第六章-发酵过程控制

合集下载

发酵工程发酵过程控制

发酵工程发酵过程控制

发酵工程发酵过程控制1. 引言发酵工程是利用微生物的生理代谢过程来生产有机化合物的一种工程技术。

而发酵过程控制则是在发酵工程中对发酵过程进行调控和监控,以确保发酵过程能够稳定进行,并获得高产率和良好的产品质量。

发酵过程控制通过对微生物与培养基、发酵设备和操作条件等方面进行控制,研究微生物的生长规律和代谢产物的生成规律,实现对发酵过程的调控,以实现最佳的发酵效果。

本文将介绍发酵工程发酵过程控制的主要内容和方法。

2. 发酵过程控制的目标发酵过程控制的主要目标是实现以下几个方面的调控:1.生物量的控制:调控微生物的生长速率和生物量,使其在适宜的培养基和环境条件下获得最佳生长,提高产酶或产物的产量;2.代谢产物的控制:调控微生物代谢过程中的关键反应步骤,实现选择性产物的生成,并提高产量;3.溶氧的控制:调控发酵过程中的溶氧浓度,提高氧传递效率,防止氧的限制性产物的堆积;4.pH的控制:调控发酵过程中的pH值,维持合适的酸碱环境,促进微生物的生长和代谢;5.温度的控制:调控发酵过程中的温度,提供适宜的环境条件,促进微生物的生长和代谢。

3. 发酵过程控制的方法发酵过程控制主要采用以下几种方法:3.1 反馈控制反馈控制是一种基于对发酵过程变量的测量和反馈,通过调节控制器输出量,实现对发酵过程的调控。

常见的反馈控制方法包括:•温度控制:通过测量发酵容器内的温度,控制加热或降温设备的输出,以维持适宜的温度;•pH控制:通过测量发酵液的pH值,控制酸碱调节器的输出,以维持适宜的酸碱环境;•溶氧控制:通过测量发酵液中的溶氧浓度,控制气体供应设备的输出,以维持适宜的溶氧浓度。

3.2 前馈控制前馈控制是一种基于对发酵过程中外部输入变量的预测,通过调节控制器输出量,实现对发酵过程的调控。

常见的前馈控制方法包括:•溶氧前馈控制:根据发酵微生物对溶氧需求的特性,通过对气体供应设备输出的调节,提前调整溶氧浓度,以满足微生物的需求;•pH前馈控制:根据发酵产物对酸碱环境的敏感性,通过对酸碱调节器输出的调节,提前调整pH值,以维持合适的酸碱环境。

发酵过程控制

发酵过程控制

2010-10-26
2)发酵过程中pH的变化规律 )发酵过程中 的变化规律
生长阶段: 相对于起始 相对于起始pH有上升或下降的 生长阶段:pH相对于起始 有上升或下降的 趋势 生产阶段:pH趋于稳定,维持在最适于产物合 趋于稳定, 生产阶段: 趋于稳定 成的范围 自溶阶段: 又上升 自溶阶段:pH又上升
2010-10-26
(一)温度对发酵的影响及其控制 一 温度对发酵的影响及其控制
1. 影响发酵温度的因素 2. 温度对微生物生长的影响 3. 温度对产物合成的影响 4. 最适温度的选择与控制
2010-10-26
(1)发酵热 发酵热
发酵过程中所产生的热量,叫做发酵热 发酵过程中所产生的热量,叫做发酵热。 Q发酵=Q生物+Q搅拌-Q蒸发-Q辐射
2010-10-26
1. 过程控制的重要性
生物因素: 菌株特性(营养要求 生长速率、 营养要求、 决定发酵 生物因素: 菌株特性 营养要求、生长速率、 呼吸强度、产物合成速率) 呼吸强度、产物合成速率 单位(水平 水平) 单位 水平 设备性能: 的因素 外部环境因素 设备性能:传递性能 物理: 工艺条件 物理:n、T、 化学:pH、DO、浓度 化学 浓度 过程控制的意义:最佳工艺条件的优选( 过程控制的意义:最佳工艺条件的优选(即最佳工艺参数 的确定) 的确定)以及在发酵过程中通过过程调节达到最适水平的 控制。 控制。
2010-10-26
4. 最适温度的选择与控制
最适温度的选择还要参考其它发酵条件灵活掌握 通气条件较差情况下, 通气条件较差情况下,最适发酵温度可能比正 常良好通气条件下低一些。 常良好通气条件下低一些。 培养基成分和浓度的影响
2010-10-26
4. 最适温度的选择与控制

发酵过程优化与控制PPT课件

发酵过程优化与控制PPT课件
菌种生产性能越高,其生产条件越难满足。
.
3
发酵过程技术原理
分批发酵 补料-分批发酵 半连续发酵 连续发酵
.
4
分批发酵
几个重要参数:
为比生长速率,h-1; -qs 为比基质消耗速率,(g/g)/h; qp 为比产物形成速率,(g/g)/h 。
uX dX dt
q xX d S dt
补充养分,同时解除/消弱代谢产物的抑制。
不足:
丢失了未利用的养分和处于生长旺盛期的菌体;送去提炼 的发酵液体积更大;丢失代谢产生的前体物;利于非产生 菌突变株的生长。
实施:海洋微藻合成藻红素和EPA。
需要摸索最佳的培养基更新速率。
.
10
连续发酵
发酵过程中一面补入新鲜的料液,一面以相同的流速 放料,维持发酵液原来的体积。(恒化培养)
.
1
发酵过程优化与控制
发酵
狭义——厌氧条件下葡萄糖通过酵解途径生成 乳酸或乙醇等的分解代谢过程。
广义——微生物把一些原料养分在合适的发酵 条件下经特定的代谢途径转变成所需产物的过 程。
.
2
发酵是一个很复杂的生化过程,其好坏涉及诸多因素: 菌种性能、培养基组成、原料质量、灭菌条件、种子 质量、发酵条件和过程控制等
pH变化会影响酶活,菌对基质的利用效率和细
胞结构,从而影响菌的生长和产物的合成。
.
23
选择最适发酵pH的原则是获得最大比生产速率和
适当的菌量。
分阶段pH控制策略
如何控制发酵液pH?
基础培养基的配方;通过加酸碱或中间补料 例如,青霉素发酵,通过调节加糖速率来控制pH;链 霉素的生产,补充NH3来控制pH,同时为产物合成提 供氮源。
培养液pH可反映菌的生理状况:pH上升超过最适值,意 味着菌处于饥饿状态,可加糖调节;糖的过量又使pH下 降;用氨水中和有机酸需防止微生物中毒,可通过监测 培养液种溶氧浓度的变化来控制。

发酵工程第六章

发酵工程第六章

发酵工程
第二节 发酵过程的代谢变化

了解生产菌种在具有合适的培养基、pH、温
度和通气搅拌等环境条件下对基质的利用、细胞
的生长以及产物合成的代谢变化,有利于人们对
生产的控制。
发酵工程
一、发酵过程操作方式 发酵过程操作方式:
A.分批发酵 B.补料分批发酵 C.连续发酵
发酵工程
1. 分批发酵 分批发酵是指在一封闭培养系统内含
发酵工程
控制方法: (1)培养基注意适当的配比 (2)通过中间补料,控制起始浓度不要太高
发酵工程
第四节 基质对发酵的影响及其控制
一、碳源种类 速效碳源:较迅速的被利用,有利于菌体的生
长,如葡萄糖 迟效碳源:被菌体缓慢利用,有利于代谢产物
的合成,如乳糖等
发酵工程
培养基中不同糖对大肠杆菌生长速度的影响 1.单独加入葡萄糖时,菌体生长几乎没有延迟期; 单独加入乳糖时,菌体生长有明显的延迟期;2. 同 时加入葡萄糖和乳糖时,菌体呈二次生长
3)培养后期,产生热量不多,温度变化不大,且逐 渐减弱。
发酵工程
2、搅拌热Q搅拌
在机械搅拌通气发酵罐中,由于机械 搅拌带动发酵液作机械运动,造成液 体之间,液体与搅拌器等设备之间的 摩擦,产生可观的热量。
发酵工程
3、蒸发热Q蒸发
通气时,引起发酵液的水分蒸发,水分 蒸发所需的热量叫蒸发热。 此外,排气也会带走部分热量叫显热Q显 热,显热很小,一般可以忽略不计。
发酵工程
4、辐射热Q辐射
发酵罐内温度与环境温度不同,发酵液中有 部分热通过罐体向外辐射。辐射热的大小取 决于罐温与环境的温差。冬天大一些,夏天 小一些,一般不超过发酵热的5%。
发酵工程
第六节 发酵过程的pH控制

发酵过程控制

发酵过程控制

(7) 排气氧、排气CO2
排气氧的浓度表征了进气的氧被微生物 利用以后还剩余的氧。
排气CO2反映了微生物代谢的情况,因为 微生物摄入的氧并不是全部变成CO2的,有的
进入代谢中间物分子,进入细胞或产物,因
此消耗的氧并不等于排出的CO2;此外,含氧 的有机物降解后会产生CO2,使排气CO2大于
消耗的氧。
• 指单位时间内单位体积发酵液通入空气的 体积。
• 它的大小与氧的传递和其它控制参数有关。 • 一般控制在0.1~1.0vvm之间
(6) 黏度
• 粘度大小可作为细胞生长或细胞形态的标 志之一。
• 在发酵过程中通常用表观粘度表示。 • 粘度的大小可改变氧传递的阻力。 • 粘度的大小可表示相对菌体浓度。
发酵后期氨基氮回升,这时就要放罐,否则 影响提取过程。
③ 磷含量
微生物体内磷含量较高,培养基中以磷酸 盐为主,发酵中用来计算磷含量的是磷酸根。
磷是核酸的组成部分,是高能化合物ATP的 组成部分,磷还能促进糖代谢。因此磷在培养 基中具有非常重要的作用,如果磷缺乏就要采 取补磷措施。
但是在某些次生代谢产物发酵过程中,磷 浓度过高会抑制产物的合成。
✓ 在培养过程中,产生菌的合成能力和产物ቤተ መጻሕፍቲ ባይዱ
积累情况都要通过产物量的测定来了解,产 物浓度直接反映了生产的状况,是发酵控制 的重要参数。而且通过计算还可以得到生产 速率和比生产速率,从而分析发酵条件如补 料、pH对产物形成的影响。
6.2 温度对发酵的影响及其控制
6.2.1 温度对发酵的影响
不同微生物的生长对温度的要求不同, 根据它们对温度的要求大致可分为四类:嗜 冷菌适应于0~26℃生长,嗜温菌适应于15 ~43 ℃生长,嗜热菌适应于37~65℃生长 ,嗜高温菌适应于65 ℃以上生长 。

《氨基酸工艺学》6 氨基酸发酵过程控制

《氨基酸工艺学》6 氨基酸发酵过程控制
➢用响应面分析法来优化氨基酸发酵培养基,已 取得比较好的成果。
(六)响应面分析法
➢发酵培养基优化的步骤: ①所有影响因子的确认; ②影响因子的筛选,以确定各个因子的影响程度; ③根据影响因子和优化的要求,选择优化策略; ④实验结果的数学或统计分析,确定其最佳条件; ⑤最佳条件的验证。
(六)响应面分析法
钾盐比菌体生长需要的钾盐高。
➢菌体生长需要钾盐量约为0.1 g/L,氨基酸生产需 要钾盐量为0.2~1.0 g/L。
(三)无机盐
(4)微量元素: ➢微生物需要量非常少但又不可完全没有的元素称
为微量元素。
➢如锰是某些酶的激活剂,羧化反应需要锰,一般 配比为2 mg/L。铁是细胞色素氧化酶、过氧化 氢酶的组成部分,也是一些酶的激活剂,配比为 2 mg/L。
(六)相容性溶质
➢相容性溶质概念: 微生物通过在胞内积累有限的几种小分子溶质,如 糖醇、有机碱和氨基酸等以提高细胞内水活度,使 细胞的体积和膨压达到正常水平,并避免细胞内所 有物质浓度的升高,这类溶质的高浓度积累可使细 胞内外渗透压达到平衡,并且不妨碍细胞正常的代 谢活动,因而被称为“相容性溶质”。
(三)无机盐
元素 磷
硫 镁 钙 钠 钾
化合物形成(常用)
生理功能
KH2PO4,K2HPO4
核酸、核蛋白、磷酸、辅酶及ATP等高 能分子的成分,作为缓冲系统调节培养
基pH
含硫氨基酸(半胱氨酸、甲硫氨酸等)、 (NH4)2SO4,MgSO4 维生素的成分,谷胱甘肽可调节胞内氧
化还原电位
MgSO4
己糖磷酸化酶、异柠檬酸脱氢酶、核酸 聚合酶等活性中心组分
(六)相容性溶质
➢甜菜碱是在甜菜糖蜜中发现的季铵型生物碱,具 有维持和调节细胞渗透压、保护酶以及参与甲基 化反应等重要功能。

发酵工艺的过程控制

发酵工艺的过程控制

发酵工艺的过程控制引言发酵工艺是一种将有机物质通过微生物的作用转化为需要的产物的过程。

在发酵过程中,微生物通过吸收养分、产生代谢产物和释放能量,完成了物质的转化。

为了保证发酵过程的高效和稳定,控制发酵过程至关重要。

本文将介绍发酵工艺的过程控制,包括控制参数和控制策略。

1. 发酵过程的控制参数发酵过程的控制参数是指影响发酵过程的参数,包括温度、pH值、溶氧量、搅拌速度、发酵菌种等等。

这些控制参数对于发酵过程的高效和稳定起到了重要的作用。

1.温度:发酵过程中适宜的温度可以促进微生物的生长和代谢活动。

不同的发酵过程需要不同的温度,一般在微生物的最适生长温度附近,通常在25-42摄氏度之间。

2.pH值:发酵过程中的pH值对微生物的生长和代谢活动有重要影响。

不同的微生物对于pH值的需求不同,一般在微生物最适生长pH值的附近维持。

3.溶氧量:溶氧量是指发酵液中的氧气饱和度。

微生物在发酵过程中需要氧气进行呼吸和代谢活动。

合适的溶氧量可以提高发酵效率和产物质量。

4.搅拌速度:搅拌速度对于发酵液中的微生物的分散性和氧气气液传递有着重要影响。

适当的搅拌速度可以保证发酵液中的微生物充分接触营养物质和氧气。

5.发酵菌种:选择适宜的发酵菌种对于发酵过程的控制至关重要。

合适的发酵菌种应具备高发酵活力、产物合成能力和抗污染能力。

2. 发酵过程的控制策略为了实现对发酵过程的有效控制,需要采取相应的控制策略。

以下是几种常见的发酵过程控制策略。

1.反馈控制:反馈控制是根据实时的监测数据对发酵过程进行调节。

通过监测发酵过程中的温度、pH值、溶氧量等参数,将实际参数与设定值进行比较,根据误差进行反馈调整,以维持发酵过程的稳定性。

2.前馈控制:前馈控制是根据预期的发酵过程需求提前对控制参数进行调整。

通过事先设定好的控制策略,根据发酵过程中的状态进行预测和计算,提前对控制参数进行调整,以达到预期的控制效果。

3.比例积分控制:比例积分控制是通过调整控制器的比例参数和积分参数来改变控制器的工作方式。

代谢控制发酵-第六章 代谢控制发酵实例

代谢控制发酵-第六章 代谢控制发酵实例
型突变株 思考:这样做有什么不足?ห้องสมุดไป่ตู้
(2) 选育渗漏缺陷型突变株 苯丙氨酸和酪氨酸双营养缺陷(或预苯酸缺陷)使得菌株生长
缓慢,因此可选育预苯酸渗漏缺陷型突变株 渗漏缺陷型是一种不完全营养缺陷型,它不会产生过量的末
端产物,因而可以避开反馈调节 但它又能合成微量的末端产物,用来进行生物合成 在培养这种突变体时,可不必在培养基中添加相应的物质,
弱化子
p 解除反馈调节,增强色氨酸合成途径代谢流(通) 解除色氨酸抑制作用:
(1) 选育色氨酸结构类似物(5-氟色氨酸、5-甲基色氨酸) 抗性突变株
变构,失活

色氨酸
问题:诱变后存活的微生物 包括正向突变(想要的)、负 向突变(不想要的),怎么把 正向突变的筛选出来?
5-氟色氨酸 5-甲基色氨酸
四、青霉素发酵
生物合成途径
四、青霉素发酵
代谢调节
碳分解代谢产物的影响
Ø 青霉素的生物合成受碳分解代谢产物阻遏,如ACV合成 酶,IPN合成酶,酰基转移酶就被阻遏
Ø 葡萄糖可以刺激菌体生长,使作为赖氨酸和青霉素合 成中间体的α-氨基己二酸转向合成赖氨酸,抑制青霉 素的合成
Ø 葡萄糖降低青霉素生物合成的速率和得率还由于葡萄 糖与6-APA之间形成复合物,从而减少了可用于合成青 霉素的中间产物。
Ø 选育单氟乙酸、三氟乙酸敏感突变株 抑制乌头酸梅和异柠檬酸脱氢酶活性。若菌体对药品 敏感,说明该突变株的乌头酸酶和异柠檬酸酶活力低或 含量少
Ø 选育强化CO2固定反应的突变株 氟丙酮酸敏感、天冬氨酸缺陷、羧化酶基因克隆
Ø 强化柠檬合成酶
一、柠檬酸发酵
发酵控制
Ø 控制Mn2+和NH4+浓度,解除柠檬酸对PFK的抑制,使EMP 畅通无阻
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机会,并可减少培养液性质复杂化的程度。 –缺点:不如化学消泡迅速可靠,需要一定的设备和消耗
一定的动力;不能从根本上消除引起稳定泡沫的因素
(1)机械消泡
机械消泡装置的选择依据 –动力小 –结构简单 –坚固耐用 –清洗、杀菌容易 –维修保养费用少
(1)机械消泡
机械消泡方法
–罐内消泡:耙式消泡桨、旋转圆板式、气流 吸入式、冲击反射板式、碟式及超声波等机 械消泡装置。
常用的消泡剂种类
天然油脂类:玉米油、米糠油、豆油、棉子油、鱼 油及猪油 高碳醇、脂肪酸和酯类:如十八醇、聚二醇 聚醚类:聚氧丙烯甘油,聚氧乙烯氧丙烯甘油(又称 泡敌) 硅酮类(聚硅油类)
– 聚二甲基硅氧烷及其衍生物 :适用于放线菌和 细菌发酵羟基聚二甲基硅氧烷 :曾用于青霉素 和土霉素发酵
氟化烷烃: 具有极其小的表面能
185
全培养基
以葡萄糖调节pH
毕氏酵母
嗜温菌
葡萄糖矿物盐 搅拌罐 补料分批培养,
100
补甲醇
30
160
50~120
120~150
酿酒酵母
嗜温菌
含葡萄糖的完 搅拌罐 连续培养,流加
210
全培养基
葡萄糖
80
50~150
2.高密度发酵策略
使用最低合成培养基以便进行准确的培养基 设计和计算生长得率。 优化细胞生长速率,使得碳源能被充分利用和 获得较高的产率,用养分流加来限制菌的生长 速率还能控制培养物对氧的需求和产热速率。 可用碳源作为限制性养分,且采用补料分批发 酵来实现高密度发酵。
–罐外消泡:旋转叶片式、喷雾式、离心式及 转向板式等机械消泡装置。
(2)化学消泡
消泡机理
–当泡沫的表层存在着极性的表面活性物质而形成双电层 时,可以加入一种具有相反电荷的表面活性剂,以降低 泡沫的机械强度;或加入某些具有强极性的物质与发泡 剂争夺液膜上的空间,降低液膜强度,导致泡沫破裂。
–当泡沫的液膜具有较大的表面粘度时,可以加入某些分 子内聚力较小的物质,以降低液膜的表面粘度,使液膜 的液体流失,导致泡沫破裂。
4. 高密度发酵存在的问题
水溶液中的固体与气体物质的溶解度, 基质对生长的限制或抑制作用,基质与 产物的不稳定性和挥发性,产物或副产 物的积累达到抑制生长的水平,高浓度 的CO2与热的释放速率,高的氧需求以 及培养基的粘度不断增加等 。
1. 泡沫的产生及其影响
泡沫的产生 通气和搅拌 代谢气体的逸出 存在稳定泡沫的表面活性物质
(八)高密度发酵及过程控制
1. 高密度发酵 2.高密度发酵策略 3.高密度发酵技术 4.高密度发酵存在的问题
1. 高密度发酵
代谢产物的合成是靠菌体作为生产者来完成的。 高细胞密度发酵就是为了适应这一要求而得到 广泛的重视。 高密度发酵:在发酵过程中保持较高的细胞密 度,同时细胞或菌体的生产能力保持在较佳的状 态。
1. 泡沫的产生及其影响
泡沫的类型
一类存在于发酵液的液面上。这类泡沫气相所占比例 特别大,并且泡沫与它下面的液体之间有能分辨的界 线。如在某些稀薄的前期发酵液或种子培养液中所见 的泡沫。
另一类出现在粘稠的菌丝发酵液当中。这种泡沫分散 很细,而且很均匀,也较稳定。泡沫与液体间没有明 显的波面界限,在鼓泡的发酵液中气体分散相占的比 例由下而上地逐渐增加。
消泡剂的应用
消泡剂的消泡效果与使用方式密切相关 消泡剂的分散可借助于机械方法,也可加入某种称为载体 或分散剂的物质,将消泡剂乳化成细小液滴 消泡作用的持久性:本身性能,加入量及时机 使用天然油脂时应注意一次不能加得太多 消泡剂对细胞的生理有重要的影响 在应用消泡剂之前需作比较性试验 消泡剂应制成乳浊液,并且不被同化,消耗最少
(2)化学消泡
化学消泡的优点 –来源广泛 –作用迅速可靠,消泡效率高 –不需改造现有设备 –容易实现自动控制
消泡剂选择的依据
必须是表面活性剂,且具有较低的表面张力,消泡作用迅 速,效率高。 对气液界面的散布系数足够大,具有一定的亲水性。 在水中的溶解度较小,以保持其持久的消泡或抑泡性能。 对发酵过程无毒,对人、畜无害,不被微生物同化,对菌 体生长和代谢无影响,不影响产物的提取和产品质量。 不干扰溶解氧、pH等测定仪表使用,最好不影响氧的传递。 能耐高压蒸气灭菌而不变性,对设备无腐蚀性影响 来源方便,价格便宜。
3.高密度发酵技术
用于高密度发酵的生物反应器类型: 搅拌罐,透析膜反应器, 气升式反应器,气旋式反应器
在工业化生产中,通常采用的是搅拌罐与补料工艺来 进行高细胞密度发酵。 重组大肠杆菌高密度发酵成功的关键技术是补料策略, 限制性基质(葡萄糖)的流加模式有3种:恒速流加补 料、变速流加补料和指数流加补料。
1. 泡沫的产生及其影响
泡沫的不利影响 降低了发酵罐的装料系数 增加了菌群的非均一性 增加了染菌机会 大量起泡引起“逃液”,导致产物的损失 泡沫严重时会影响通气搅拌的正常进行 消泡剂的加入将给提取工序带来困难
2.发酵过程中泡沫的消长规律
影响因素 通气搅拌的强度 培养基的配比及原材料组成 培养基的灭菌方法和操作条件 微生物代谢活动造成发酵液性质变化 染菌
霉菌发酵过程中培养液的性质与泡沫的关系
3Hale Waihona Puke 泡沫的控制(1)机械消泡 (2)化学消泡 (3)从微生物本身特性着手,防止泡沫形成
筛选不产生泡沫的微生物突变株 几种微生物混合培养
(1)机械消泡
原理:靠机械力引起强烈振动或者压力变化,促使泡沫破 裂,或借机械力将排出气体中的液体加以分离回收。 优缺点 – 优点:不需引入外来物质,可节省原材料,减少 污染
高细胞密度发酵成功的实例
菌种 大肠杆菌
特征
基础培养基
需氧、葡萄 糖过量、形
成乙醇
葡萄糖矿物盐 或甘油矿物盐
发酵罐 类型
搅拌罐
培养方法
葡萄糖(甘油) 非限制指数补料
细胞干重 (g/L)
140~150
培养时间(h) 30~40
产率 (g/L)/d
90~100
枯草杆菌
嗜温菌
含葡萄糖的完 搅拌罐 补料分批培养,
相关文档
最新文档