2021版新高考数学(山东专用)一轮课件:第5章+第4讲+数列求和
2021届高考数学一轮知能训练第五章数列第4讲数列的求和含解析

第4讲 数列的求和1.已知数列{a n }的前n 项和为S n ,且满足a 1=1,a n +a n +1=2n +1,则S 20172017=( )A .1009B .1008C .2D .12.已知数列{a n }:12,13+23,14+24+34,15+25+35+45,…,若b n =1a n a n +1,那么数列{b n }前n 项的和为( )A .4⎝ ⎛⎭⎪⎫1-1n +1B .4⎝ ⎛⎭⎪⎫12-1n +1C .1-1n +1 D.12-1n +13.已知数列{a n }的前n 项和S n =n 2-6n ,则数列{|a n |}的前n 项和T n 等于( )A .6n -n 2B .n 2-6n +18C.⎩⎪⎨⎪⎧ 6n -n 2,1≤n ≤3,n 2-6n +18,n >3D.⎩⎪⎨⎪⎧6n -n 2,1≤n ≤3,n 2-6n ,n >3 4.已知数列{a n }满足:a n +1=a n -a n -1(n ≥2,n ∈N *),a 1=1,a 2=2,S n 为数列{a n }的前n 项和,则S 2018=( )A .3B .2C .1D .0 5.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项公式为a n +1-a n =2n,则数列{a n }的前n 项和S n =( )A .2B .2nC .2n +1-2D .2n -1-26.(多选)已知数列{a n }满足a 1=1,a n +1=a n2+3a n(n ∈N *),则下列结论正确的有( )A.⎩⎨⎧⎭⎬⎫1a n+3为等比数列 B .{a n }的通项公式为a n =12n +1-3C .{a n }为递增数列D.⎩⎨⎧⎭⎬⎫1a n 的前n 项和T n =2n +2-3n -4 7.在数列{a n }中,a 1=1,a n +2+(-1)na n =1,记S n 是数列{a n }的前n 项和,则S 60=________. 8.(2017年新课标Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则11nk kS =∑=________.9.(2019年新课标Ⅱ)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和.10.已知数列{a n }的前n 项和S n =2n +1+n -2. (1)求数列{a n }的通项公式;(2)设b n =log 2(a n -1),求T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1.11.(2018年浙江)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1-b n )a n }的前n 项和为2n 2+n .(1)求q 的值;(2)求数列{b n }的通项公式.12.(2018年天津)设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N *),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6.(1)求{a n }和{b n }的通项公式;(2)设数列{S n }的前n 项和为T n (n ∈N *), ⅰ)求T n ;ⅱ)证明:21()(1)(2)nk k k k T b b k k +=+++∑=2n +2n +2-2(n ∈N *).第4讲 数列的求和1.A 解析:S 2017=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2016+a 2017) =(2×0+1)+(2×2+1)+(2×4+1)+…+(2×2016+1)=1+2×2016+1×10092=2017×1009, ∴S 20172017=1009.故选A. 2.A 解析:∵a n =1+2+3+…+nn +1=n n +12n +1=n 2,∴b n =1a n a n +1=4n n +1=4⎝ ⎛⎭⎪⎫1n -1n +1. ∴S n =4⎝⎛⎭⎪⎫1-1n +1. 3.C 解析:∵由S n =n 2-6n 得{a n }是等差数列, 且首项为-5,公差为2.∴a n =-5+(n -1)×2=2n -7. ∴n ≤3时,a n <0;n >3时,a n >0.∴T n =⎩⎪⎨⎪⎧6n -n 2,1≤n ≤3,n 2-6n +18,n >3.4.A 解析:∵a n +1=a n -a n -1,a 1=1,a 2=2,∴a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1,a 8=2,…,故数列{a n }是周期为6的周期数列,且每连续6项的和为0.故S 2018=336×0+a 2017+a 2018=a 1+a 2=3.5.C 解析:∵a n +1-a n =2n,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n,∴S n =2-2n +11-2=2n +1-2.6.ABD7.480 解析:∵a n +2+(-1)na n =1,∴a 3-a 1=1,a 5-a 3=1,a 7-a 5=1,…,且a 4+a 2=1,a 6+a 4=1,a 8+a 6=1,….∴{a 2n -1}为等差数列,且a 2n -1=1+(n -1)×1=n ,即a 1=1,a 3=2,a 5=3,a 7=4,…. ∴S 4=a 1+a 2+a 3+a 4=1+1+2=4,S 8-S 4=a 5+a 6+a 7+a 8=3+4+1=8, S 12-S 8=a 9+a 10+a 11+a 12=5+6+1=12,….∴该数列构成以4为首项,4为公差的等差数列.∴S 60=4×15+15×142×4=480.8.2n n +1解析:设等差数列{a n }的首项为a 1,公差为d , 依题意有⎩⎪⎨⎪⎧a 1+2d =3,4a 1+4×32d =10.解得⎩⎪⎨⎪⎧a 1=1,d =1.数列{a n }的前n 项和为S n =na 1+n n -12d =n n +12,1S k =2kk +1=2⎝ ⎛⎭⎪⎫1k -1k +1,则11nk kS =∑=2⎝ ⎛1-12+12-⎭⎪⎫13+13-14+…+1n -1n +1=2nn +1. 9.解:(1)设{a n }的公比为q ,由题设得 2q 2=4q +16,即q 2-2q -8=0. 解得q =-2(舍去)或q =4.因此{a n }的通项公式为a n =2×4n -1=22n -1. (2)由(1)得b n =(2n -1)log 22=2n -1,∴数列{}b n 的前n 项和为1+3+…+2n -1=n 2.10.解:(1)由⎩⎪⎨⎪⎧S n =2n +1+n -2,S n -1=2n+n -1-2,得a n =2n+1(n ≥2).当n =1时,a 1=S 1=3, 综上所述,a n =2n+1.(2)由b n =log 2(a n -1)=log 22n=n .T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=11×2+12×3+13×4+…+1n n +1=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=n n +1. 11.解:(1)由a 4+2是a 3,a 5的等差中项,得 a 3+a 5=2a 4+4,∴a 3+a 4+a 5=3a 4+4=28,解得a 4=8.由a 3+a 5=20,得8⎝ ⎛⎭⎪⎫q +1q =20, ∵q >1,∴q =2.(2)设c n =(b n +1-b n )a n ,数列{c n }前n 项和为S n . 由c n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.解得c n =4n -1.由(1)可知a n =2n -1,∴b n +1-b n =(4n -1)·⎝ ⎛⎭⎪⎫12n -1,故b n -b n -1=(4n -5)·⎝ ⎛⎭⎪⎫12n -2,n ≥2,b n -b 1=(b n -b n -1)+(b n -1-b n -2)+…+(b 3-b 2)+(b 2-b 1)=(4n -5)·⎝ ⎛⎭⎪⎫12n -2+(4n -9)·⎝ ⎛⎭⎪⎫12n -3+…+7·12+3.设T n =3+7·12+11·⎝ ⎛⎭⎪⎫122+…+(4n -5)·⎝ ⎛⎭⎪⎫12n -2,n ≥2,12T n =3·12+7·⎝ ⎛⎭⎪⎫122+…+(4n -9)·⎝ ⎛⎭⎪⎫12n -2+(4n -5)·⎝ ⎛⎭⎪⎫12n -1, ∴12T n =3+4·12+4·⎝ ⎛⎭⎪⎫122+…+4·⎝ ⎛⎭⎪⎫12n -2-(4n -5)·⎝ ⎛⎭⎪⎫12n -1, 因此T n =14-(4n +3)·⎝ ⎛⎭⎪⎫12n -2,n ≥2,又b 1=1,∴b n =15-(4n +3)·⎝ ⎛⎭⎪⎫12n -2.12.(1)解:设等比数列{a n }的公比为q .由a 1=1,a 3=a 2+2,可得q 2-q -2=0.∵q >0,可得q =2,故a n =2n -1. 设等差数列{b n }的公差为d , 由a 4=b 3+b 5,可得b 1+3d =4. 由a 5=b 4+2b 6, 可得3b 1+13d =16,从而b 1=1,d =1,故b n =n .∴数列{a n }的通项公式为a n =2n -1,数列{b n }的通项公式为b n =n .(2)ⅰ)解:由(1),有S n =1-2n1-2=2n-1,故T n =1(n k =∑2k-1)=12nk =∑k-n =2×1-2n1-2-n =2n +1-n -2.ⅱ)证明:∵T k +b k +2b kk +1k +2=2k +1-k -2+k +2kk +1k +2=k ·2k +1k +1k +2=2k +2k +2-2k +1k +1, ∴1nk =∑T k +b k +2b k k +1k +2=⎝ ⎛⎭⎪⎫233-222+⎝ ⎛⎭⎪⎫244-233+…+⎝ ⎛⎭⎪⎫2n +2n +2-2n +1n +1=2n +2n +2-2.。
2021届山东高考数学一轮创新课件:第5章+第2讲+等差数列及其前n项和

课时作业
A组 基础关
解析 答案
解析 答案
解析 答案
解析 答案
解析 答案
解析 答案
解析 答案
解析
1010
解析
10
解析
解析 答案
B组 能力关
解析 答案
解析 答案
解析
解析
解析
解
解
ห้องสมุดไป่ตู้
解
解
解
本课结束
第五章 数列 第2讲 等差数列及其前n项和
1
PART ONE
基础知识过关
差 an+1-an=d
同一个常数 公差
第2项
a1+(n-1)d
(n-m)d
am+an=ap+aq 2ap=am+an
md n2d
大 小
答案
解析 答案
解析 答案
an=3n-1
解析
180
解析
2
PART TWO
经典题型冲关
题型一 等差数列基本量的运算
解析 答案
2
解析
解
100
解析
解
解
解
解
解
证明
解析
解
解
答案
解析
解析 答案
解析
10100
解析
解
解析 答案
18
解析
题型四 等差数列前n项和的最值问题
解析 答案
0
-10
解析
解析
17或18
解析
3
PART THREE
高三数学一轮复习数列求和(必修5)精品PPT课件

分组转化求和就是从通项入手, 若无通项,则先求通项,然后通过对 通项变形,转化为等差或等比或可求 数列前n项和的数列来求之.
课堂互动讲练
例1 已知数列{an}的前几项是3+2- 1,6+22-1,9+23-1,12+24-1,写出 数列{an}的通项并求其前n项和Sn.
课堂互动讲练
1.利用裂项相消法求和时,应 注意抵消后并不一定只剩下第一项和 最后一项,也有可能前面剩两项,后 面也剩两项,再就是将通项公式裂项 后,有时候需要调整前面的系数,使 裂开的两项之差和系数之积与原通项 公式相等.
课堂互动讲练
课堂互动讲练
例2 已知等差数列{an}的首项a1≠0,前n项 和为Sn,且S4+a2=2S3;等比数列{bn}满足 b1=a2,b2=a4.
第4课时 数列求和
基础知识梳理
求数列的前n项和的方法 1.公式法 (1)等差数列的前n项和公式
Sn=
=
.
基础知识梳理
(2)等比数列前n项和公式 ①当q=1时,Sn=na1;
基础知识梳理
2.分组转化法 把数列的每一项分成两项,使其 转化为几个等差、等比数列,再求 解. 3.裂项相消法 把数列的通项拆成两项之差求 和,正负相消剩下首尾若干项.
课堂互动讲练
课堂互动讲练
课堂互动讲练
【误区警示】 利用错位相减法 求和时,转化为等比数列求和.若公 比是个参数(字母),则应先对参数加 以讨论,一般情况下分等于1和不等于 1两种情况分别求和.
课堂互动讲练
考点四 数列求和的综合应用
对于由递推关系给出的数列,常 借助于Sn+1-Sn=an+1转换为an与an+1 的关系式或Sn与Sn+1的关系式,进而 求出an或Sn使问题得以解决.
高考数学一轮复习 第五章 数列 5.4 数列求和学案(含解析)(1)(2021年最新整理)

高考数学一轮复习第五章数列5.4 数列求和学案(含解析)(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高考数学一轮复习第五章数列5.4 数列求和学案(含解析)(1))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高考数学一轮复习第五章数列5.4 数列求和学案(含解析)(1)的全部内容。
数列求和【考纲传真】1.熟练掌握等差、等比数列的前n项和公式.2。
掌握非等差、等比数列求和的几种常见方法.3。
能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题.【知识扫描】知识点数列求和的常见方法1.公式法;直接利用等差数列、等比数列的前n项和公式求和(1)等差数列的前n项和公式:S n=错误!=na+错误!d.1(2)等比数列的前n项和公式:S n=错误!2.倒序相加法;如果一个数列{a n}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.3.错位相减法;如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n项和可用错位相减法.4.裂项相消法;(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(2)裂项时常用的三种变形:①错误!=错误!-错误!;②错误!=错误!错误!;③错误!=错误!-错误!.5.分组求和法;一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.6.并项求和法;一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如a n=(-1)n f(n)类型,可采用两项合并求解.例如,S n=1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.1.必会结论;常用求和公式前n个正整数之和1+2+…+n=错误!前n个正奇数之和1+3+5+…+(2n-1)=n2前n个正整数的平方和12+22+…+n2=错误!前n个正整数的立方和13+23+…+n3=错误!22.(字母)时,应对其公比是否为1进行讨论.(2)在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n,a n+1的式子应进行合并.(3)在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.【学情自测】1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)如果数列{a n}为等比数列,且公比不等于1,则其前n项和S n=错误!。
高考数学一轮复习第五章数列第4讲数列求和课件文

12/13/2021
Hale Waihona Puke 第四页,共四十七页。2.数列2×1 4,4×1 6,6×1 8,…,2n(21n+2),…的前 n 项 n
和为___4_(__n_+__1_)______.
[解析] 因为 an=2n(21n+2)=14n1-n+1 1,
则 Sn=141-12+12-13+…+n1-n+1 1
=141-n+1 1=4(nn+1).
第五章 数列(shùliè)
4 第 讲 数列 求和 (shùliè)
12/13/2021
第一页,共四十七页。
1.公式法 如果一个数列是等差数列或等比数列,则求和时直接利用等 差或等比数列的前 n 项和公式. 2.非等差、等比数列求和的常用方法 (1)倒序相加法 如果一个数列{an},首末两端等“距离”的两项的和相等或 等于同一个常数,那么求这个数列的前 n 项和即可用倒序相 加法,等差数列的前 n 项和即是用此法推导的.
所以 Sn=(n-1)2n+1+2.
12/13/2021
第九页,共四十七页。
2.已知数列{an}:12,13+23,14+24+34,…,110+120+130+…
+1904,n …,若 bn=ana1n+1,那么数列{bn}的前 n 项和 Sn= ___n_+__1____.
12/13/2021
12/13/2021
第十七页,共四十七页。
已知数列{an}的通项公式是 an=2·3n-1+ (-1)n(ln 2-ln 3)+(-1)nnln 3,求其前 n 项和 Sn. [解] Sn=2(1+3+…+3n-1)+[-1+1-1+…+(-1)n](ln 2 -ln 3)+[-1+2-3+…+(-1)nn]ln 3, 所以当 n 为偶数时, Sn=2×11--33n+n2ln 3=3n+n2ln 3-1; 当 n 为奇数时,
最新-创新大课堂2021届高三数学理一轮复习课件:第五章 数 列 第4节 精品

[解析] 由 bn=nan=n·22n-1 知
Sn=1·2+2·23+3·25+…+n·22n-1,
①
从而 22·Sn=1·23+2·25+3·27+…+n·22n+1,
②
①-②得(1-22)·Sn=2+23+25+…+22n-1-n·22n+1,即 Sn
=19[(3n-1)22n+1+2]. [答案] 19[(3n-1)22n+1+2]
(2)an=bn±cn 或 an=cbnn
n为奇数, n为偶数,
数列{bn},{cn}是等比
数列或等差数列,采用分组求和法求{an}的前 n 项和. (3)若数列有周期性,先求出一个周期内的和,再转化其它
数列(常数列)求和.
跟踪训练 (2016·长春市调研) 已知等比数列{an}的各项均为正数,且 a2=4,a3+a4=24. (1)求数列{an}的通项公式; (2)设 bn=log2an,求数列{an+bn}的前 n 项和 Tn.
[题组集训]
1.(2016·江南十校联考)已知函数 f(x)=xa 的图象过点(4,2),
令 an=fn+11+fn,n∈N*.记数列{an}的前 n 项和为 Sn,则 S 2
014=(
)
A. 2 013-1
B. 2 014-1
C. 2 015-1
D. 2 015+1
[解析] 选 C 由 f(4)=2 可得 4a=2,解得 a=12,
∴(an-an-1)(an+an-1)-(an+an-1)=0.
(Ⅰ)当 q=1 时,Sn=_n_a_1__; (Ⅱ)当 q≠1 时,Sn=a111--qqn=a11--aqnq. (2)分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、 等比数列,再求解.
2021届高考数学一轮复习第五章数列第四节数列求和ppt课件文北师大版

1.先看数列通项特点,再想求和方法.
2.常见的拆项公式
(1)若{an}为各项都不为 0 的等差数列,公差为 d(d≠0), 则an·a1n+1=1d(a1n-an1+1);
(2)n(n1+k)=1k(n1-n+1 k);
(3)
1 n+
n+1=
n+1-
n;
(4)loga(1+n1)=loga(n+1)-logan(a>0 且 a≠1).
第五章 数列
第四节 数列求和
[基础梳理]
1.等差数列的前 n 项和公式 Sn=n(a12+an)=__n_a_1+__n_(__n_2-__1_)___d__. 2.等比数列的前 n 项和公式
3.数列求和方法 (1)公式法求和: 使用已知求和公式求和的方法,即等差、等比数列或可化为等差、等比数列的求 和方法. (2)错位相减法: 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那 么这个数列的前 n 项和即可用此法来求,如等比数列的前 n 项和就是用此法推导 的.
Tn+1=(n+1)2-2 (n+1)+23(2n+1-1) =n2+2 n+23(2n+1-1). 而 Tn+1=Tn+bn+1=Tn+2n, 所以 Tn=n2+2 n+13(2n-2). 所以 Tn=nn22-+22 nn+ +2313( (22nn- -12) )( (nn为 为偶 奇数 数) ),.
A.13
B.76
C.46
D.-76
[解析] 因为 Sn=1-5+9-13+17-21+…+(-1)n-1(4n-3),所以 S15=(1-5)
+(9-13)+…+(49-53)+57=(-4)×7+57=29,S22=(1-5)+(9-13)+(17-
2021新高考数学新课程一轮复习课件-第五章-第4讲-数列求和

1
PART ONE
基础知识过关
1.基本数列求和公式法 (1)等差数列求和公式: Sn=na12+an=na1+nn2-1d. (2)等比数列求和公式:
na1,q=1, Sn=a11--aqnq=a111--qqn,q≠1.
2.非基本数列求和常用方法 (1)倒序相加法;(2)分组求和法;(3)并项求和法;(4)错位相减法;(5)裂 项相消法. 常见的裂项公式: ①nn1+k=1k1n-n+1 k; ②2n-112n+1=212n1-1-2n1+1;
③nn+11n+2=12nn1+1-n+11n+2;
④
1 n+
n+k=1k(
n+k-
n).
3.常用求和公式 (1)1+2+3+4+…+n=nn2+1; (2)1+3+5+7+…+(2n-1)=n2; (3)12+22+32+…+n2=nn+162n+1; (4)13+23+33+…+n3=nn2+12.
答案 B
解析
∵an=nn1+1=1n-n+1 1,∴S5=a1+a2+…+a5=1-12+12-
1 3
+…-16=56.
(2)数列 121,314,518,7116,…,(2n-1)+21n,…的前 n 项和 Sn 的值等于
() A.n2+1-21n
B.2n2-n+1-21n
C.n2+1-2n1-1 D.n2-n+1-21n
() A.-1010 B.2018
ห้องสมุดไป่ตู้
C.505
D.1010
答案 D
解析 易知 a1=cosπ2=0,a2=2cosπ=-2,a3=0,a4=4,….所以数列 {an}的所有奇数项为 0,前 2020 项中所有偶数项(共 1010 项)依次为-2,4, -6,8,…,-2018,2020.故 S2020=0+(-2+4)+(-6+8)+…+(-2018+ 2020)=1010.a2021=0,∴S2021=1010.故选 D.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列
第四讲 数列求和
1 知识梳理 • 双基自测2 考点突破 • 互动探究3 名师讲坛 • 素养提升
知识梳理•双基自测
知识点二 分组求和法
一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.如若一个数列的奇数项成等差数列,偶数项成等比数列.则可用分组求和法求其前n项和.
知识点三 倒序相加法
如果一个数列{a n}的前n项中与首末两端等“距离”的两项的和相等且等于同一个常数,那么求这个数列的前n项和可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.
知识点四 错位相减法
如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.
知识点五 裂项相消法
把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.
知识点六 并项求和法
在一个数列的前n项和中,可两两合并求解,则称之为并项求和.如{a n}是等差数列,求数列{(-1)n a n}的前n项和,可用并项求和法求解.
形如a n=(-1)n f(n)类型,可考虑采用两项合并求解.
BCD
B
B
题组三 考题再现
5.(2017·天津)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.
(1)求{a n}和{b n}的通项公式;
(2)求数列{a2n b n}的前n项和(n∈N*).
考点突破•互动探究
(1)若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为
( )
A .2n +n 2-1
B .2n +1+n 2-1
C .2n +1+n 2-2
D .2n +n -2(2)已知数列{a n }的前n 项和为S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),
则S 15+S 22-S 31的值是( )
A .13
B .76
C .46
D .-76考点一 分组求和法——师生共研
例 1D C
C 2n+2-4-2n
考点二 裂项相消法——
多维探究
C
C
A
A
考点三 错位相减法——师生共研
用错位相减法求和应注意的问题
(1)如果一个数列的各项是由一个等差数列与一个等比数列对应项乘积组成,此时求和可采用错位相减法.
(2)在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n-qS n”的表达式.
(3)“S n-qS n”化简的关键是化为等比数列求和,一定要明确求和的是n项还是n -1项,一般是n-1项.
(4)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况讨论求解.
用错位相减法解决数列求和的模板
第一步:(判断结构)若数列{a n·b n}是由等差数列{a n}与等比数列{b n}(公比q)的对应项之积构成的,则可用此法求和.
第二步:(乘公比)设{a n·b n}的前n项和为T n,然后两边同乘以q.
第三步:(错位相减)乘以公比q后,向后错开一位,使含有q k(k∈N*)的项对齐,然后两边同时作差.
第四步:(求和)将作差后的结果求和化简,从而表示出T n.
考点四 倒序相加法——
师生共研
倒序相加法应用的条件
与首末两项等距离的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和相加的方法求解.。