非常好高考立体几何专题复习2

合集下载

高考数学立体几何专项知识点精选全文完整版

高考数学立体几何专项知识点精选全文完整版

可编辑修改精选全文完整版高考数学立体几何专项知识点高中数学平面几何不时是数学的一大难点,下面是小编整理的数学平面几何专项知识点,对提高数学效果会有很大的协助。

(1)空间几何体① 看法柱、锥、台、球及其复杂组合体的结构特征.② 能画出复杂空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的平面模型,会用斜二侧法画出它们的直观图.③ 了解球、棱柱、棱锥、台的外表积和体积的计算公式(不要求记忆公式).(2)点、直线、平面之间的位置关系① 了解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理1:假设一条直线上的两点在一个平面内,那么这条直线上一切的点在此平面内.◆公理2:过不在同一条直线上的三点,有且只要一个平面.◆公理3:假设两个不重合的平面有一个公共点,那么它们有且只要一条过该点的公共直线.◆公理4:平行于同一条直线的两条直线相互平行◆定理:空间中假设一个角的两边与另一个角的两边区分平行,那么这两个角相等或互补.② 以平面几何的上述定义、公理和定理为动身点,看法和了解空间中线面平行、垂直的有关性质与判定.了解以下判定定理:◆假设平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.◆假设一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.◆假设一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.◆假设一个平面经过另一个平面的垂线,那么这两个平面相互垂直.了解以下性质定理,并可以证明:◆假设一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行.◆假设两个平行平面同时和第三个平面相交,那么它们的交线相互平行◆垂直于同一个平面的两条直线平行◆假设两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.③ 能运用公理、定理和已取得的结论证明一些空间位置关系的复杂命题.温习关注:平面几何试题着重考察空间点、线、面的位置关系的判别及几何体的外表积与体积的计算,关注画图、识图、用图的才干,关注对平行、垂直的探求,关注对条件或结论不完备情形下的开放性效果的探求小编为大家提供的2021-2021高考数学平面几何专项知识点大家细心阅读了吗?最后祝考生们学习提高。

2023届高考数学总复习《立体几何》附答案解析

2023届高考数学总复习《立体几何》附答案解析

(2)若点 N 为 BC 的中点,求四面体 A'MNB 的体积.
【解答】证明:(1)连接 BD,设 BD∩EC=F,连接 MF,
由题意可得四边形 BCDE 为正方形,则 F 为 BD 的中点,
∴MF 为△A′BD 的中位线,可得 MF∥A′B,
又 A′B⊄平面 EMC,MF⊂平面 EMC,
∴A'B∥平面 EMC;
2023 年高考:立体几何复习题及答案
1.如图,已知直角梯形 ABCD,BC∥AD,BC=CD=2,AD=4,∠BCD=90°,点 E 为 AD 的中点,现将三角形 ABE 沿 BE 折叠,得到四棱锥 A'﹣BCDE,其中∠A'ED=120°, 点 M 为 A'D 的中点.
(1)求证:A'B∥平面 EMC;
第2页共3页
∵BE⊂平面 BEF,∴平面 BEF⊥平面 AMD, 结合题意分析知,点 F 在线段 AD 上,连接 MF, 过 A 作 AH⊥MF,交 MF 的延长线于点 H,
则结合已知条件得
,解得 AH ,
设 Dt ,
第3页共3页
【解答】解:(1)证明:由题意知 PC2+AC2=PA2,∴PC⊥AC, 同理,PC⊥BC,又 AC∩BC=C,∴PC⊥平面 ABC, ∵D,E 分别是 AC,PA 的中点,∴DE∥PC, ∴DE⊥平面 ABC, 又 DE⊂平面 BDE,∴平面 BDE⊥平面 ABC. (2)在△BDE 中,DE⊥BD,BD=2 ,DE=2,∴BE=4, 如图,过 A 作 AM⊥BE 于 M,连接 MD, 在△ABE 中,AB=BE=4,AE=2 ,解得 AM ,ME=1, ∵DM⊂平面 BDE,∴AC⊥DM, 在 Rt△ADM 中,AM ,AD=2,∴DM , ∴DM2+EM2=DE2,∴MD⊥BE, ∵AM∩MD=M,∴BE⊥平面 AMD,

(完整版)必修2立体几何复习(知识点+经典习题),推荐文档

(完整版)必修2立体几何复习(知识点+经典习题),推荐文档

1、平行于同一直线的两条直线互相平行2、垂直于同一平面的两条直线互相平行3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行5、在同一平面内的两条直线,可依据平面几何的定理证明二、判定线面平行的方法1、据定义:如果一条直线和一个平面没有公共点2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个 平面平行3、两面平行,则其中一个平面内的直线必平行于另一个平面4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面三、判定面面平行的方法1、定义:没有公共点2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行3 垂直于同一直线的两个平面平行4、平行于同一平面的两个平面平行四、面面平行的性质1、两平行平面没有公共点2、两平面平行,则一个平面上的任一直线平行于另一平面3、两平行平面被第三个平面所截,则两交线平行4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面五、判定线面垂直的方法1、定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直2、如果一条直线和一个平面内的两条相交线垂直,则线面垂直3、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面4、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面5、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面6、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面六、判定两线垂直的方法1、定义:成角902、直线和平面垂直,则该线与平面内任一直线垂直3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直4、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直5、一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直D中,各棱长相等,侧掕垂直于底面,点D是侧面所成的角的正切值;。

2023年高考数学总复习《立体几何》附答案解析

2023年高考数学总复习《立体几何》附答案解析

所以 z1=0,
,故可取
, ,,
于是 < , >

设所成锐二面角为θ,所以 sinθ

所以平面 PAD 和平面 PBE 所成锐二面角的正弦值为 .
第3页共3页
第1页共3页
∴CF CC1 AA1 , ∵∠BAC=90°,
∴CD

在 Rt△FCD 中,tan∠FDC 맨

故直线 DF 与平面 ABC 所成角的正切值为 .
2.如图所示,四棱锥 P﹣ABCD 的底面 ABCD 是边长为 1 的菱形,∠BCD=60°,E 是 CD 的中点,PA⊥底面 ABCD,PA=2. (1)证明:平面 PBE⊥平面 PAB; (2)求平面 PAD 和平面 PBE 所成二面角(锐角)的正弦值.
【解答】(1)证明:如图所示,连接 BD,由 ABCD 是菱形且∠BCD=60°, 知△ABC 是等边三角形. ∵E 是 CD 的中点, ∴BE⊥CD,又 AB∥CD, ∴AB⊥BE,∴BE⊥平面 PAB, 又 BE⊂平面 PBE, ∴平面 PBE⊥平面 PAB. (2)解:在平面 ABCD 内,过点 A 作 AB 的垂线,如图所示,以 A 为原点建立空间直角
【解答】(1)证明:连接 DG、FG, 由直三棱柱的性质知,BB1∥CC1,且 BB1=CC1, ∵B1E=2EB,C1F=2FC, ∴EB∥FC,且 EB=FC, ∴四边形 BCFE 为平行四边形, ∴EF∥BC,EF=BC, ∵BD=2DA,CG=2GA, ∴GD∥BC,且 GD BC, ∴EF∥GD,且 GD EF, ∴四边形 DEFG 为梯形,即 D、E、F、G 四点共面, ∴点 G 在平面 EFD 内. (2)解:由直三棱柱的性质知,CC1⊥平面 ABC, ∵F 为 CC1 上一点, ∴点 F 在平面 ABC 上的投影为点 C, 连接 CD,则∠FDC 即为直线 DF 与平面 ABC 所成角. ∵点 D 在棱 AB 上,且 BD=2DA, ∴AD AB , ∵C1F=2FC,

高三数学二轮复习专题《立体几何》

高三数学二轮复习专题《立体几何》

高三数学二轮复习专题《立体几何》专题热点透析高考中立体几何主要考查学生的空间想象能力,在推理中兼顾考查逻辑思维能力,解决立体几何的基本方法是将空间问题转化为平面问题。

近几年高考立体几何试题以基础题和中档题为主,热点问题主要有证明点线面的关系,如点共线、线共点、线共面问题;证明空间线面平行、垂直关系;求空间的角和距离;利用空间向量,将空间中的性质及位置关系的判定与向量运算相结合,使几何问题代数化等等。

考查的重点是点线面的位置关系及空间距离和空间角,突出空间想象能力,侧重于空间线面位置关系的定性与定量考查,算中有证。

其中选择、填空题注重几何符号语言、文字语言、图形语言三种语言的相互转化,考查学生对图形的识别、理解和加工能力;解答题则一般将线面集中于一个几何体中,即以一个多面体为依托,设置几个小问,设问形式以证明或计算为主。

热点题型范例 一、平行与垂直的证明例1.如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F . (1)证明P A //平面EDB ;(2)证明PB ⊥平面EFD 解:(1)连结AC ,AC 交BD 于O ,连结EO . ∵底面ABCD 是正方形,∴点O 是AC 的中点 在PAC ∆中,EO 是中位线,∴P A // EO而⊂EO 平面EDB 且⊄PA 平面EDB ,所以,P A // 平面EDB (2)∵PD ⊥底面ABCD 且⊂DC 底面ABCD ,∴DC PD ⊥∵PD =DC ,可知PDC ∆是等腰直角三角形,而DE 是斜边PC 的中线,∴PC DE ⊥. ①同样由PD ⊥底面ABCD ,得PD ⊥BC .∵底面ABCD 是正方形,有DC ⊥BC ,∴BC ⊥平面PDC .而⊂DE 平面PDC ,∴DE BC ⊥. ②由①和②推得⊥DE 平面PBC .而⊂PB 平面PBC ,∴PB DE ⊥ 又PB EF ⊥且E EF DE = ,所以PB ⊥平面EFD .例2.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD ,已知45ABC ∠=︒,2AB =,BC =,SA SB ==(Ⅰ)证明:SA BC ⊥;(Ⅱ)求直线SD 与平面SBC 所成角的大小.解:(1)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为A CDBCASOESA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥,故SA AD ⊥,由AD BC ==,SA =SD sin 452AO AB ==DE BC ⊥,垂足为E ,则DE ⊥平面SBC ,连结SE .ESD ∠为直线SD 与平面SBC 所成的角.sin 11ED AO ESD SD SD ====∠,所以直线SD 与平面SBC所成的角为. 1.1已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90底面ABCD ,且P A =AD =DC =21AB =1,M 是PB 的中点. (Ⅰ)证明:面P AD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小. 解:(Ⅰ)∵P A ⊥面ABCD ,CD ⊥AD ,∴由三垂线定理得:CD ⊥PD .因而,CD 与面P AD 内两条相交直线AD ,PD 都垂直,∴CD ⊥面P AD .又CD ⊂面PCD ,∴面P AD ⊥面PCD .(Ⅱ)过点B 作BE //CA ,且BE =CA ,则∠PBE 是AC 与PB 所成的角.连结AE ,可知AC =CB =BE =AE =2,又AB =2,所以四边形ACBE 为正方形. 由P A ⊥面ABCD 得∠PEB =90° 在Rt △PEB 中BE =2,PB =5, .510cos ==∠∴PB BE PBE .510arccos 所成的角为与PB AC ∴ (Ⅲ)作AN ⊥CM ,垂足为N ,连结BN .在Rt △P AB 中,AM =MB ,又AC =CB ,∴△AMC ≌△BMC ,∴BN ⊥CM ,故∠ANB 为所求二面角的平面角.∵CB ⊥AC ,由三垂线定理,得CB ⊥PC ,在Rt △PCB 中,CM =MB ,所以CM =AM .在等腰三角形AMC 中,AN ·MC =AC AC CM ⋅-22)2(,5625223=⨯=∴AN . ∴AB =2,322cos 222-=⨯⨯-+=∠∴BN AN AB BN AN ANB 故所求的二面角为).32arccos(-ADCBNM EP二、空间角与距离例3.如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的 菱形,4ABC π∠=, OA ABCD ⊥底面, 2OA =,M 为OA 的中点。

高考数学二轮复习立体几何的知识点

高考数学二轮复习立体几何的知识点

高考数学二轮复习立体几何的知识点平面几何是3维欧氏空间的几何的传统称号。

下面是平面几何的知识点的相关内容,希望对考生温习有协助。

(1)棱柱:定义:有两个面相互平行,其他各面都是四边形,且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的规范分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;正面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其他各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的规范分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:正面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的局部分类:以底面多边形的边数作为分类的规范分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②正面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其他三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④正面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③正面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的局部几何特征:①上下底面是两个圆;②正面母线交于原圆锥的顶点;③正面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周构成的几何体几何特征:①球的截面是圆;②球面上恣意一点到球心的距离等于半径。

2023届高考数学总复习:立体几何复习题附答案


a,
在 Rt△FCM 中,tan∠FCM .

∴sin∠FCM ,
故直线 CF 与平面 ACDE 所成角的正弦值为 . 2.如图,在三棱柱 ABC﹣A1B1C1 中,BC⊥平面 AA1C1C,D 是 AA1 的中点,△ACD 是边长
为 1 的等边三角形. (1)证明:CD⊥B1D; (2)若 BC ,求二面角 B﹣C1D﹣B1 的大小.
,令
由(1)知,平面 B1C1D 的一个法向量为
,得
,, ,
, ,,
故 th< , >

所以二面角 B﹣C1D﹣B1 的大小为 30°.
第3页共3页
在直角梯形 AEFB 中,有 AF EF,BF

∴AF2+BF2=AB2,即 AF⊥BF.
∵BC∩BF=B,BC、BF⊂平面 BCF,
∴AF⊥平面 BCF.
EF,AB=2EF,
(2)解:∵AE⊥平面 ABC,AE⊂平面 ACDE,∴平面 ACDE⊥平面 ABC,
又平面 ABC∥平面 DEF,∴平面 ACDE⊥平面 DEF.
【解答】解:(1)证明:因为△ACD 是边长为 1 的等边三角形,所以∠ADC=60°,∠ DA1C1=120° 因为 D 是 AA1 的中点,所以 AD=A1D=A1C1=1,即△A1C1D 是等腰三角形, 则∠A1DC1=30°,故∠CDC1=90°,即 CD⊥C1D, 因为 BC⊥平面 AA1C1C,BC∥B1C1,所以 B1C1⊥平面 AA1C1C, 因为 CD⊂平面 AA1C1C,所以 B1C1⊥CD, 因为 B1C1∩C1D=C1,B1C1⊂平面 B1C1D,C1D⊂平面 B1C1D,所以 CD⊥平面 B1C1D, 因为 B1D⊂平面 B1C1D,所以 CD⊥B1D;

高考数学二轮复习立体几何多选题知识归纳总结及解析

高考数学二轮复习立体几何多选题知识归纳总结及解析一、立体几何多选题1.已知图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,分别沿着AB 、BC 、CD 、DA 把ABF 、BCG 、CDH △、DAE △向上折起,使得每个三角形所在的平面都与平面ABCD 垂直,再顺次连接EFGH ,得到一个如图2所示的多面体,则( )A .AEF 是正三角形B .平面AEF ⊥平面CGHC .直线CG 与平面AEF 2D .当2AB =时,多面体ABCD EFGH -的体积为83【答案】AC 【分析】取CD 、AB 的中点O 、M ,连接OH 、OM ,证明出OH ⊥平面ABCD ,然后以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,求出EF ,可判断A 选项的正误,利用空间向量法可判断BC 选项的正误,利用几何体的体积公式可判断D 选项的正误. 【详解】取CD 、AB 的中点O 、M ,连接OH 、OM , 在图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,则1122CH GH EH DH ===,O 为CD 的中点,OH CD ∴⊥,平面CDH ⊥平面ABCD ,平面CDH 平面ABCD CD =,OH ⊂平面CDH ,OH ∴⊥平面ABCD ,在图1中,设正方形EFGH 的边长为()220a a >,可得四边形ABCD 的边长为2a , 在图1中,ADE 和ABF 均为等腰直角三角形,可得45BAF DAE ∠=∠=, 90BAD ∴∠=,∴四边形ABCD 是边长为2a 的正方形,O 、M 分别为CD 、AB 的中点,则//OC BM 且OC BM =,且90OCB ∠=,所以,四边形OCBM 为矩形,所以,OM CD ⊥,以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()2,,0A a a -、()2,,0B a a 、()0,,0C a 、()0,,0D a -、(),,E a a a -、()2,0,F a a 、(),,G a a a 、()0,0,H a .对于A 选项,由空间中两点间的距离公式可得2AE AF EF a ===,所以,AEF 是正三角形,A 选项正确;对于B 选项,设平面AEF 的法向量为()111,,m x y z =,(),0,AE a a =-,()0,,AF a a =,由11110m AE ax az m AF ay az ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取11z =,则11x =,11y =-,则()1,1,1m =-,设平面CGH 的法向量为()222,,n x y z =,(),0,CG a a =,()0,,CH a a =-, 由222200n CG ax az n CH ay az ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,取21z =-,可得21x =,21y =-,则()1,1,1n =--,()22111110m n ⋅=+--⨯=≠,所以,平面AEF 与平面CGH 不垂直,B 选项错误;对于C 选项,6cos ,23CG m CG m a CG m⋅<>===⨯⋅, 设直线CG 与平面AEF 所成角为θ,则sin 6θ=,23cos 1sin θθ=-=,所以,sin tan 2cos θθθ==,C 选项正确; 对于D 选项,以ABCD 为底面,以OH 为高将几何体ABCD EFGH -补成长方体1111ABCD A B C D -,则E 、F 、G 、H 分别为11A D 、11A B 、11B C 、11C D 的中点,因为2AB =,即1a =,则1OH =,长方体1111ABCD A B C D -的体积为2214V =⨯=,11211111113326A A EF A EF V S AA -=⋅=⨯⨯⨯=△,因此,多面体ABCD EFGH -的体积为111044463ABCD EFGH A A EF V V V --=-=-⨯=, D 选项错误. 故选:AC. 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.2.如图所示,正三角形ABC 中,D ,E 分别为边AB ,AC 的中点,其中AB =8,把△ADE 沿着DE 翻折至A 'DE 位置,使得二面角A '-DE -B 为60°,则下列选项中正确的是( )A .点A '到平面BCED 的距离为3B .直线A 'D 与直线CE 所成的角的余弦值为58C .A 'D ⊥BDD .四棱锥A '-BCED 237【答案】ABD 【分析】作AM ⊥DE ,交DE 于M ,延长AM 交BC 于N ,连接A'M ,A'N .利用线面垂直的判定定理判定CD ⊥平面A'MN ,利用面面垂直的判定定理与性质定理得到'A 到平面面BCED 的高A'H ,并根据二面角的平面角,在直角三角形中计算求得A'H 的值,从而判定A;根据异面直线所成角的定义找到∠A'DN 就是直线A'D 与CE 所成的角,利用余弦定理计算即可判定B;利用勾股定理检验可以否定C;先证明底面的外接圆的圆心为N ,在利用外接球的球心的性质进行得到四棱锥A'-BCED 的外接球的球心为O ,则ON ⊥平面BCED ,且OA'=OC ,经过计算求解可得半径从而判定D. 【详解】如图所示,作AM ⊥DE ,交DE 于M ,延长AM 交BC 于N ,连接A'M ,A'N . 则A'M ⊥DE ,MN ⊥DE , ,∵'A M ∩MN =M ,∴CD ⊥平面A'MN , 又∵CD ⊂平面ABDC ,∴平面A'MN ⊥平面ABDC , 在平面A'MN 中作A'H ⊥MN ,则A'H ⊥平面BCED , ∵二面角A'-DE -B 为60°,∴∠A'EF =60°,∵正三角形ABC 中,AB =8,∴AN =∴A'M ,∴A'H =A'M sin60°=3,故A 正确; 连接DN ,易得DN ‖EC ,DN =EC =4, ∠A'DN 就是直线A'D 与CE 所成的角,DN =DA'=4,A'N =A'M ,cos ∠A'DN =22441252448+-=⨯⨯,故B 正确;A'D =DB =4,==,∴222A D DB A B '≠'+,∴A'D 与BD 不垂直,故C 错误’ 易得NB =NC =ND =NG =4,∴N 为底面梯形BCED 的外接圆的圆心, 设四棱锥A'-BCED 的外接球的球心为O ,则ON ⊥平面BCED ,且OA'=OC , 若O 在平面BCED 上方,入图①所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P ,则HP =x ,易得()2222243x x R +=-+=,解得23x =-,舍去;故O 在平面BCED 下方,如图②所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P ,则HP =x ,易得()2222243x x R +=++=, 解得23x =,∴244371699R ⨯=+=,R ∴=故D 正确. 故选:ABD .【点睛】本题考查立体几何中的折叠问题,涉及二面角问题,异面直线所成的角,用到线面、面面垂直的判定与性质及外接球的球心的性质和有关计算,余弦定理等,属综合性较强的题目,关键是利用线面垂直,面面垂直的判定和性质进行空间关系和结构的判定,注意球心在四棱锥的底面上方和下方的讨论与验证.3.如图,直三棱柱11,ABC A B C -,ABC 为等腰直角三角形,AB BC ⊥,且12AC AA ==,E ,F 分别是AC ,11A C 的中点,D ,M 分别是1AA ,1BB 上的两个动点,则( )A .FM 与BD 一定是异面直线B .三棱锥D MEF -的体积为定值14C .直线11B C 与BD 所成角为2π D .若D 为1AA 中点,则四棱锥1D BB FE -55【答案】CD 【分析】A 当特殊情况M 与B 重合有FM 与BD 相交且共面;B 根据线面垂直、面面垂直判定可证面1BEFB ⊥面11ACC A ,可知EMFS、D 到面1BEFB 的距离,可求D EMF V -;C 根据线面垂直的判定及性质即可确定11B C 与BD 所成角;D 由面面垂直、勾股、矩形性质等确定外接球半径,进而求体积,即可判断各项的正误. 【详解】A :当M 与B 重合时,FM 与BD 相交且共面,错误; B :由题意知:BE AC ⊥,AC EF ⊥且BEEF E =,则AC ⊥面1BEFB ,又AC ⊂面11ACC A ,面1BEFB ⋂面11ACC A EF =,所以面1BEFB ⊥面11ACC A ,又1121122EMFSEF BE =⋅⋅=⨯⨯=,D 到面1BEFB 的距离为1h =,所以1133D EMF EMFV h S-=⋅⋅=,错误; C :由AB BC ⊥,1BC B B ⊥,1B BAB B =,所以BC ⊥面11ABB A ,又11//BC B C ,即11B C ⊥面11ABB A ,而BD ⊂面11ABB A ,则11BD B C ⊥,正确;D :由B 中,面1BEFB ⊥面11ACC A ,即面DEF ⊥面1BEFB ,则D 到面1BEFB 的距离为1h =,又D 为1AA 中点,若1,BF EB 交点为O ,G 为EF 中点,连接,,OG GD OD ,则OG GD ⊥,故2252OD OG GD =+=,由矩形的性质知:15OB OE OF OB ====令四棱锥1D BB FE -的外接球半径为R ,则52R =,所以四棱锥1D BB FE -的外接球体积为35435V R π==,正确. 故选:CD. 【点睛】关键点点睛:利用线面、面面关系确定几何体的高,结合棱锥体积公式求体积,根据线面垂直、勾股定理及矩形性质确定外接球半径,结合球体体积公式求体积.4.在正方体1111ABCD A B C D -中,M 、N 分别是棱AB 、1CC 的中点,1MB P 的顶点P 在棱1CC 与棱11C D 上运动,有以下四个命题正确命题的序号是( )A .平面1MB P 1ND ⊥ B .平面1MB P ⊥平面11ND AC .1MB P 在底面ABCD 上的射影图形的面积为定值 D .1MB P 在侧面11D C CD 上射影图形是三角形 【答案】BC 【分析】取N 与P 重合,结合勾股定理可判断A 选项的正误;利用面面垂直的判定定理可判断B 选项的正误;分点P 在棱1CC 、11C D 上运动两种情况讨论,利用三角形的面积公式可判断C 选项的正误;取点P 与点1C 重合,判断1MB P 在侧面11D C CD 上射影图形形状,可判断D 选项的正误. 【详解】对于A 选项,设正方体1111ABCD A B C D -的棱长为2,如下图所示:当点P 与点N 重合时, 若1ND ⊥平面1MB P ,1B N ⊂平面1MB P ,则11ND B N ⊥,由勾股定理可得2211115D N C N C D =+=,同理可得15B N =,1122B D =,2221111B N D N B D ∴+≠,则1ND 与1B N 不垂直,假设不成立,A 选项错误;对于B 选项,取1BB 的中点E ,连接1A E 、EN ,在正方体1111ABCD A B C D -中,11//BB CC ,且E 、N 分别为1BB 、1CC 的中点, 则11//B E C N 且11B E C N =,所以,四边形11B ENC 为平行四边形,则11//EN B C 且11EN B C =,1111//A D B C 且1111A D B C =,所以,11//A D EN 且11A D EN =,所以,四边形11A END 为平行四边形,所以,11//A E D N ,111A B BB =,1B E BM =,11190A B E B BM ∠=∠=,所以,111Rt A B E Rt B BM ≅△△,所以,111B A E BB M ∠=∠,所以,111111190A EB BB M A EB B A E ∠+∠=∠+∠=,190B FE ∴∠=,所以,11B M A E ⊥,11A D ⊥平面11AA B B ,1B M ⊂平面11AA B B ,111B M A D ∴⊥, 1111A D A E A =,11A D 、1A E ⊂平面11ND A ,1MB ∴⊥平面11ND A ,1MB ⊂平面1MB P ,所以,平面1MB P ⊥平面11ND A ,B 选项正确;对于C 选项,设正方体1111ABCD A B C D -的棱长为a .若点P 在棱1CC 上运动时,1MB P 在底面ABCD 上的射影为MBC △, 此时,射影图形的面积为21224MBCa a S a =⋅=△; 若点P 在棱11C D 上运动时,设点P 在底面ABCD 上的射影点为G ,则G CD ∈, 且点G 到AB 的距离为a ,1MB 在底面ABCD 内的射影为MB ,则1MB P 在底面ABCD 内的射影为MBG △,且21224MBGa a S a =⋅⋅=△.综上所述,1MB P 在底面ABCD 内的射影图形的面积为定值,C 选项正确; 对于D 选项,当点P 与1C 重合时,P 、1B 两点在平面11D C CD 上的射影重合, 此时,1MB P 在侧面11D C CD 上的射影不构成三角形,D 选项错误. 故选:BC. 【点睛】方法点睛:证明面面垂直常用的方法: (1)面面垂直的定义; (2)面面垂直的判定定理.在证明面面垂直时,一般假设面面垂直成立,然后利用面面垂直转化为线面垂直,即为所证的线面垂直,组织论据证明即可.5.如图四棱锥P ABCD -,平面PAD ⊥平面ABCD ,侧面PAD 是边长为26的正三角形,底面ABCD 为矩形,23CD =,点Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC 22C .三棱锥B ACQ -的体积为62D .四棱锥Q ABCD -外接球的内接正四面体的表面积为3【答案】BD 【分析】取AD 的中点O ,BC 的中点E ,连接,OE OP ,则由已知可得OP ⊥平面 ABCD ,而底面ABCD 为矩形,所以以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,利用空间向量依次求解即可. 【详解】解:取AD 的中点O ,BC 的中点E ,连接,OE OP , 因为三角形PAD 为等边三角形,所以OP AD ⊥, 因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD , 因为AD OE ⊥,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴, 建立空间直角坐标系,则(0,0,0),(6,0,0),(6,0,0)O D A ,(0,0,32),6,23,0),(6,23,0)P C B ,因为点Q 是PD 的中点,所以632,0,)22Q , 平面PAD 的一个法向量为(0,1,0)m =,632(23,2QC =-,显然 m 与QC 不共线, 所以CQ 与平面PAD 不垂直,所以A 不正确;3632(6,23,32),(,0,),(26,23,0)PC AQ AC =-==,设平面AQC 的法向量为(,,)n x y z =,则3602260n AQ x zn AC ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令=1x ,则y z ==, 所以(1,2,n =-,设PC 与平面AQC 所成角为θ,则21sin 36n PCn PC θ⋅===, 所以cos θ=,所以B 正确;三棱锥B ACQ -的体积为1132B ACQ Q ABC ABC V V S OP --==⋅1116322=⨯⨯⨯=,所以C 不正确;设四棱锥Q ABCD -外接球的球心为)M a ,则MQ MD =,所以222222a a ⎛++-=++ ⎝⎭⎝⎭,解得0a =,即M 为矩形ABCD 对角线的交点,所以四棱锥Q ABCD -外接球的半径为3,设四棱锥Q ABCD -外接球的内接正四面体的棱长为x ,将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,故正方体的棱长为2x,所以22362x ⎛⎫= ⎪ ⎪⎝⎭,得224x =, 所以正四面体的表面积为24x =,所以D 正确. 故选:BD【点睛】此题考查线面垂直,线面角,棱锥的体积,棱锥的外接球等知识,综合性强,考查了计算能力,属于较难题.6.如果一个棱锥的底面是正方形,且顶点在底面内的射影是底面的中心,那么这样的棱锥叫正四棱锥.若一正四棱锥的体积为18,则该正四棱锥的侧面积最小时,以下结论正确的是( ).A 2B .侧棱与底面所成的角为4π C 2D .侧棱与底面所成的角为3π 【答案】AB【分析】 设四棱锥S ABCD -的高为h ,底面边长为a ,由21183V a h ==得254h a =,然后可得侧242108a a+32a =时侧面积取得最小值,此时3h =,然后求出棱锥的高与底面边长的比和SAO ∠即可选出答案.【详解】设四棱锥S ABCD -的高为h ,底面边长为a 可得21183V a h ==,即254h a= 所以其侧面积为2222244215410842244a a a h a a a⋅⋅+=+=+令()242108f a a a =+,则()23321084f a a a ⨯'=- 令()233210840f a a a ⨯'=-=得32a = 当(0,32a ∈时()0f a '<,()f a 单调递减 当()32,a ∈+∞时()0f a '>,()f a 单调递增 所以当32a =时()f a 取得最小值,即四棱锥的侧面积最小此时3h = 所以棱锥的高与底面边长的比为22,故A 正确,C 错误 侧棱与底面所成的角为SAO ∠,由3h =,32a =可得3AO = 所以4SAO π∠=,故B 正确,D 错误 故选:AB【点睛】本题考查的知识点有空间几何体的体积和表面积、线面角及利用导数求最值,属于综合题.7.如图所示,正方体ABCD A B C D ''''-的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线EF 的平面分别与棱BB ',DD '交于点M ,N ,以下四个命题中正确的是( )A .0MN EF ⋅=B .ME NE =C .四边形MENF 的面积最小值与最大值之比为2:3D .四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3【答案】ABD【分析】证明EF ⊥平面BDD B '',进而得EF MN ⊥,即可得A 选项正确;证明四边形MENF 为菱形即可得B 选项正确;由菱形性质得四边形MENF 的面积12S MN EF =⋅,再分别讨论MN 的最大值与最小值即可;根据割补法求解体积即可.【详解】对于A 选项,如图,连接BD ,B D '',MN .由题易得EF BD ⊥,EF BB '⊥,BD BB B '⋂=,所以EF ⊥平面BDD B '',又MN ⊂平面BDD B '',所以EF MN ⊥,因此0MN EF ⋅=,故A 正确.对于B 选项,由正方体性质得:平面''//BCC B 平面''ADD A ,平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =, 所以//MF EN ,同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形, 因此ME NE =,故B 正确.对于C 选项,由B 易得四边形MENF 的面积12S MN EF =⋅, 所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的面积S 最小, 此时2MN EF ==,即面积S 的最小值为1; 当点M ,N 分别与点B (或点B '),D (或D )重合时,四边形MENF 的面积S 最大,此时3MN =,即面积S 的最大值为6, 所以四边形MENF 的面积最小值与最大值之比为2:6,故C 不正确.对于D 选项,四棱锥A MENF -的体积1112123346M AEF N AEF AEF V V V DB S --=+=⋅=⨯⨯=△; 因为E ,F 分别是AA ',CC '的中点,所以BM D N '=,DN B M '=,于是被截面MENF 平分的两个多面体是完全相同的,则它们的体积也是相同的,因此多面体ABCD EMFN -的体积21122ABCD A B C D V V ''''-==正方体, 所以四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3,故D 正确. 故选:ABD .【点睛】本题考查立体几何与向量的综合、截面面积的最值、几何体的体积,考查空间思维能力与运算求解能力,是中档题.本题解题的关键在于证明四边形MENF 为菱形,利用割补法将四棱锥A MENF -的体积转化为三棱锥M AEF - 和N AEF -的体积之和,将多面体ABCD EMFN -的体积转化为正方体的体积的一半求解.8.半正多面体(semiregularsolid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),若它的所有棱长都为2 )A .BF ⊥平面EABB .该二十四等边体的体积为203C .该二十四等边体外接球的表面积为8πD .PN 与平面EBFN 2 【答案】BCD【分析】 A 用反证法判断;B 先补齐八个角成正方体,再计算体积判断;C 先找到球心与半径,再计算表面积判断;D 先找到直线与平面所成角,再求正弦值判断.【详解】解:对于A ,假设A 对,即BF ⊥平面EAB ,于是BF AB ⊥,90ABF ∠=︒,但六边形ABFPQH 为正六边形,120ABF ∠=︒,矛盾,所以A 错;对于B ,补齐八个角构成棱长为2的正方体, 则该二十四等边体的体积为3112028111323-⋅⋅⋅⋅⋅=, 所以B 对;对于C ,取正方形ACPM 对角线交点O ,即为该二十四等边体外接球的球心, 其半径为2R =248R ππ=,所以C 对;对于D ,因为PN 在平面EBFN 内射影为NS ,所以PN 与平面EBFN 所成角即为PNS ∠, 其正弦值为22PS PN =,所以D 对. 故选:BCD .【点睛】本题考查了正方体的性质,考查了直线与平面所成角问题,考查了球的体积与表面积计算问题.。

2025届高考数学二轮专题复习与测试第一部分专题三立体几何02命题分析03知识方法

专题三 立体几何1.高考立体几何试题具有较强的综合性,重视基础学问、基本技能和创新意识的考查,突出直观想象、逻辑推理、数学运算等学科核心素养的考查.内容包括“空间几何体”“点、直线、平面之间的位置关系”和“空间向量与立体几何”.2. 从近几年高考数学试题考查的状况来看,题目难度和题量相对稳定,一般是一个大题,两个小题,占22分,难度基本是中等.3.立体几何高考选择题或填空题有两个常考的热点:一是空间几何体的表面积、体积的计算,有时和数学文化、科技情境交汇命题,特殊要留意的是球与球的组合体问题,常作为小题的压轴题出现,难度较大,对空间想象实力和推理实力都有较高的要求.二是空间中点、直线、平面之间的位置关系的判定,或空间角的计算,若出现在压轴小题的位置,则类型一般为立体几何动态问题或翻折问题.4.立体几何高考解答题常以棱柱或棱锥为载体,一般设置两问,“一证一算”,一问是定性分析,一问是定量分析.其中定性分析以线、面平行、垂直的证明为主,考查逻辑推理实力及学科素养;而定量分析主要是应用空间向量求线面角、二面角,考查数学运算实力与学科素养.1.几何体的表面积与体积公式(1)柱体的体积和表面积:V =S 底h ;S 圆柱侧=2πrl ;S 表面积=S 侧+2S 底.(2)台体的体积和表面积:V =13(S 上+S 下+S 上S 下)h ;S 圆台侧=π(r 1+r 2)l ;S 表面积=S 侧+S 上+S 下.(3)锥体的体积和表面积:V =13S 底h ;S 圆锥侧=πrl ;S 表面积=S 侧+S 底. (4)球的体积和表面积:V =43πR 3;S =4πR 2. 2.三个基本领实(1)基本领实1:过不在同一条直线上的三点,有且只有一个平面.(2)基本领实2:假如一条直线上的两点在一个平面内,那么这条直线在此平面内.(3)基本领实3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.3.线面平行、垂直的定理(1)线面平行的判定定理:a ⊄α,b ⊂α,a ∥b ⇒a ∥α.(2)线面平行的性质定理:a ∥α,a ⊂β,α∩β=b ⇒a ∥b .(3)面面平行的判定定理:a ⊂α,b ⊂α,a ∩b =P ,a ∥β,b ∥β⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b .(5)线面垂直的判定定理:⎭⎪⎬⎪⎫l ⊥a l ⊥b a ∩b =O a ⊂αb ⊂α⇒l ⊥α. (6)线面垂直的性质定理:⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b . (7)面面垂直的判定定理: ⎭⎪⎬⎪⎫l ⊥αl ⊂β⇒α⊥β.(8)面面垂直的性质定理: ⎭⎪⎬⎪⎫α⊥βα∩β=al ⊥al ⊂β⇒l ⊥α. 4.三种空间角的求法设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同).(1)线线夹角:设l ,m 的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21·a 22+b 22+c 22 .(2)线面夹角:设直线l 与平面α的夹角为θ⎝⎛⎭⎪⎫0≤θ≤π2,则sin θ=|a ·μ||a ||μ|=|cos 〈a ,μ〉|.(3)面面夹角:设平面α,β的夹角为θ(0≤θ<π),则|cos θ|=|μ·v ||μ||v |=|cos 〈μ,v 〉|.5.空间距离(1)点到直线的距离直线l 的单位方向向量为u ,A 是直线l 上的任一点,P 为直线l 外一点,设AP →=a ,则点P到直线l 的距离d =a 2-(a ·u )2.(2)点到平面的距离平面α的法向量为n ,A 是平面α内任一点,P 为平面α外一点,则点P 到平面α的距离为d =|AP →·n ||n |.。

2023年高考数学总复习:立体几何及答案解析


又∵已知 E 为 PB 的中点,∴OE∥PD.
∵PD⊄平面 AEC,OE⊂平面 AEC,
∴PD∥平面 AEC.
解:(2)∵
⺁,
⺁ ,∴
⺁ ⺁.
又∵PD⊥底面 ABCD,∴ 三棱锥 െ
∵E 是 PB 的中点,∴ 三棱锥 െ
⺁ 三棱锥 െ
⺁ ⺁⺁ ⺁ ⺁
⺁.
⺁ 三棱锥 െ
⺁ ⺁.
2.如图,在四棱锥 P﹣ABCD 中,PA⊥平面 ABC,AD∥BC,∠ABC=90°,AD=2, ⺁ , BC=6. (1)求证:平面 PBD⊥平面 PAC; (2)PA 长为何值时,直线 PC 与平面 PBD 所成角最大?并求此时该角的正弦值.
第1页共3页
【解答】(1)证明:∵PA⊥平面 ABCD,BD⊂平面 ABCD,∴BD⊥PA,
又 ㋨๗
, ㋨๗

∴∠ABD=30°,∠BAC=60°,∴∠AEB=90°,即 BD⊥AC(E 为 AC 与 BD 交点).
又 PA∩AC,∴BD⊥平面 PAC
又因为 BD⊂平面 PBD,所以平面 PBD⊥平面 PAC.
则๗ ๗
,即 െ ⺁ ㌳ ⺁ െ⺁ ㌳ ൅
,取 x=1,
⺁ 得平面 PBD 的一个法向量为๗ (1, , ),
所以 cos< ,๗>



쳌㌳ ⺁

⺁ ⺁
㌳ ⺁㌳ ⺁
因为 ㌳ ⺁ ㌳ ⺁
㌳⺁ ⺁ ⺁
,当且仅当 t=2 时等号成立,
所以 cos< ,๗>
,记直线 PC 与平面 PBD 所成角为θ,
则 sinθ=|cos< ,๗>|,故 t๗ ,
即 ⺁ 时,直线 PC 与平面 PBD 所成角最大,此时该角的正弦值为 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何习题一、考点分析1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱★ 底面为矩形底面为正方形侧棱与底面边长相等2. 棱锥棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。

3.球球的性质:①球心与截面圆心的连线垂直于截面;★②r (其中,球心到截面的距离为d 、球的半径为R 、截面的半径为r )★球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的接与外切.B注:球的有关问题转化为圆的问题解决. 球面积、体积公式:2344,3S R V R ππ==球球(其中R 为球的半径)1.求异面直线所成的角(]0,90θ∈︒︒:解题步骤:一找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移 另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。

常用中位线平移法 二证:证明所找(作)的角就是异面直线所成的角(或其补角)。

常需要证明线线平行; 三计算:通过解三角形,求出异面直线所成的角;2求直线与平面所成的角[]0,90θ∈︒︒:关键找“两足”:垂足与斜足解题步骤:一找:找(作)出斜线与其在平面的射影的夹角(注意三垂线定理的应用); 二证:证明所找(作)的角就是直线与平面所成的角(或其补角)(常需证明线面垂直);三计算:常通过解直角三角形,求出线面角。

3求二面角的平面角[]0,θπ∈解题步骤:一找:根据二面角的平面角的定义,找(作)出二面角的平面角; 二证: 证明所找(作)的平面角就是二面角的平面角(常用定义法,三垂线法,垂面法); 三计算:通过解三角形,求出二面角的平面角。

俯视图二、典型例题考点一:三视图1.一空间几何体的三视图如图1所示,则该几何体的体积为_________________.第1题2.若某空间几何体的三视图如图2所示,则该几何体的体积是________________.第2题第3题3.一个几何体的三视图如图3所示,则这个几何体的体积为 .4.若某几何体的三视图(单位:cm)如图4所示,则此几何体的体积是 .第4题第5题22侧(左)视图222正(主)视图3俯视图112a5.如图5是一个几何体的三视图,若它的体积是33,则 a .6.已知某个几何体的三视图如图6,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 .第6题 第7题7.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm 8.设某几何体的三视图如图8(尺寸的长度单位为m ),则该几何体的体积为_________m 3。

第7题 第8题9.一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为_________________.图92020正视图20侧视图10 1020俯视图223221俯视图正(主)视图侧(左)视图232210.一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如图10所示(单位cm),则该三棱柱的表面积为_____________.图1011. 如图11所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的全面积为_____________.图图11 图12 图1312. 如图12,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么几何体的侧面积为_____________.13.已知某几何体的俯视图是如图13所示的边长为2的正方形,主视图与左视图是边长为2的正三角形,则其表面积是_____________.14.如果一个几何体的三视图如图14所示(单位长度: cm), 则此几何体的表面积是_____________.图1415.一个棱锥的三视图如图图9-3-7,则该棱锥的全面积(单位:2cm)_____________.正视图左视图俯视图图15正视图俯视图俯视图正视图33416.图16是一个几何体的三视图,根据图中数据,可得该几何体的表面积是_____________.图16 图1717.如图17,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为______________.18.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如图9-3-14所示,则这个棱柱的体积为______________.图18考点二 体积、表面积、距离、角注:1-6体积表面积 7-11 异面直线所成角 12-15线面角1. 将一个边长为a 的正方体,切成27个全等的小正方体,则表面积增加了___________.2. 在正方体的八个顶点中,有四个恰好是正四面体的顶点,则正方体的表面积与此正四面体的表面积的比值为___________.3.设正六棱锥的底面边长为1,侧棱长为5,那么它的体积为_______________. 4.正棱锥的高和底面边长都缩小原来的21,则它的体积是原来的______________. 5.已知圆锥的母线长为8,底面周长为6π,则它的体积是 . 6.平行六面体1AC 的体积为30,则四面体11AB CD 的体积等于 . 7.如图7,在正方体1111ABCD A B C D 中,,E F 分别是11A D ,11C D 中点,求异面直线1AB 与EF 所成角的角______________.俯视图 正(主)视图 侧(左)视图2 32 28. 如图8所示,已知正四棱锥S —ABCD 侧棱长为2,底面边长为3,E 是SA 的中点,则异面直线BE 与SC 所成角的大小为_____________.第8题 第7题9.正方体''''ABCD A B C D -中,异面直线'CD 和'BC 所成的角的度数是_________________.10.如图9-1-3,在长方体1111ABCD A B C D -中,已知13,AB BC BC CC ==,则异面直线1AA 与1BC 所成的角是_________,异面直线AB 与1CD 所成的角的度数是______________图1311. 如图9-1-4,在空间四边形ABCD 中,AC BD ⊥ AC BD =,,E F 分别是AB 、CD 的中点,则EF 与AC 所成角的大小为_____________.12. 正方体1AC 中,1AB 与平面11ABC D 所成的角为 .13.如图13在正三棱柱111ABC A B C -中,1AB AA =,则直线1CB 与平面11AA B B 所成角的正弦值为_______________.14. 如图9-3-6,在正方体ABCD —A 1B 1C 1D 1中,对角线BD 1与平面ABCD 所成的角的正切值为_______________.图9-3-6 图9-3-1 图715.如图9-3-1,已知ABC ∆为等腰直角三角形,P 为空间一点,且52,AC BC PC AC ==⊥,PC BC ⊥,5PC =,AB 的中点为M ,则PM 与平面ABC 所成的角为16.如图7,正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则O 到平面AB C 1D 1的距离为__________________.17.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是______________.18.长方体1111ABCD A B C D -的8个顶点在同一个球面上,且AB=2,AD=3, 11=AA ,则顶点A 、B 间的球面距离是_________________.19.已知点,,,A B C D 在同一个球面上,,AB BCD ⊥平面,BC CD ⊥若6,AB =213,AC =8AD =,则,B C 两点间的球面距离是 .20. 在正方体ABCD —A 1B 1C 1D 1中,M 为DD 1的中点,O 为底面ABCD 的中心,P 为棱A 1B 1上任意一点,则直线OP 与直线AM 所成的角是_________________.21.△ABC 的顶点B 在平面a , A 、C 在a 的同一侧,AB 、BC 与a 所成的角分别是30°和45°,若AB=3,BC=24 ,AC=5,则AC 与a 所成的角为_________.22.矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B -AC -D , 则四面体ABCD 的外接球的体积为_____________.ACPA 1CBA B 1 C 1D 1 DO23.已知点,,,A B C D 在同一个球面上,,AB BCD ⊥平面,BC CD ⊥若6,AB=AC =8AD =,则,B C 两点间的球面距离是 .24.正三棱锥的一个侧面的面积与底面积之比为2∶3,则这个三棱锥的侧面和底面所成二面角的度数为________ .25.已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,BC =O 表面积等于____________.26.已知正方体的八个顶点都在球面上,且球的体积为323π,则正方体的棱长为_________. 27. 一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为_________.1. 正方体1111ABCD-A B C D ,1AA =2,E 为棱1CC 的中点. (Ⅰ) 求证:11B D AE ⊥; (Ⅱ) 求证://AC 平面1B DE ; (Ⅲ)求三棱锥A-BDE 的体积.2.已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点.求证:(1) C 1O ∥面11AB D ;(2)1AC ⊥面11AB D .AD 11A E CD 1DC1B 1A 1C3.如图,PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 和PC 的中点. (Ⅰ)求证:MN ∥平面PAD ;(Ⅱ)求证:MN CD ⊥;(Ⅲ)若45PDA ∠=,求证:MN ⊥平面PCD .4. 如图(1),ABCD 为非直角梯形,点E ,F 分别为上下底AB ,CD 上的动点,且EF CD ⊥。

现将梯形AEFD 沿EF 折起,得到图(2)(1)若折起后形成的空间图形满足DF BC ⊥,求证:AD CF ⊥;(2)若折起后形成的空间图形满足,,,A B C D 四点共面,求证://AB 平面DEC ;5.如图,在五面体ABCDEF 中,FA ⊥平面ABCD, AD//BC//FE ,AB ⊥AD ,M 为EC 的中点, N 为AE 的中点,AF=AB=BC=FE=12AD (I) 证明平面AMD ⊥平面CDE ; (II) 证明//BN 平面CDE ;ABCDE F图(1)ECFDA图(2) A FEBC DMN NMPDB A6.在四棱锥P-ABCD中,侧面PCD是正三角形,且与底面ABCD垂直,已知菱形ABCD中∠ADC=60°,M是PA的中点,O是DC中点.(1)求证:OM // 平面PCB;(2)求证:PA⊥CD;(3)求证:平面PAB⊥平面COM.7.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC 的中点,作EF⊥PB交PB于点F.(1)证明PA//平面EDB;(2)证明PB⊥平面EFD8.正四棱柱ABCD-A1B1C1D1的底面边长是3,侧棱长是3,点E,F分别在BB1,DD1上,且AE⊥A1B,AF⊥A1D.(1)求证:A1C⊥面AEF;(2)求二面角A-EF-B的大小;(3)点B1到面AEF的距离.ACPD ABCOM考点五异面直线所成的角,线面角,二面角1.如图,四棱锥P—ABCD的底面ABCD为正方形,PD⊥底面ABCD,PD=AD.求证:(1)平面PAC⊥平面PBD;(2)求PC与平面PBD所成的角;2.如图所示,已知正四棱锥S—ABCD侧棱长为2,底面边长为3,E是SA的中点,则异面直线BE与SC所成角的大小为 _____________.3.正六棱柱ABCDEF-A1B1C1D1E1F1底面边长为1,侧棱长为2,则这个棱柱的侧面对角线E1D与BC1所成的角是___________________.4. 若正四棱锥的底面边长为23cm,体积为4cm3,则它的侧面与底面所成的二面角的大小是________.5. 如图,在底面为平行四边形的四棱锥P-ABCD中,,AB AC PA⊥⊥平面ABCD,且PA=AB,点E是PD的中点.(1)求证:AC PB⊥;(2)求证:PB//平面AEC;(3)若PA AB AC a===,求三棱锥E-ACD的体积;(4)求二面角E-AC-D的大小.1.已知直线l、m、平面α、β,且l⊥α,m⊂β,给出下列四个命题:(1)α∥β,则l⊥m (2)若l⊥m,则α∥β(3)若α⊥β,则l∥m (4)若l∥m,则α⊥β其中正确的是__________________.2. m、n是空间两条不同直线,αβ、是空间两条不同平面,下面有四个命题:①,;m n m nαβαβ⊥⇒⊥, ②,,;m n m nαβαβ⊥⊥⇒ ③,,;m n m nαβαβ⊥⇒⊥ ④,,;m m n nααββ⊥⇒⊥ 其中真命题的编号是________(写出所有真命题的编号)。

相关文档
最新文档