0 引 言
温度值进行 比较 , PD算法计算 , 出相应的 P 经 I 输 WM信号控制 可控 硅 的导通 角 大小 , 改变 作用 到半 导体 制冷 片上 的电压 来 值 , 而改变流过半 导体 制冷 片的 电流大小 , 从 实现 改变半 导体
半导体制冷器的原理与使用

半导体制冷器的原理与使用1半导体致冷器作为特种冷源,在技术应用上具有以下的优点和特点:1 不需要任何致冷剂,可连续工作,没有污染源没有旋转部件,不会产生回转效应,没有滑动部件是一种固体器件,工作时没有震动、噪音、寿命长,安装容易。
2 半导体致冷器具有两种功能,既能致冷,又能加热,致冷效率一般不高,但致热效率很高,永远大于1。
因此使用一个器件就可以代替分立的加热系统和致冷系统。
3 半导体致冷器是电流换能型器件,通过输入电流的控制,可实现高精度的温度控制,再加上温度检测和控制手段,很容易实现遥控、程控、计算机控制,便于组成自动控制系统。
4 半导体致冷器热惯性非常小,致冷致热时间很快,在热端散热良好冷端空载的情况下,通电不到一分钟,致冷器就能达到最大温差。
5 半导体致冷器的反向使用就是温差发电,半导体致冷器一般适用于中低温区发电。
6 半导体致冷器的单个致冷元件对的功率很小,但组合成电堆,用同类型的电堆串、并联的方法组合成致冷系统的话,功率就可以做的很大,因此致冷功率可以做到几毫瓦到上万瓦的范围。
7 半导体致冷器的温差范围,从正温90℃到负温度130℃都可以实现。
通过以上分析,半导体温差电器件应用范围有:致冷、加热、发电,致冷和加热应用比较普遍,有以下几个方面:8 军事方面:导弹、雷达、潜艇等方面的红外线探测、导行系统。
9 医疗方面:冷力、冷合、白内障摘除器、血液分析仪等。
10 实验室装置方面:冷阱、冷箱、冷槽、电子低温测试装置、各种恒温、高低温实验仪器。
11 专用装置方面:石油产品低温测试仪、生化产品低温测试仪、细菌培养箱、恒温显影槽、电脑等。
12 日常生活方面:空调、冷热两用箱、饮水机、电子信箱等。
半导体制冷片(TE)也叫热电制冷片,是一种热泵,它的优点是没有滑动部件,应用在一些空间受到限制,可靠性要求高,无制冷剂污染的场合。
半导体制冷片的工作运转是用直流电流,它既可制冷又可加热,通过改变直流电流的极性来决定在同一制冷片上实现制冷或加热,这个效果的产生就是通过热电的原理,以下的图就是一个单片的制冷片,它由两片陶瓷片组成,其中间有N型和P型的半导体材料(碲化铋),这个半导体元件在电路上是用串联形式连结组成半导体制冷片的工作原理是:当一块N型半导体材料和一块P型半导体材料联结成电偶对时,在这个电路中接通直流电流后,就能产生能量的转移,电流由N型元件流向P型元件的接头吸收热量,成为冷端由P型元件流向N型元件的接头释放热量,成为热端。
半导体制冷式电子冰箱的高精度温度控制电路

朴充墩失舸热量。同样,;制冷温度过低
时.热敏电阻阻值变太.桥路输出一个相 反的电压驱动制睁器发热。m子琳箱冷藏 室所需温度通过温度设置自路设置(目廿
常的J:怍状态下.HD控舳路中超±要作
用的是M倒自路;积分%瞎在PID&d自路 中,起着对辅出自琏信号缓慢Ⅷ节、变化 的作用;微分电路对于齄^电E突然出现 的较太%冲变化才起作月.}时通常不起 作用。根据Ziegler
…蓖
c‘,n。日邮‘ce*m椭目
81
能Ⅻn。目j星一个半导体制☆器的弗型结
构两片陶瓷片之间夹有许多互相排列■ 成的N型目P型半导体瓤袍,自NP之Ⅻ以 制铝或其他金属§体空!}帽莲。接∞直
的一端良好接触.此端丽称∞控温面。g
一端作为哉热或&热面,置于散热片上,
t上惭低1椎时伽持器M黼温整。
万 方数据
刚即可)。
采用M较式温度{空制方法霎现高精度 温度控制在宴验中E证霉很难协调控温系 统的静态精度和动态稳定性的一致性。为 T解决韫度控制系统的动态稳定性与静老 精度之间的矛盾,本文采用比例(P)一积 分(【) 微o(D)控制嚣来盘现高精攫
NichaI螺验公式洁所计
T_27
算出日驴ID参数K间6d
T。068选择
44风机迸R噪声拄目措施 对于风冷电冰箱.风机运行的噪声 米澡有两个方面,其一是风扇运转通过风 道系统流动的空气传递到箱体而产生的噪 声;其二是风机安装通过直撑如砥饥橡腔 垫传逮黔穑体的振动而产生的罅声。前者 主型是爵Ⅸ颇的谐渡声,可通过风挎系统 的优化逝计如台理降低%机转遗、加大扇 叶d径、接近风机尉叶正面处设计冷气出
的输出值;V{0为控制信号量。
PI啪制原理如图d新示.P嘴制*把
设定值S5受控系统的受控嚣的寓断Ⅲy…
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要随着信息时代的到来,传感器技术得到了快速发展,其应用领域越来越广泛,对其要求越来越高,需求越来越迫切。
传感器技术已成为衡量一个国家科学技术发展水平的重要标志之一。
随着人们生活水平的提高,智能化的液体加热制冷类家电越来越多地出现在人们的日常生活中,这些产品大多采用发热管或PTC热敏电阻进行加热,仅仅具有加热功能;而使用半导体制冷片可以具备加热和制冷双重功能,但缺陷是传统的半导体制冷片的方向控制大多使用继电器来完成,继电器属于机械式开关,当频繁导通或关断时不仅会发出噪音,而且还会降低其使用寿命。
因此,有必要探索一种高效、静噪、安全的半导体制冷片控制方法。
本设计将H桥驱动电路引入半导体制冷片进行控制,通过控制H桥的通断方向来控制半导体制冷片的加热和制冷,从而实现控温。
关键词:传感器;TEC;H桥1、系统方案设计本系统分为MCU ,温度显示,温度控制,温度采集,本系统采用STC12C5A16S2作为核心芯片,使用TEC1-12706半导体制冷片作为核心加热制冷与案件,采用DS18B20温度传感器采集温度,通过上位机和单片机通讯,上位机可以显示实时温度值,并且可以进行温度设置,半导体制冷片控制部分采用H 桥驱动控制电路进行电压翻转,H 桥的导通和截止采用三极管开关电路进行控制,从而达到加热和制冷的自动控制目的。
PC 机显示温度、 温度控制设置温度 RS232 PWM·······加热制冷 温度采集图1 系统结构STC12C5A16S2 DS18B20TEC H 桥1.1微型控制单元MCU采用宏晶STC12系列单片机,其工作电压为5.5-3.5V,是高速/低功耗/超强抗干扰的新一代8051单片机,指令代码完全兼容传统8051,但速度快8-12倍,本单片机晶振频率为22.184MHz,本系统PWM的时钟源是Fosc,不用Timer,PWM的频率为Fosc/2,此单片机完全能够满足本系统的设计要求。
1.2 TEC12706半导体制冷片TEC(Themoelectric cooling modules)即半导体制冷器,它的工作原理是基于珀尔贴效应(J.C.A.Peltier在1834年发现),即当电流以不同方向通过双金属片所构成的结时能对与其接触的物体制冷或加热。
两个电偶臂分别用P型和N型半导体材料制成,然后上下分别用金属桥连接,由于电子在金属中的能量要低于在N 型半导体中的能量,故在P型电偶臂和N型电偶臂两端加上电压后,电子从金属流到N型半导体需吸收能量,而从N型半导体流到金属中需放出能量,这样a端是电子从金属流向N型半导体,故为吸热端,而b端是电子从N型半导体流向金属故为放热端;反之,当在电偶臂两端加上反向电压时,此时a端则为放热端,而b端则为吸热端。
由此可知,若将a端与某物体接触,通过改变回路中电压极性和电流的大小即可以实现对物体的制冷与加热。
图2 TEC结构1.3 DS18B20数字温度传感器DS18B20温度传感器是DALLAS 公司生产的1-Wire ,即单总线器件,只需要一条口线通信,多点能力,简化了分布式温度传感应用,无需外部元件,可用数据总线供电,电压围为3.0 V 至5.5 V ,无需备用电源,测量温度围为-55 ° C 至+125 °C ,-10 ° C 至+85 °C 围精度为±0.5 °C 。
温度传感器可编程的分辨率为9~12位,温度转换为12位数字格式最大值为750毫秒,用户可定义的非易失性温度报警设置,应用围包括恒温控制,工业系统,消费电子产品温度计,或任何热敏感系统。
2、硬件设计2.1硬件功能划分上位机 执行机构被控对象检测机构图3 硬件功能划分2.2温度采集本系统采用单片机P2.6口作为DS18B20的数据输入端口图4 DS18B20的外部电源供电方式在外部电源供电方式下,DS18B20工作电源由VCC引脚接入,此时I/O线不需要强上拉,不存在电源电流不足的问题,可以保证转换精度,同时在总线上理论可以挂接任意多个DS18B20传感器,组成多点测温系统。
注意:在外部供电的方式下,DS18B20的GND引脚不能悬空,否则不能转换温度,读取的温度总是85℃。
根据DS18B20的通讯协议,主机(单片机)控制DS18B20完成温度转换必须经过三个步骤:每一次读写之前都要对DS18B20进行复位操作,复位成功后发送一条ROM指令,最后发送RAM指令,这样才能对DS18B20进行预定的操作。
复位要求主CPU将数据线下拉500微秒,然后释放,当DS18B20收到信号后等待16~60微秒左右,后发出60~240微秒的存在低脉冲,主CPU收到此信号表示复位成功。
DS18B20测温系统具有测温系统简单、测温精度高、连接方便、占用口线少等优点。
2.3驱动电路图5 驱动电路H桥功率驱动电路可应用于步进电机、交流电机及直流电机等的驱动。
永磁步进电机或混合式步进电机的励磁绕组都必须用双极性电源供电,也就是说绕组有时需正向电流,有时需反向电流,这样绕组电源需用H桥驱动。
本系统将H桥驱动电路引入对半导体制冷片进行控制。
H桥采用一对IRF9540P型MOSFET管和一对IRF540N型MOS管。
根据MOS管导通原理,对于N 沟道MOS 管,当栅-源之间不加电压时,漏-源之间只是两只背向的PN 结,不存在导电沟道,因此即使漏-源之间加电压,也不会有漏极电流。
当栅-源电压GS u 大于开启电压)(th GS U ,漏-源之间形成导电沟道,GS u 愈大,导电沟道电阻愈小。
当GS u 是大于一个确定值时,若在漏-源之间加正向电压,则将产生一定的漏级电流。
与N 沟道MOS 管相对应,P 沟道MOS 管的开启电压)(th GS U <0,GS u <)(th GS U 时,管子才导通,漏-源之间应加负电源电压。
本设计使用NPN 三极管进行开关电路可行性:三极管有一个特性,就是有饱和状态与截止状态,正是因为有了这两种状态,使其应用于开关电路成为可能。
必要性:假设我们在设计一个系统电路中,有些电压、信号等等需要在系统运行过程中进行切断,但是又不能通过机械式的方式切断,此时就只能通过软件方式处理,这就需要有三极管开关电路作为基础了。
如下图就是一个最基本的三极管开关电路,NPN 的基极需连接一个基极电阻R2、集电极上连接一个负载电阻R1。
首先我们要清楚当三极管的基极没有电流时候集电极也没有电流,三极管处于截止状态,即断开;当基极有电流时候将会导致集电极流过更大的放大电流,即进入饱和状态,相当于关闭。
当然基极要有一个符合要求的电压输入才能确保三极管进入截止区与饱和区。
图6 NPN开关电路本系统设计P1.3为PWM波输出端口,P1.1为加热、制冷控制端口,P1.3接开关电路PWM1,P1.1接开关电路PWM2。
P1.1为0时,驱动电路为加热状态,P1.1为1时,驱动电路为制冷状态。
(1)当P1.1为0时,三极管开关电路Q6不导通,此时H桥右半边相当于电源电压,并且Q2MOS管IRF9540两端所加电压为0,Q2不导通,Q4MOS 管IRF540两端所加电压为正,Q4导通。
1)当P1.3输出为PWM波高电平时,三极管开关电路Q5导通,H桥左半边相当于接地,此时Q1MOS管IRF9540两端所加电压为负,Q1导通,Q3MOS 管两端所加电压为0,Q3不导通,此时电流方向经过Q1和Q4,从左流至右,半导体制冷片处于加热状态;2)当P1.3输出为PWM波低电平时,三极管开关电路Q5截止,H桥左半边相当于电源电压,此时Q1MOS管IRF9540两端所加电压为0,Q1不导通,Q3MOS管两端所加电压为正,Q3导通,由于没有对角的一对MOS管导通,所以H桥不导通,半导体制冷片处于不加热状态;(2)当P1.1为1时,三极管开关电路Q6导通,此时H桥右半边相当于接地,并且Q2MOS管IRF9540两端所加电压为负,Q2导通,Q4MOS管IRF540两端所加电压为0,Q4不导通。
1)当P1.3输出为PWM波高电平时,三极管开关电路Q5导通,H桥左半边相当于接地,此时Q1MOS管IRF9540两端所加电压为负,Q1导通,Q3MOS 管两端所加电压为0,Q3不导通,由于没有对角的一对MOS管导通,所以H 桥不导通,半导体制冷片处于制冷状态;2)当P1.3输出为PWM波低电平时,三极管开关电路Q5截止,H桥左半边相当于电源电压,此时Q1MOS管IRF9540两端所加电压为0,Q1不导通,Q3MOS管两端所加电压为正,Q3导通,此时电流方向经过Q2和Q3,从右流至左,半导体制冷片处于制冷状态;通过调整PWM波的占空比,可以得到想要得加热和制冷效果。
本设计驱动电路的电源采用外加电源,根据MOS管的导通原理,三极管的电源和H桥的电源需一致。
2.4串口通讯MAX232通过部电压倍增及电压反相电路,把TTL电平与RS232电平互换,实现单片机与PC机的串口通信。
图7 串口通讯电路2.5系统原理图及元件清单图8 原理图元件名称规格型号数量电阻5K 210K 2P沟道MOSFET IRF9540 2N沟道MOSFET IRF540 2 NPN三极管C8050 2半导体制冷片TEC1-12706 1表1 元件清单3、软件设计3.1软件功能模块软件设计中一个重要的思想就是采用模块化设计,把一个大的任务分解成若干个小任务,分别编制实现这些小任务的子程序,然后将子程序按照总体要求组装起来,就可以实现这个大任务了。
这种思路对于可重复使用的子程序显得尤为优越,因为不仅程序结构清晰,而节约程序存储空间。
根据系统设计要求,软件设计采用了结构程序模块化设计。
半导体温度控制仪的软件系统包括下位机程序和上位机程序两部分。
下位机程序又包括主程序、温度采集模块、PWM 控制模块、串口通讯模块、等几个模块。
上位机程序主要是通过串口口实现对系统温度的控制,并且可以接收下位机的数据并实时显示温度曲线。
图9 软件功能划分3.2主程序流程图10 主程序流程3.2温度采集模块温度采集模块是利用DS18B20和单片机进行串行总线通信的方式实现的。
DS18B20是数字传感器,因此不需要A/D转换,省去许多硬件电路。
但是由于硬件的减少,DS18B20对软件要求就提高不少。
它有着严格的时序要求,否则传感器将不工作。
读取温度流程如下:图11 温度采集流程3.3 PWM控制模块本设计PWM输出采用STC12C5A16S2自带PWM产生模块,设置为8位无中断PWM输出,产生PWM经P1.3端口输出截止驱动电路的PWM1端。