高三(9月)月考

合集下载

湖北省襄阳市宜城市第一中学2025届高三上学期9月月考语文试题(含答案)

湖北省襄阳市宜城市第一中学2025届高三上学期9月月考语文试题(含答案)

湖北省宜城市第一中学2024-2025学年高三上学期9月月考语文试题注意事项:1.本试卷共8页,23小题,满分150分。

考试时间150分钟。

2.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。

3.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

4.一、现代文阅读(35分)5.(一)现代文阅读1(本题共5小题,19分)6.阅读下列文字,完成下面小题。

你对于某个问题没有调查,就停止你对于某个问题的发言权。

这不太野蛮了吗?一点也不野蛮,你对那个问题的现实情况和历史情况既然没有调查,不知底里,对于那个问题的发言便一定是瞎说一顿。

瞎说一顿之不能解决问题是大家明了的,那末,停止你的发言权有什么不公道呢?许多的同志都成天地闭着眼睛在那里瞎说,这是共产党员的耻辱,岂有共产党员而可以闭着眼睛瞎说一顿的吗?要不得!要不得!注重调查!反对瞎说!你对于那个问题不能解决吗?那末,你就去调查那个问题的现状和它的历史吧!你完完全全调查明白了,你对那个问题就有解决的办法了。

一切结论产生于调查情况的末尾,而不是在它的先头。

只有蠢人,才是他一个人,或者邀集一堆人,不作调查,而只是冥思苦索地“想办法”,“打主意”。

须知这是一定不能想出什么好办法,打出什么好主意的。

换一句话说,他一定要产生错办法和错主意。

许多巡视员,许多游击队的领导者,许多新接任的工作干部,喜欢一到就宣布政见,看到一点表面,一个枝节,就指手画脚地说这也不对,那也错误。

这种纯主观地“瞎说一顿”,实在是最可恶没有的。

他一定要弄坏事情,一定要失掉群众,一定不能解决问题。

许多做领导工作的人,遇到困难问题,只是叹气,不能解决。

他恼火,请求调动工作,理由是“才力小,干不下”。

这是懦夫讲的话。

迈开你的两脚,到你的工作范围的各部分各地方去走走。

学个孔夫子的“每事问”,任凭什么才力小也能解决问题,因为你未出门时脑子是空的,归来时脑子已经不是空的了,已经载来了解决问题的各种必要材料,问题就是这样子解决了。

山西省晋城市2024-2025学年高三上学期9月月考试题 语文 含答案

山西省晋城市2024-2025学年高三上学期9月月考试题 语文 含答案

山西省晋城市2024-2025学年高三上学期9月月考语文试题考生注意:1.本试卷共150分,考试时间150分钟。

2.请将各题答案填写在答题卡上。

3.本试卷主要考试内容:高考全部内容。

一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1~5题。

材料一:随着西方艺术史研究的不断深入,大量理论、研究方法被引入国内,对中国艺术史研究的发展产生了一系列深刻的影响。

一方面,中国艺术史研究借鉴西方经验,引入了许多研究方法和理论,如社会历史学、文化研究、后现代主义等,这些方法和理论帮助中国艺术史研究者更好地分析和解读艺术作品,关注艺术与社会、文化、政治等方面的关系,研究领域不断扩大。

受新艺术史研究的影响,中国艺术史研究者开始关注非传统的艺术领域,如民间艺术、当代艺术、女性艺术等,这种拓展使中国艺术史的研究更加多元化和综合化,进一步丰富了中国艺术史的研究内容。

例如,在分析绘画中的女性形象时,研究者会更多地结合作品的历史背景和女性心理学,分析作品的精神内涵,尝试解释其中的历史、文化、政治因素,而不是仅仅停留在笔触、品质等层面,这显示出我国美术史研究发生的深刻变化。

另一方面,艺术史研究的对象范围逐渐扩大,现代中国艺术史研究的视野早已不再局限于研究内部艺术变化,如风格、样式、语言、技法,而是扩展外向型研究;艺术史的研究方法也不再局限于本学科的理论方法,而是选择跨学科的方法和理论体系,如符号学、社会学、心理学等。

受西方艺术史研究的影响,中国艺术史研究者与国际学术界进行了更加广泛的交流,这种跨文化的对话促进了不同文化间的艺术交流和相互借鉴,拓宽了中国艺术史研究的视野,促使中国艺术史研究者对传统的艺术史观念和叙述进行批判和反思,推动了中国艺术史研究的发展。

总之,西方艺术史研究包括新艺术史研究,对中国艺术领域产生了广泛而深远的影响。

它为中国艺术史研究提供了新的研究方法和理论,拓展了研究领域,激发了中国艺术史研究者的理论创新和批判精神,使中国艺术史研究更加多元化、综合化和国际化。

江苏省南通市名校2025届高三上学期9月月考语文试卷(解析版)

江苏省南通市名校2025届高三上学期9月月考语文试卷(解析版)

江苏省南通市名校2024-2025学年高三上学期9月月考语文试卷一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,18分)1.(18分)阅读下面的文字,完成下列各题。

材料一:西北地区是中华文明的发祥地之一。

丝绸之路上各民族往来贸易,交流融合,造就了西北地区多民族共居和多元文化汇聚的独特景观。

先秦时期有戎、羌、氐,秦汉时期有匈奴、月氏、乌孙,后来还有吐谷浑、吐蕃、回鹘、党项等民族。

汉代接收浑邪王十万降众时,采取了“因其故俗为属国”的制度。

“属国”体制保留了匈奴人原有的社会组织和生产生活方式,宽容的民族政策推动西北地区多民族共居局面的形成,和谐的民族关系促进了丝绸之路的繁荣。

汉唐时期,丝绸之路上建立过很多民族政权,但都未影响丝绸之路的畅通与繁荣,丝绸之路的繁荣是沿线民族合作联动的产物,而各民族互相联动的基础首先是沿线民族友好交往、民心相通。

贸易双方的双向共赢也是丝路长期繁荣的重要原因。

丝路贸易不是单向的,而是双向共赢的。

东西方的经济、文化交流是“不断地交流、发展、融合后,再交流、再发展、再融合,从而达到了更高的发展”。

以“佛教的倒流”为例,佛教并非简单地从西向东单向传播,经过中国佛教界的改造和发展后又传回中亚、印度,从而对中亚和印度的佛教作出贡献。

丝路贸易的主体是“转输贸易”,在古代丝绸之路的各个重镇,都有数量不等的胡商或胡人聚落,“胡人尤其是粟特人充当了丝绸之路上的贸易担当者”。

由于转输贸易的需要,丝路上很多重镇是“商胡”入华之路,也是商贸中心。

如新疆的吐鲁番,“一些商胡从西边来到高昌后便不再东行,而是将货物在当地出售,东边来的商人也不再西行到货物的产地去收购商品,而是在高昌购买后,再到其他地方去出售”。

正是因为丝路贸易的这个特点,沿线一些城市成为国际贸易集散中心,如君士坦丁堡、巴格达、敦煌、吐鲁番、兰州等。

丝路贸易的主要承担者,来自中亚的粟特商人成群结队地徙居中国并长期定居,其后裔有的继续经商,有的则在中国入仕,完全融入中华民族大家庭中。

山西省部分学校2024-2025学年高三上学期9月月考化学试题(含解析)

山西省部分学校2024-2025学年高三上学期9月月考化学试题(含解析)

2025届高三9月质量检测化学全卷满分100分,考试时间75分钟。

注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置。

2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚。

4.考试结束后,请将试卷和答题卡一并上交。

可能用到的相对原子质量:H1 B11 C12 N14 O16 S32 Cl35.5 Ca40 Fe56一、选择题:本题共14小题,每小题3分,共42分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.化学与科技创新密切相关。

下列说法错误的是( )A.“快舟一号甲”运载火箭利用燃料与氧化剂反应放热并产生大量气体实现助推B.“天目一号”气象星座卫星的光伏发电系统工作时可将化学能转化为电能C “爱达·魔都号”邮轮使用的镁铝合金具有密度低、抗腐蚀性强的特点D.“AG60E ”电动飞机使用的动力型锂电池具有质量轻、比能量高的特点2.下列化学用语表述正确的是( )A.基态Cr 原子的价层电子排布图为B.的化学名称为甲基丁烯C.分子的VSEPR 模型为D.用电子式表示的形成过程为:3.下列生产活动中对应的离子方程式正确的是( )A.铅酸蓄电池充电时的阳极反应:B.向冷的石灰乳中通入制漂白粉:C.用溶液除去锅炉水垢中的:D.用葡萄糖制镜或保温瓶胆:()332CH CH C CH =3-2--3NH 2CaCl 222Pb 2H O 2e PbO 4H +-++-=+2Cl 22Cl 2OH Cl ClO H O---+=++23Na CO 4CaSO 224334CaSO (s)CO (aq)CaCO (s)SO (aq)--++A()2432CH OH(CHOH)CHO 2Ag NH OH ⎡⎤+−−→⎣⎦△24432CH OH(CHOH)COO NH 2Ag 3NH H O-+++↓++4.某化学兴趣小组进行如下实验:实验①:向晶体中滴加浓盐酸,产生黄绿色气体。

上海市宝山中学2024-2025学年高三上学期9月月考数学试卷

上海市宝山中学2024-2025学年高三上学期9月月考数学试卷

上海市宝山中学2024-2025学年高三上学期9月月考数学试卷一、填空题1.若()i 1i z =⋅-(其中i 表示虚数单位),则Im z =.2.在等差数列{}n a 中,前7项的和714S =,则35a a +=.3.已知()22f x x x =+,则曲线()1y f x x ==在处的切线方程是.4.在(4x 的展开式中,3x 的系数为.5.已知直线()1:2310l m x y ---=与直线()2:210l mx m y +++=相互平行,则实数m 的值是. 6.已知双曲线22221x y a b-=(a >0,b >0)的离心率为2,则该双曲线的渐近线方程为. 7.已知平面向量a r ,b r 满足3,4a b ==r r 且向量a r ,b r 的夹角为 π3,则 2a b +r r 在a r 方向上的投影数量为.8.已知,R a b ∈且0a ≠,则4||a b b a++-的最小值是. 9.在ABC V 中,角A B C ,,所对的边分别为a b c ,,.已知357a b c ===,,,则ABC V 的面积为.10.已知01a <<, 函数 1(2)41,2,2,2x a x a x y a x --++≤⎧=⎨>⎩若该函数存在最小值,则实数a 的取值范围是11.已知曲线C 由抛物线24x y =及抛物线24x y =-组成,若(4,3)A ,(4,3)B -,D ,E 是曲线C 上关于x 轴对称的两点,A ,B ,D ,E 四点不共线,其中点D 在第一象限,则四边形ABED 周长的最小值为 .12.设 a n 与 b n 是两个不同的无穷数列,且都不是常数列.记集合{}*|,N k k M k a b k ==∈,给出下列4个结论:①若 a n 与 b n 均为等差数列,则M 中最多有1个元素;②若 a n 与 b n 均为等比数列,则M 中最多有2个元素;③若 a n 为等差数列, b n 为等比数列,则M 中最多有3个元素;④若 a n 为递增数列, b n 为递减数列,则M 中最多有1个元素.其中正确结论的序号是.二、单选题13.已知,R a b ∈, 则“a b >”是“33a b >”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要 14.设α、β为两个平面,m 、n 为两条直线, 且m αβ=I .下述四个命题: ①若//m n ,则//n α或//n β ②若m n ⊥,则n α⊥或n β⊥③若//n α且//n β,则//m n ④若n 与α、β所成的角相等,则m n ⊥,其中所有真命题的编号是( )A .①③B .②④C .①②③D .①③④15.设函数πsin()(05)6y x ωω=+<<图像的一条对称轴方程为π12x =,若12,x x 是该函数的两个不同的零点,则12x x -不可能取下述选项中的( ).A .π4B .π3C .π2D .π16.已知函数()y f x =是定义在R 上的奇函数,当0x >时,()()131,0212,23x x f x f x x -⎧-<≤⎪=⎨->⎪⎩,若关于x 的方程()()()()2220R f x m f x m m ⎡⎤-++=∈⎣⎦恰有4个不相等的实数根,则实数m 的值是( ) A .23- B .23 C .0 D .23±三、解答题17.已知2()2cos 2f x x x =,(1)求函数()y f x =的单调递减区间;(2)若π[0,]2x ∈,求函数()y f x =的值域. 18.如图,已知AB ⊥平面BCD ,BC BD ⊥,直线AD 与平面BCD 所成的角为30︒,且2AB BC ==.(1)求三棱锥A BCD -的体积;(2)设M 为BD 的中点,求异面直线AD 与CM 所成角的大小.(结果用反三角函数值表示)19.2024年上海书展于8月16日至22日在上海展览中心举办.展会上随机抽取了500名观众,调查他们每个月用在阅读上的时长,得到如图所示的频率分布直方图:(1)求x 的值,并估计这500名观众每个月阅读时长的平均数和中位数;(2)用分层抽样的方法从[)[)20,40,80,100这两组观众中随机抽取12名观众,再若从这12名观众中随机抽取4人参加抽奖活动,求所抽取的4人中两组均有的概率.20.已知椭圆 2222:1(0)x y C a b a b+=>>的左、右焦点分别为 ()2,0F F N -₁、₂,为椭圆的一个顶点,且右焦点 F ₂到双曲线. ²²2x y -=渐近线的距离为 (1)求椭圆C 的标准方程;(2)设直线():0l y kx m k =+≠与椭圆C 交于 A 、B 两点.①若直线l 过椭圆右焦点F ₂,且△AF ₁B 的面积为 求实数k 的值; ②若直线l 过定点P (0,2), 且k >0, 在x 轴上是否存在点T (t ,0)使得以TA 、TB 为邻边的平行四边形为菱形? 若存在,则求出实数t 的取值范围; 若不存在,请说明理由.21.设函数()()2e x f x x ax =+,其中a 为常数.对于给定的一组有序实数(,)k m ,若对任意1x 、2x ∈R ,都有[][]1122()()0kx f x m kx f x m -+⋅-+≥,则称(,)k m 为()f x 的“和谐数组”.(1)若0a =,判断数组(0,0)是否为()f x 的“和谐数组”,并说明理由;(2)若a =()f x 的极值点;(3)证明:若(,)k m 为()f x 的“和谐数组”,则对任意x ∈R ,都有()0kx f x m -+≤.。

忻州市2024年9月月考高三数学试题与答案

忻州市2024年9月月考高三数学试题与答案

忻州市2024年9月月考高三数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合(){}{|lg 2,|A x y x B x y ==-=∈=N ,则A B = ()A.{}0,1,2 B.{}0,1 C.()2,2- D.()0,22.已知,a b 挝R R ,且()()2i 1i 2i a b +-=+,则a b +=()A.1-B.0C.1D.23.已知命题:p 20,2x x x ∃>>,则p 的否定为()A.20,2xx x ∀>≤ B.20,2xx x ∀>> C.20,2xx x ∃>≤ D.20,2xx x ∃≤≤4.在平行四边形ABCD 中,2AP PB = ,则PD =()A.23+AB AD B.23AB AD-+C.13AB AD +D.13AB AD-+5.如果随机变量(),B n p ξ~,且()()4312,3E D ξξ==,则p =()A.14B.13C.12D.236.已知0,0,24x y x y xy >>++=,则x y xy +-的最小值为()A.32B.2C.12D.17.已知数列{}n a 满足1122n n n n a a a a ++++=,且12311,217a a a a ==+,则1003a =()A.165 B.167C.169 D.1718.已知0a >,设函数()()2e 2ln ln xf x a x x a =+---,若()0f x ≥在()0,∞+上恒成立,则a 的取值范围是()A.10,e⎛⎤ ⎥⎝⎦B.(]0,1 C.(]0,e D.(]0,2e 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知0a >,则函数()2xf x a a =-的图象可能是()A. B. C. D.10.已知函数()()π2sin 22f x x ϕϕ⎛⎫=+< ⎪⎝⎭,且()π6f x f ⎛⎫≤ ⎪⎝⎭,则下列结论正确的是()A.π6ϕ=B.()f x 在区间π,π2⎡⎤⎢⎥⎣⎦上单调递增C.若12,x x 为方程()2f x =的两个解,则21x x -的最小值为2πD.若关于x 的方程()f x a =在区间π0,4⎡⎤⎢⎥⎣⎦上有且仅有一个解,则a 的取值范围为{}2⎡⋃⎣11.已知函数()f x 的定义域为R ,设()()21g x f x =+-,若()g x 和()1f x '+均为奇函数,则()A.()21f = B.()f x 为奇函数C.()f x '的一个周期为4D.20241()2024k f k ==∑三、填空题:本题共3小题,每小题5分,共15分.12.将一个底面半径为()0r r >的圆柱形铁块熔铸成一个实心铁球,则该实心铁球的表面积与圆柱的侧面积之比为__________.13.设π02α<<,若π5tan tan 42αα⎛⎫+-= ⎪⎝⎭,则sin α=______.14.设,a b 是正实数,若椭圆221ax by +=与直线1x y +=交于点,A B ,点M 为AB 的中点,直线OM (O 为原点)的斜率为2,又OA OB ⊥,则椭圆的方程为__________.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.如图,在直三棱柱111ABC A B C -中,ACB ∠为直角,侧面11BCC B 为正方形,2BC =,C 1A =.(1)求证:1⊥BC 平面1AB C ;(2)求直线1AB 与平面1ABC 所成的角的正弦值.16.已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的图象的相邻两条对称轴之间的距离为π2,点π,03⎛⎫⎪⎝⎭为()f x 的图象的一个对称中心.(1)求()f x 的解析式;(2)将()f x 的图象向右平移π12个单位长度,得到函数()g x 的图象,若()g x 在区间[]0,m 上的最大值和最小值互为相反数,求m 的最小值.17.已知函数()f x 是()(0xg x a a =>且1)a ≠的反函数,且函数()()()()22F x fx f x f a =--.(1)若()()()41,6,3F f m g n =-==,求a 及3m n的值;(2)若函数()F x 在1,22⎡⎤⎢⎥⎣⎦上有最小值2-,最大值7,求a 的值.18.在ABC V 中,已知)tan tan tan tan 1A B A B +=-.(1)求C ;(2)记G 为ABC V 的重心,过G 的直线分别交边,CA CB 于,M N 两点,设,CM CA CN CB λμ==.(i )求11λμ+的值;(ii )若CA CB =,求CMN 和ABC V 周长之比的最小值.19.已知函数()()ln f x x x a =+.(1)当0a =时,求()f x 的极值;(2)若()f x 存在两个极值点()1212,x x x x <.(i )求a 的取值范围;(ii )证明:()1240e f x -<<忻州市2024年9月月考高三数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合(){}{|lg 2,|A x y x B x y ==-=∈=N ,则A B = ()A.{}0,1,2 B.{}0,1 C.()2,2- D.()0,2【答案】B【分析】根据题意求集合,A B ,进而求交集即可.【详解】令20x ->,解得2x <,则{}|2A x x =<,令240x -≥,解得22x -≤≤,则{}{}|220,1,2B x x =∈-≤≤=N ,所以{}0,1A B = .2.已知,a b 挝R R ,且()()2i 1i 2i a b +-=+,则a b +=()A.1-B.0C.1D.2【答案】C【分析】根据复数的乘法运算结合复数相等求,a b ,即可得结果.【详解】因为()()2i 1i 2i a b +-=+,则()212i 2i a a b ++-=+,可得2212a a b +=⎧⎨-=⎩,解得01a b =⎧⎨=⎩,所以1a b +=.3.已知命题:p 20,2x x x ∃>>,则p 的否定为()A.20,2xx x ∀>≤ B.20,2xx x ∀>> C.20,2xx x ∃>≤ D.20,2xx x ∃≤≤【答案】A【分析】根据特称命题的否定是全称命题分析判断.【详解】由题意可知:20,2x x x ∃>>的否定为20,2x x x ∀>≤.4.在平行四边形ABCD 中,2AP PB = ,则PD =()A.23+AB AD B.23AB AD-+C.13AB AD +D.13AB AD-+【答案】B【分析】借助平行四边形的性质及向量线性运算法则计算即可得.【详解】由2AP PB = ,则22AP AB AP =-,即23AP AB =uu u r uu u r ,则23PA AB =-,故23PD PA AD AB AD =+=-+.5.如果随机变量(),B n p ξ~,且()()4312,3E D ξξ==,则p =()A.14B.13C.12D.23【答案】D【分析】根据期望的性质可得()4E ξ=,结合二项分布的期望和方差公式运算求解即可.【详解】因为()()3312E E ξξ==,即()4E ξ=,又因为随机变量(),B n p ξ~,且()43D ξ=,则()4413np np p =⎧⎪⎨-=⎪⎩,解得623n p =⎧⎪⎨=⎪⎩.6.已知0,0,24x y x y xy >>++=,则x y xy +-的最小值为()A.32B.2C.12D.1【答案】D【分析】根据题意利用基本不等式可得2()422x y x y xy +--=≤,解得2x y +≥,结合题意整理即可得最小值.【详解】因为0,0,24x y x y xy >>++=,则2()422x y x y xy +--=≤,当且仅当1x y ==时,等号成立,解得2x y +≥或4x y +≤-(舍去),所以()342122x y x y x y xy x y +--+-=+-=-≥.7.已知数列{}n a 满足1122n n n n a a a a ++++=,且12311,217a a a a ==+,则1003a =()A.165B.167C.169 D.171【答案】B【分析】由题意整理可得21112n n n a a a +++=,可知数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,结合题意求首项和公差,结合等差数列通项公式可得121n a n =+,即可得结果.【详解】因为1122n n n n a a a a ++++=,可得21112n n n a a a +++=,可知数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,又因为12121a a a =+,即121121112a a a a +==+,即21112a a -=,可知1n a ⎧⎫⎨⎬⎩⎭是2为公差的等差数列,且317a =,则131122743a a =-⨯=-=,可得()132121n n n a =+-=+,即121n a n =+,所有10031320167a ==.8.已知0a >,设函数()()2e 2ln ln xf x a x x a =+---,若()0f x ≥在()0,∞+上恒成立,则a 的取值范围是()A.10,e⎛⎤ ⎥⎝⎦B.(]0,1 C.(]0,e D.(]0,2e 【答案】D【分析】根据题意同构可得()()22eln e ln xx ax ax +≥+,构建()ln ,0g x x x x =+>,结合单调性可得2e xax ≥,参变分析可得2e x a x ≤,构建()2e ,0xh x x x=>,利用导数求最值结合恒成立问题分析求解.【详解】由题意可知:()()2e2ln ln 0xf x a x x a =+---≥,整理可得()()22e ln e ln x x ax ax +≥+,设()ln ,0g x x x x =+>,则()110g x x=+>',可知()g x 在0,+∞内单调递增,由题意可知:()()2exg g ax ≥,则2exax ≥对任意∈0,+∞内恒成立,可得2e xa x ≤对任意∈0,+∞内恒成立,设函数()2e ,0x h x x x =>,则()()2221exx h x x -'=,令ℎ'>0,解得12x >;令ℎ'<0,解得102x <<;可知ℎ在10,2⎛⎫ ⎪⎝⎭内单调递减,在1,2∞⎛⎫+ ⎪⎝⎭内单调递增,可知ℎ的最小值为12e 2h ⎛⎫=⎪⎝⎭,可得02e a <≤,所以a 的取值范围为(]0,2e .【点睛】关键点点睛:根据题意同构可得()()22e ln e ln xx ax ax +≥+,构建()ln ,0g x x x x =+>,结合单调性可得2e x ax ≥.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知0a >,则函数()2xf x a a =-的图象可能是()A. B. C. D.【答案】AD【分析】通过特值法,排除错误选项,通过a 的取值,判断函数的图象的形状,推出结果即可.【详解】由于当1x =时,(1)20f a a a =-=-<,排除B ,C ,当2a =时,()24x f x =-,此时函数图象对应的图形可能为A ,当12a =时,1()(12xf x =-,此时函数图象对应的的图形可能为D.10.已知函数()()π2sin 22f x x ϕϕ⎛⎫=+< ⎪⎝⎭,且()π6f x f ⎛⎫≤ ⎪⎝⎭,则下列结论正确的是()A.π6ϕ=B.()f x 在区间π,π2⎡⎤⎢⎥⎣⎦上单调递增C.若12,x x 为方程()2f x =的两个解,则21x x -的最小值为2πD.若关于x 的方程()f x a =在区间π0,4⎡⎤⎢⎥⎣⎦上有且仅有一个解,则a 的取值范围为{}2⎡⋃⎣【答案】AD【分析】由题意可得π26f ⎛⎫=± ⎪⎝⎭,代入解出即可得A ;借助整体思想与正弦函数的单调性可得B ;由题意可得21x x -的最小值为原函数的最小正周期,即可得C ;结合原函数在π0,4⎡⎤⎢⎥⎣⎦上的值域及其性质可得D.【详解】对A :由题得π26f ⎛⎫=± ⎪⎝⎭,所以()ππ2π62k k ϕ⨯+=+∈Z ,即()ππ6k k ϕ=+∈Z ,由π2ϕ<,所以π6ϕ=,故A 正确;对B :当π,π2x ⎡⎤∈⎢⎥⎣⎦时,7ππ13π2666x ≤+≤,所以()f x 在区间π,π2⎡⎤⎢⎥⎣⎦上不单调,故B 错误;对C :21x x -的最小值为最小正周期π,故C 错误;对D :当π0,4x ⎡⎤∈⎢⎣⎦时,ππ2π2663x ≤+≤,所以a 的取值范围为{}2⎡⋃⎣,故D 正确.11.已知函数()f x 的定义域为R ,设()()21g x f x =+-,若()g x 和()1f x '+均为奇函数,则()A.()21f =B.()f x 为奇函数C.()f x '的一个周期为4D.20241()2024k f k ==∑【答案】ACD【分析】对A :结合奇函数的性质,负值0x =代入计算即可得;对B :由()1f x '+为奇函数可得()1f x +为偶函数,再利用偶函数的性质结合A 中所得可得()()2f x f x +-=;对C :由B 中所得()()22f x f x ++=,即可得()()4f x f x =+,对其左右求导后结合周期性即可得;对D :由C 中所得可得()f x 的周期,结合赋值法计算出一个周期内的和即可得.【详解】对A :由()g x 为奇函数,可得()()21210f x f x +-+-+-=,即()()222f x f x ++-+=,令0x =,解得()21f =,故A 正确;对B :由()1f x '+为奇函数可得,则()1f x +为偶函数,所以1+=1−,所以()()2f x f x =-,又()()222f x f x -++=,所以()()22f x f x ++=,又()()2f x f x -=+,所以()()2f x f x +-=,故B 错误;对C :由()()22f x f x ++=可得,()()242f x f x +++=,所以()()4f x f x =+,求导可得,()()4f x f x ''=+,故'的一个周期为4,故C 正确;对D :由()()4f x f x =+,故()f x 的一个周期为4,因为()()222f x f x -++=,令1x =可得,()()132f f +=,令2x =可得,()()242f f +=,所以()()()()12344f f f f +++=,所以202412024()420244k f k ==⨯=∑,故D 正确.【点睛】结论点睛:解决抽象函数的求值、性质判断等问题,常见结论:(1)关于对称:若函数()f x 关于直线x a =轴对称,则()(2)f x f a x =-,若函数()f x 关于点(),a b 中心对称,则()2(2)f x b f a x =--,反之也成立;(2)关于周期:若()()f x a f x +=-,或1()()f x a f x +=,或1()()f x a f x +=-,可知函数()f x 的周期为2a .三、填空题:本题共3小题,每小题5分,共15分.12.将一个底面半径为()0r r >的圆柱形铁块熔铸成一个实心铁球,则该实心铁球的表面积与圆柱的侧面积之比为__________.【答案】2【分析】根据题意关系可得R r=,再结合侧面积公式运算求解即可.【详解】设球的半径为R ,由题意可知:234ππ3r R ⨯=⨯,解得R r =,223622R r ⎫===⎪⎭.13.设π02α<<,若π5tan tan 42αα⎛⎫+-= ⎪⎝⎭,则sin α=______.【答案】【分析】借助两角差的正切函数公式化简并计算可得tan 3α=,然后利用正切函数定义即可得解.【详解】π1tan 5tan tan tan 41tan 2ααααα-⎛⎫+-=+=⎪+⎝⎭,整理得()()tan 32tan 10αα-+=,因为π02α<<,所以tan 0α>,所以tan 3α=,则310sin 10α==.14.设,a b 是正实数,若椭圆221ax by +=与直线1x y +=交于点,A B ,点M 为AB 的中点,直线OM (O 为原点)的斜率为2,又OA OB ⊥,则椭圆的方程为__________.【答案】2242133x y +=【分析】联立直线与椭圆方程可得韦达定理,即可根据垂直关系的坐标运算以及两点斜率公式,即可求解4323a b ⎧=⎪⎪⎨⎪=⎪⎩,即可求解.【详解】由已知条件可知,,0,a b a b >≠,联立2211x y ax by +=⎧⎨+=⎩,消去y 并整理得:()2210a b x bx b +-+-=,设1,1,2,2,则1212Δ021b x x a b b x x a b ⎧⎪>⎪⎪+=⎨+⎪-⎪=⎪+⎩,则()()()1212121222111a y y x x a b a y y x x a b ⎧+=-+=⎪⎪+⎨-⎪=--=⎪+⎩,由OA OB ⊥,则0OA OB ⋅=,又因为2OM k =,所以1212121222220OM y y a k x x b a b x x y y a b +⎧⎪===⎪+⎪⎨⎪+-⎪+==⎪+⎩,解得4323a b ⎧=⎪⎪⎨⎪=⎪⎩.所以椭圆的方程为2242133x y +=.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.如图,在直三棱柱111ABC A B C -中,ACB ∠为直角,侧面11BCC B 为正方形,2BC =,C 1A =.(1)求证:1⊥BC 平面1AB C ;(2)求直线1AB 与平面1ABC 所成的角的正弦值.【分析】(1)结合题目条件,借助线面垂直的判定定理可得AC ⊥平面11BB C C ,即可得1AC BC ⊥,再利用线面垂直的判定定理可得证;(2)建立适当空间直角坐标系后,可计算出直线的方向向量与平面的法向量,借助向量夹角公式即可得两向量夹角余弦值,即可得直线1AB 与平面1ABC 所成的角的正弦值.【小问1详解】侧面11BCC B 为正方形,11BC B C ∴⊥,直三棱柱1111,ABC A B C AC CC -∴⊥,111,,,,AC CC AC BC BC CC C BC CC ⊥⊥⋂=⊂ 平面11BB C C ,AC ∴⊥平面11BB C C ,1BC ⊂ 平面11BB C C ,1AC BC ∴⊥1111,,,BC B C AC B C C AC B C ⊥=⊂ 平面1AB C1BC ∴⊥平面1AB C ;【小问2详解】建立如图所示的空间直角坐标系1C ABC -,则()()()()()110,0,0,1,0,0,0,2,0,0,2,2,0,0,2C A B B C .又由()()11,2,0,0,2,2AB BC =-=- ,设平面1ABC 的一个法向量为 =s s ,则有120220n AB x y n BC y z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令1y =,则2,1x z ==,于是()2,1,1n =,又由()1111,2,2,2,3,AB AB n AB n =-⋅=== 设直线1AB 与平面1ABC 所成的角为θ,所以1116sin cos ,9AB n AB n AB n θ⋅===⋅ ,故直线1AB 与平面1ABC 所成的角的正弦值为9.16.已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的图象的相邻两条对称轴之间的距离为π2,点π,03⎛⎫ ⎪⎝⎭为()f x 的图象的一个对称中心.(1)求()f x 的解析式;(2)将()f x 的图象向右平移π12个单位长度,得到函数()g x 的图象,若()g x 在区间[]0,m 上的最大值和最小值互为相反数,求m 的最小值.【分析】(1)根据周期求解2ω=,利用对称可得π3ϕ=,即可求解;(2)平移可得()πsin 26g x x ⎛⎫=+⎪⎝⎭,即可利用整体法,结合三角函数的性质即可求解.【小问1详解】设()f x 的最小正周期为T ,则ππ22T ω==,所以2ω=,因为()π2π3k k ϕ⨯+=∈Z ,所以()2ππ3k k ϕ=-∈Z ,因为0πϕ<<,所以π3ϕ=,所以()πsin 23f x x ⎛⎫=+ ⎪⎝⎭;【小问2详解】依题意,()ππππsin 2sin 2121236g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,因为0x m ≤≤,所以πππ22666x m ≤+≤+,当π6m <时,()g x 的最大值为()g m ,最小值为()102g =,不符题意;当π6m ≥时,()g x 的最大值为1,所以()g x 的最小值为1-,所以π3π262m +≥,解得2π3m ≥,所以m 的最小值为2π3.17.已知函数()f x 是()(0x g x a a =>且1)a ≠的反函数,且函数()()()()22F x f x f x f a =--.(1)若()()()41,6,3F f m g n =-==,求a 及3mn的值;(2)若函数()F x 在1,22⎡⎤⎢⎥⎣⎦上有最小值2-,最大值7,求a 的值.【分析】(1)由题意可得()log a f x x =,()()2log 2log 1a a F x x x =--,结合题意解得2a =,进而可得22log 6,log 3m n ==,结合换底公式运算求解;(2)换元令log a t x =,根据二次函数值域结合t 的值域特征分析可得[]2,2t ∈-,列式求解即可.【小问1详解】因为函数()f x 是()(0xg x a a =>且1)a ≠的反函数,则()log a f x x =,即()()2log 2log 1a a F x x x =--,则()()24log 42log 411a a F =--=-,解得log 42a =或log 40a =(舍),可得2a =,即()2log f x x =,()2x g x =,又因为()()26log 6,23nf mg n ====,即22log 6,log 3m n ==,所以232log 6log 6log 33336mn ===.【小问2详解】由(1)可知:()()2log 2log 1a a F x x x =--,且1,22x ⎡∈⎤⎢⎥⎣⎦,令log a t x =,则[]log 2,log 2,(01a a t a ∈-<<时)或[]log 2,log 2,(1a a t a ∈->时),可得221y t t =--,若函数在1,22⎡⎤⎢⎥⎣⎦上有最小值2-,最大值7,可知221y t t =--的最小值2-,最大值7,令2212y t t =--=-,解得1t =;令2217y t t =--=,解得2t =-或4t =;且log 2a 与log 2a -互为相反数,可知[]2,2t ∈-,则log 22a -=或log 22a =,解得22a =或a =,综上所述,a =或.18.在ABC V 中,已知)tan tan tan tan 1A B A B +=-.(1)求C ;(2)记G 为ABC V 的重心,过G 的直线分别交边,CA CB 于,M N 两点,设,CM CA CN CB λμ== .(i )求11λμ+的值;(ii )若CA CB =,求CMN 和ABC V 周长之比的最小值.【分析】(1)借助三角形内角关系及两角和的正切公式化简并计算即可得;(2)(i )设D 为AB 的中点,结合重心的性质及向量运算可得1133CG CM CN λμ=+ ,再利用三点共线定理即可得解;(ii )由题意可得ABC V 为等边三角形,可设其边长为1,则可用,λμ表示两三角形周长之比,结合(i )中所得与基本不等式即可得解.【小问1详解】由题可知()()tan tan tan tan πtan 1tan tan A B C A B A B A B+=--=-+=-=-又()0,πC ∈,所以π3C =;【小问2详解】(i )设D 为AB 的中点,则1122CD CA CB =+ ,又因为23CG CD = ,所以11113333CG CA CB CM CN λμ=+=+ ,因为,,M G N 三点共线,所以11133λμ+=,所以113λμ+=;(ii )由CA CB =,π3C =,可得ABC V 为等边三角形,设ABC V 的边长为1,CMN 与ABC V 周长分别为12,C C ,则23C =,MN =,所以1C λμ=++,所以12C C =由113λμ+=可得,3λμλμ=+≥(当且仅当λμ=时等号成立),解得49λμ≥,所以124293C C λμ=++,所以CMN 和ABC V 的周长之比的最小值为23.19.已知函数()()ln f x x x a =+.(1)当0a =时,求()f x 的极值;(2)若()f x 存在两个极值点()1212,x x x x <.(i )求a 的取值范围;(ii )证明:()1240ef x -<<.【分析】(1)求导,利用导数求()f x 的单调性和极值;(2)(i )求导可得()()()1ln f x x a x a x x a ⎡⎤=+++⎣⎦+',构建()()()ln g x x a x a x =+++,由题意可知()g x 在(),a -+∞内有两个变号零点,结合导数分析函数零点即可得结果;(ⅱ)由(i )可知,121e a x a -<<-,且()()()2111ln f x x a x a =-++,构建()221ln 0e h x x x x ⎛⎫=-<< ⎪⎝⎭,利用导数求最值即可.【小问1详解】当0a =时,()ln f x x x =,可知()f x 的定义域为()0,∞+,且()1ln f x x ='+,当10,e ⎛⎫∈ ⎪⎝⎭x 时,()0f x '<;当1,e x ⎛⎫∈+∞ ⎪⎝⎭时,当()0f x '>;可知()f x 在10,e ⎛⎫ ⎪⎝⎭内单调递减,()f x 在1,e ⎛⎫+∞ ⎪⎝⎭内单调递增,所以()f x 的极小值为11e ef ⎛⎫=-⎪⎝⎭,无极大值.【小问2详解】(i )由题意可得:()f x 的定义域为(),a -+∞,且()()()()1ln ln x f x x a x a x a x x a x a⎡⎤=++=+++⎣⎦++',设()()()ln g x x a x a x =+++,可知()g x 在(),a -+∞内有两个变号零点,则()()2ln g x x a =++',当21,e x a a ⎛⎫∈-- ⎪⎝⎭,()0g x '<;当21,e x a ∞⎛⎫∈-+ ⎪⎝⎭时,()0g x '>;可知()g x 在21,e a a ⎛⎫-- ⎪⎝⎭内单调递减,在21,e a ∞⎛⎫-+ ⎪⎝⎭内单调递增,则()g x 的最小值为2211e e g a a ⎛⎫-=-- ⎪⎝⎭,且当x 趋近于+∞时,()g x 趋近于+∞,当21,e x a a ⎛⎫∈-- ⎪⎝⎭时,则()0,ln 0x a x a +>+<,可得()()ln 0x a x a ++<,可得()()()ln g x x a x a x x a =+++<<-,即当x 趋近于a -时,()g x 趋近于a -,可得210e 0a a ⎧--<⎪⎨⎪->⎩,解得210e a -<<,所以实数a 的取值范围为21,0e ⎛⎫- ⎪⎝⎭;(ii )由(i )可知,121ea x a -<<-,且()()111ln 0x a x a x +++=,所以()()()()211111ln ln f x x x a x a x a =+=-++,设()221ln 0e h x x x x ⎛⎫=-<< ⎪⎝⎭,则()()ln 2ln h x x x =-+',因为210,e x ⎛⎫∈ ⎪⎝⎭,则()0h x '<,可知210,e ⎛⎫ ⎪⎝⎭内单调递减,且2214e e h ⎛⎫=- ⎪⎝⎭,可得()240e h x -<<,所以()1240e f x -<<.【点睛】方法点睛:对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域;(2)求导数,得单调区间和极值点;(3)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解。

2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]

2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]

2024~2025学年高三第一次联考(月考)试卷数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:集合、常用逻辑用语、不等式、函数、导数及其应用.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合的真子集的个数为(){}4,3,2,0,2,3,4A =---{}2290B x x =-≤A B ⋂A.7B.8C.31D.322.已知,,则“,”是“”的( )0x >0y >4x ≥6y ≥24xy ≥A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件3.国家速滑馆又称“冰丝带”,是北京冬奥会的标志性场馆,拥有亚洲最大的全冰面设计,但整个系统的碳排放接近于零,做到了真正的智慧场馆、绿色场馆,并且为了倡导绿色可循环的理念,场馆还配备了先进的污水、雨水过滤系统,已知过滤过程中废水的污染物数量与时间(小时)的关系为()mg /L N t (为最初污染物数量,且).如果前4个小时消除了的污染物,那么污染物消0e kt N N -=0N 00N >20%除至最初的还需要( )64%A.3.8小时 B.4小时C.4.4小时D.5小时4.若函数的值域为,则的取值范围是()()()2ln 22f x x mx m =-++R m A.B.()1,2-[]1,2-C.D.()(),12,-∞-⋃+∞(][),12,-∞-⋃+∞5.已知点在幂函数的图象上,设,(),27m ()()2n f x m x =-(4log a f =,,则,,的大小关系为( )()ln 3b f =123c f -⎛⎫= ⎪⎝⎭a b c A.B.c a b <<b a c<<C. D.a c b <<a b c<<6.已知函数若关于的不等式的解集为,则的()()2e ,0,44,0,x ax xf x x a x a x ⎧->⎪=⎨-+-+≤⎪⎩x ()0f x ≥[)4,-+∞a 取值范围为( )A.B. C. D.(2,e ⎤-∞⎦(],e -∞20,e ⎡⎤⎣⎦[]0,e 7.已知函数,的零点分别为,,则( )()41log 4xf x x ⎛⎫=- ⎪⎝⎭()141log 4xg x x ⎛⎫=- ⎪⎝⎭a b A. B.01ab <<1ab =C.D.12ab <<2ab ≥8.已知,,,且,则的最小值为( )0a >0b >0c >30a b c +-≥6b a a b c ++A. B. C. D.29495989二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是( )A.函数是相同的函数()f x =()g x =B.函数6()f x =C.若函数在定义域上为奇函数,则()313xx k f x k -=+⋅1k =D.已知函数的定义域为,则函数的定义域为()21f x +[]1,1-()f x []1,3-10.若,且,则下列说法正确的是()0a b <<0a b +>A. B.1a b >-110a b+>C. D.22a b <()()110a b --<11.已知函数,则下列说法正确的是( )()()3233f x x x a x b=-+--A.若在上单调递增,则的取值范围是()f x ()0,+∞a (),0-∞B.点为曲线的对称中心()()1,1f ()y f x =C.若过点可作出曲线的三条切线,则的取值范围是()2,m ()()3y f x a x b =+-+m ()5,4--D.若存在极值点,且,其中,则()f x 0x ()()01f x f x =01x x ≠1023x x +=三、填空题:本题共3小题,每小题5分,共15分.12.__________.22lg 2lg3381527log 5log 210--+⋅+=13.已知函数称为高斯函数,表示不超过的最大整数,如,,则不等式[]y x =x []3.43=[]1.62-=-的解集为__________;当时,的最大值为__________.[][]06x x <-0x >[][]29x x +14.设函数,若,则的最小值为__________.()()()ln ln f x x a x b =++()0f x ≥ab 四、解答题:本题共5小题、共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知全集,集合,.U =R {}231030A x x x =-+≤{}220B x xa =+<(1)若,求和;8a =-A B ⋂A B ⋃(2)若,求的取值范围.()UA B B ⋂= a 16.(本小题满分15分)已知关于的不等式的解集为.x 2280ax x --<{}2x x b-<<(1)求,的值;a b (2)若,,且,求的最小值.0x >2y >-42a bx y +=+2x y +17.(本小题满分15分)已知函数.()()()211e 2x f x x ax a =--∈R (1)讨论的单调性;()f x (2)若对任意的恒成立,求的取值范围.()e x f x x ≥-[)0,x ∈+∞a 18.(本小题满分17分)已知函数是定义在上的奇函数.()22x xf x a -=⋅-R(1)求的值,并证明:在上单调递增;a ()f x R (2)求不等式的解集;()()23540f x x f x -+->(3)若在区间上的最小值为,求的值.()()442x x g x mf x -=+-[)1,-+∞2-m 19.(本小题满分17分)已知函数.()()214ln 32f x x a x x a =---∈R (1)若,求的图像在处的切线方程;1a =()f x 1x =(2)若恰有两个极值点,.()f x 1x ()212x x x <(i )求的取值范围;a (ii )证明:.()()124ln f x f x a+<-数学一参考答案、提示及评分细则1.A 由题意知,又,所以{}2290B x x ⎡=-=⎢⎣∣ {}4,3,2,0,2,3,4A =---,所以的元素个数为3,真子集的个数为.故选.{}2,0,2A B ⋂=-A B ⋂3217-=A 2.A 若,则,所以“”是“”的充分条件;若,满足4,6x y 24xy 4,6x y 24xy 1,25x y ==,但是,所以“”不是“”的必要条件,所以“”是24xy 4x <4,6x y 24xy 4,6x y “”的充分不必要条件.故选A.24xy 3.B 由题意可得,解得,令,可得4004e 5N N -=44e 5k -=20004e 0.645t N N N -⎛⎫== ⎪⎝⎭,解得,所以污染物消除至最初的还需要4小时.故选B.()248e e ek kk---==8t =64%4.D 依题意,函数的值域为,所以,解得()()2ln 22f x x mx m =-++R ()2Δ(2)420m m =--+ 或,即的取值范围是.故选D.2m 1m - m ][(),12,∞∞--⋃+5.C 因为是軍函数,所以,解得,又点在函数的图()()2nf x m x =-21m -=3m =()3,27()n f x x =象上,所以,解得,所以,易得函数在上单调递增,又273n=3n =()3f x x =()f x (),∞∞-+,所以.故选C.1241ln3lne 133log 2log 2->==>=>=>a c b <<6.D 由题意知,当时,;当时,;当时,(),4x ∞∈--()0f x <[]4,0x ∈-()0f x ()0,x ∞∈+.当时,,结合图象知;当时,,当()0f x 0x ()()()4f x x x a =-+-0a 0x >()e 0x f x ax =- 时,显然成立;当时,,令,所以,令,解0a =0a >1e x x a (),0e x x g x x =>()1e xxg x -='()0g x '>得,令0,解得,所以在上单调递增,在上单调递减,所以01x <<()g x '<1x >()g x ()0,1()1,∞+,所以,解得综上,的取值范围为.故选D.()max 1()1e g x g ==11e a0e a < a []0,e 7.A 依题意得,即两式相减得4141log ,41log ,4a b a b ⎧⎛⎫=⎪ ⎪⎝⎭⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩441log ,41log ,4a ba b ⎧⎛⎫=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-= ⎪⎪⎝⎭⎩.在同一直角坐标系中作出的图()44411log log log 44a ba b ab ⎛⎫⎛⎫+==- ⎪ ⎪⎝⎭⎝⎭4141log ,log ,4xy x y x y ⎛⎫=== ⎪⎝⎭象,如图所示:由图象可知,所以,即,所以.故选A.a b >1144ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭()4log 0ab <01ab <<8.C 因为,所以,所以30a b c +- 30a b c +> 11911121519966399939911b a b a b b b b a b c a b a b a a a a ⎛⎫++=+=++--=-= ⎪+++⎝⎭++ ,当且仅当,即时等号成立,所以的最小值为.故选C.1911991b b a a ⎛⎫+= ⎪⎝⎭+29b a =6b aa b c ++599.AD 由解得,所以,由,解得10,10x x +⎧⎨-⎩ 11x - ()f x =[]1,1-210x -,所以的定义域为,又,故函数11x - ()g x =[]1,1-()()f x g x ===与是相同的函数,故A 正确;,()f x ()g x ()6f x ==当且仅当方程无解,等号不成立,故B 错误;函数=2169x +=在定义域上为奇函数,则,即,即()313x x k f x k -=+⋅()()f x f x -=-331313x xx x k k k k ----=-+⋅+⋅,即,整理得,即,()()33313313x x xxxxk k k k ----=-+⋅+⋅313313x x x x k kk k ⋅--=++⋅22919x x k k ⋅-=-()()21910x k -+=所以,解得.当时,,该函数定义域为,满足,210k -=1k =±1k =()1313xx f x -=+R ()()f x f x -=-符合题意;当时,,由可得,此时函数定义域为1k =-()13311331x x xxf x --+==--310x -≠0x ≠,满足,符合题意.综上,,故C 错误;由,得{}0x x ≠∣()()f x f x -=-1k =±[]1,1x ∈-,所以的定义域为,故D 正确.故选AD.[]211,3x +∈-()f x []1,3-10.AC 因为,且,所以,所以,即,故A 正确;0a b <<0a b +>0b a >->01a b <-<10ab -<<因为,所以,故В错误;因为,所以,0,0b a a b >->+>110a ba b ab ++=<0a b <<,a a b b =-=由可得,所以,故C 正确;因为当,此时,故0a b +>b a >22a b <11,32a b =-=()()110a b -->D 错误.故选AC.11.BCD 若在上单调递增,则在上佰成立,所以()f x ()0,∞+()23630f x x x a '=-+- ()0,x ∞∈+,解得,即的取值范围是,故A 错误;因为()min ()13630f x f a '==--'+ 0a a (],0∞-,所以,又()()32333(1)1f x x x a x b x ax b =-+--=---+()11f a b =--+,所以点()()()332(21)21(1)1222f x f x x a x b x ax b a b -+=-----++---+=--+为曲线的对称中心,故B 正确;由题意知,所以()()1,1f ()y f x =()()3233y f x a x b xx =+-+=-,设切点为,所以切线的斜率,所以切线的方程为236y x x =-'()32000,3x x x -20036k x x =-,所以,整理得()()()3220000336y x x x x x x --=--()()()322000003362m xx x x x --=--.记,所以3200029120x x x m -++=()322912h x x x x m =-++()26h x x '=-,令,解得或,当时,取得极大值,当时,1812x +()0h x '=1x =2x =1x =()h x ()15h m =+2x =取得极小值,因为过点可作出曲线的三条切线,所以()h x ()24h m=+()2,m ()()3y f x a x b =+-+解得,即的取值范围是,故C 正确;由题意知()()150,240,h m h m ⎧=+>⎪⎨=+<⎪⎩54m -<<-m ()5,4--,当在上单调递增,不符合题意;当,()223633(1)f x x x a x a =-+-=--'()0,a f x (),∞∞-+0a >令,解得,令,解得在()0f x '>1x <-1x >+()0f x '<11x -<<+()f x 上单调递增,在上单调递堿,在上单调递增,因为,1∞⎛- ⎝1⎛+ ⎝1∞⎛⎫+ ⎪ ⎪⎝⎭存在极值点,所以.由,得,令,所以,()f x 0x 0a >()00f x '=()2031x a-=102x x t+=102x t x =-又,所以,又,()()01f x f x =()()002f x f t x =-()()32333(1)1f x x x a x b x ax b =-+--=---+所以,又,所以()()()330000112121x ax b t x a t x b ---+=-----+()2031x a-=,化简得()()()()()()()322320000000013112121312x x x b x x b t x x t x b----=----=------,又,所以,故D 正确.故选BCD.()()20330t x t --=010,30x x x t ≠-≠103,23t x x =+=12. 由题意知10932232862log 184163381255127log 5log 210log 5log 121027---⎛⎫+⋅+=+⋅-+ ⎪⎝⎭62511411410log 5log 2109339339=-⋅+=-+=13.(2分)(3分) 因为,所以,解得,又函数[)1,616[][]06x x <-[][]()60x x -<[]06x <<称为高斯函数,表示不超过的最大整数,所以,即不等式的解集为.当[]y x =x 16x < [][]06x x <-[)1,6时,,此时;当时,,此时01x <<[]0x =[]2[]9x x =+1x []1x ,当且仅当3时等号成立.综上可得,当时,的[][][]2119[]96x x x x ==++[]x =0x >[]2[]9x x +最大值为.1614. 由题意可知:的定义域为,令,解得令,解21e -()f x (),b ∞-+ln 0x a +=ln ;x a =-()ln 0x b +=得.若,当时,可知,此时,不合题1x b =-ln a b -- (),1x b b ∈--()ln 0,ln 0x a x b +>+<()0f x <意;若,当时,可知,此时,不合ln 1b a b -<-<-()ln ,1x a b ∈--()ln 0,ln 0x a x b +>+<()0f x <题意;若,当时,可知,此时;当ln 1a b -=-(),1x b b ∈--()ln 0,ln 0x a x b +<+<()0f x >时,可知,此时,可知若,符合题意;若[)1,x b ∞∈-+()ln 0,ln 0x a x b ++ ()0f x ln 1a b -=-,当时,可知,此时,不合题意.综上所ln 1a b ->-()1,ln x b a ∈--()ln 0,ln 0x a x b +<+>()0f x <述:,即.所以,令,所以ln 1a b -=-ln 1b a =+()ln 1ab a a =+()()ln 1h x x x =+,令,然得,令,解得,所以在()ln 11ln 2h x x x '=++=+()0h x '<210e x <<()0h x '>21e x >()h x 上单调递堿,在上单调递增,所以,所以的最小值为.210,e ⎛⎫ ⎪⎝⎭21,e ∞⎛⎫+ ⎪⎝⎭min 2211()e e h x h ⎛⎫==- ⎪⎝⎭ab 21e -15.解:(1)由题意知,{}2131030,33A x x x ⎡⎤=-+=⎢⎥⎣⎦∣ 若,则,8a =-{}()22802,2B x x =-<=-∣所以.(]1,2,2,33A B A B ⎡⎫⋂=⋃=-⎪⎢⎣⎭(2)因为,所以,()UA B B ⋂= ()UB A ⊆ 当时,此时,符合题意;B =∅0a 当时,此时,所以,B ≠∅0a <{}220Bx x a ⎛=+<= ⎝∣又,U A ()1,3,3∞∞⎛⎫=-⋃+ ⎪⎝⎭13解得.209a -< 综上,的取值范围是.a 2,9∞⎡⎫-+⎪⎢⎣⎭16.解:(1)因为关于的不等式的解集为,x 2280ax x --<{2}xx b -<<∣所以和是关于的方程的两个实数根,且,所以2-b x 2280ax x --=0a >22,82,b a b a⎧=-⎪⎪⎨⎪-=-⎪⎩解得.1,4a b ==(2)由(1)知,所以1442x y +=+()()()221141422242241844242y xx y x y x y x y y x ⎡⎤+⎛⎫⎡⎤+=++-=+++-=+++-⎢⎥ ⎪⎣⎦++⎝⎭⎣⎦,179444⎡⎢+-=⎢⎣ 当且仅当,即时等号成立,所以.()2242y x y x +=+x y ==2x y +74-17.解:(1)由题意知,()()e e x x f x x ax x a=-=-'若,令.解得,令,解得,所以在上单调递琙,在0a ()0f x '<0x <()0f x '>0x >()f x (),0∞-上单调递增.()0,∞+若,当,即时,,所以在上单调递增;0a >ln 0a =1a =()0f x ' ()f x (),∞∞-+当,即时,令,解得或,令,解得,ln 0a >1a >()0f x '>0x <ln x a >()0f x '<0ln x a <<所以在上单调递增,在上单调递减,在上单调递增;()f x (),0∞-()0,ln a ()ln ,a ∞+当,即时,令,解得或,令,解得,ln 0a <01a <<()0f x '>ln x a <0x >()0f x '<ln 0a x <<所以在上单调递增,在上单调递减,在上单调递增.()f x (),ln a ∞-()ln ,0a ()0,∞+综上,当时,在上单调递减,在上单调递增;当时,在0a ()f x (),0∞-()0,∞+01a <<()f x 上单调递增,在上单调递减,在上单调递增当时,在上(,ln )a ∞-()ln ,0a ()0,∞+1a =()f x (),∞∞-+单调递增;当时,在上单调递增,在上单调递减,在上单调递增.1a >()f x (),0∞-()0,ln a ()ln ,a ∞+(2)若对任意的恒成立,即对任意的恒成立,()e xf x x - [)0,x ∞∈+21e 02xx ax x -- [)0,x ∞∈+即对任意的恒成立.1e 102x ax -- [)0,x ∞∈+令,所以,所以在上单调递增,当()1e 12x g x ax =--()1e 2x g x a=-'()g x '[)0,∞+,即时,,所以在上单调递增,所以()10102g a =-' 2a ()()00g x g '' ()g x [)0,∞+,符合题意;()()00g x g = 当,即时,令,解得,令,解得,所()10102g a =-<'2a >()0g x '>ln 2a x >()0g x '<0ln 2a x < 以在上单调递减,()g x 0,ln 2a ⎡⎫⎪⎢⎣⎭所以当时,,不符合题意.0,ln 2a x ⎛⎫∈ ⎪⎝⎭()()00g x g <=综上,的取值范围是.a (],2∞-18.(1)证明:因为是定义在上的奇函数,所以,()f x R ()010f a =-=解得,所以,1a =()22x xf x -=-此时,满足题意,所以.()()22x x f x f x --=-=-1a =任取,所以12x x <,()()()()211122121211122222122222222122x x x x x x x x x x x x f x f x x x --⎛⎫--=---=--=-+ ⎪++⎝⎭又,所以,即,又,12x x <1222x x <12220x x -<121102x x ++>所以,即,所以在上单调递增.()()120f x f x -<()()12f x f x <()f x R (2)解:因为,所以,()()23540f x x f x -+->()()2354f x x f x ->--又是定义在上的奇函数,所以,()f x R ()()2354f x x f x ->-+又在上单调递增,所以,()f x R 2354x x x ->-+解得或,即不等式的解集为.2x >23x <-()()23540f x x f x -+->()2,2,3∞∞⎛⎫--⋃+ ⎪⎝⎭(3)解:由题意知,令,()()()44244222xxxxxxg x mf x m ---=+-=+--322,,2x x t t ∞-⎡⎫=-∈-+⎪⎢⎣⎭所以,所以.()2222442x xxxt --=-=+-()2322,,2y g x t mt t ∞⎡⎫==-+∈-+⎪⎢⎣⎭当时,在上单调递增,所以32m -222y t mt =-+3,2∞⎡⎫-+⎪⎢⎣⎭,解得,符合题意;2min317()323224g x m m ⎛⎫=-++=+=- ⎪⎝⎭2512m =-当时,在上单调递减,在上单调递增,32m >-222y t mt =-+3,2m ⎛⎫- ⎪⎝⎭(),m ∞+所以,解得或(舍).222min ()2222g x m m m =-+=-=-2m =2m =-综上,的值为或2.m 2512-19.(1)解:若,则,所以,1a =()214ln 32f x x x x =---()14f x x x =--'所以,又,()14112f =--='()1114322f =--=所以的图象在处的切线方程为,即.()f x 1x =()1212y x -=-4230x y --=(2)(i )解:由题意知,()22444a x a x x x af x x x x x '---+=--==-又函数恰有两个极值点,所以在上有两个不等实根,()f x ()1212,x x x x <240x x a -+=()0,∞+令,所以()24h x x x a =-+()()00,240,h a h a ⎧=>⎪⎨=-<⎪⎩解得,即的取值范围是.04a <<a ()0,4(ii )证明:由(i )知,,且,12124,x x x x a +==04a <<所以()()2212111222114ln 34ln 322f x f x x a x x x a x x ⎛⎫⎛⎫+=---+--- ⎪ ⎪⎝⎭⎝⎭()()()2212121214ln ln 62x x a x x x x =+-+-+-,()()()21212121214ln 262x x a x x x x x x ⎡⎤=+--+--⎣⎦()116ln 1626ln 22a a a a a a =----=-+要证,即证,只需证.()()124ln f x f x a+<-ln 24ln a a a a -+<-()1ln 20a a a -+-<令,所以,()()()1ln 2,0,4m a a a a a =-+-∈()11ln 1ln a m a a a a a -=-++=-'令,所以,所以即在上单调递减,()()h a m a ='()2110h a a a =--<'()h a ()m a '()0,4又,所以,使得,即,()()1110,2ln202m m '-'=>=<()01,2a ∃∈()00m a '=001ln a a =所以当时,,当时,,所以在上单调递增,在()00,a a ∈()0m a '>()0,4a a ∈()0m a '<()m a ()00,a 上单调递减,所以.()0,4a ()()()max 00000000011()1ln 2123m a m a a a a a a a a a ==-+-=-+-=+-令,所以,所以在上单调递增,所以()()13,1,2u x x x x =+-∈()2110u x x =->'()u x ()1,2,所以,即,得证.()000111323022u a a a =+-<+-=-<()0m a <()()124ln f x f x a +<-。

四川省成都列五中学2024-2025学年高三上学期9月月考数学试题含答案

四川省成都列五中学2024-2025学年高三上学期9月月考数学试题含答案

合题目要求.全选对的得 6 分,部分选对的得部分分,有选错的得 0 分.
9. 在下列函数中,既是偶函数又在 0,1 上单调递增的函数有( )
A. y cosx
B. y sinx
C. y 2 x
D. y x3
10. 已知函数 f x xlnx
A. 0.38
B. 0.24
C. 0.14
D. 0.5
【答案】A
【解析】
【分析】根据相互独立事件的概率乘法公式即可求解.
【详解】甲、乙两人恰好有一人投中的概率为 0.7 1 0.8 0.8 1 0.7 0.38 ,
故选:A
6. 函数 y 3x2 ax1 在区间 1, 2 上单调递增,则实数 a 的取值范围是( )
A. C160
B. C160 26
C. C150
D. C150 25
【答案】C 【解析】
【分析】根据第 6 项的二项式系数即可求解.
【详解】 x 2 10 展开式中第 6 项的二项式系数是 C150 ,
故选:C.
4.
已知函数
f
(x) 是定义在 [0, ) 上的增函数,则满足
f
(2x 1)
A. a 2
【答案】A 【解析】
B. a 4
C. a 2
D. a 4
【分析】根据复合函数单调性的性质,结合指数函数和二次函数的单调性进行求解即可.
【详解】因为函数 y 3x 是实数集上的增函数, y 3x2 ax1 在区间 1, 2 上单调递增,
所以函数 y x2 ax 1 在区间 1, 2 上单调递增,
为所有解 xn 中的最小值,因为1 2 3 2 3 22 312 ,所以 Q1 2,1 ;因为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年高三理科第一次月考数学试题(九月)
1、已知集合A ={x ∈R|3x +2>0},B ={x ∈R|(x +1)(x -3)>0},则A ∩B =( )
A .(-∞,-1)
B .(-1,-2
3)
C .(-2
3
,3)
D .(3,+∞)
2、 i 是虚数单位,复数1-3i
1-i
=( )
A .2+i
B .2-i
C .-1+2i
D .-1-2i
3、已知等差数列{a n }的前n 项和为S n ,若a 4=18-a 5,则S 8等于
( )
A .18
B .36
C .54
D .72
4、命题“若p 则q ”的逆否命题是( )
A .若q 则p
B .若⌝p 则⌝q
C .若⌝q 则⌝p
D .若p 则⌝q
5、若向量)2,1(=,)4,3(=,则等于( )
A .(4,6)
B .(-4,-6)
C .(-2,-2)
D .(2,2)
6、复数
i
i
212-+的共轭复数是( ) A. i 5
3
- B. i 53 C. i - D.
i
7、已知集合{}
R x x x A ∈≤=,2|,{}
Z x x x B ∈≤=,4|
,则=⋂B A ( )
A .)2,0(
B .[]2,0
C .{}2,0
D .{}2,1,0
8、等比数列{}n a 的前n 项和为n S ,已知12310a a S +=,95=a ,则1a 等于( ) A .
31 B .31- C .91 D .9
1
-
9、已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是( )
A .x =-1
2 B .x =-1 C .x =5
D .x =0
10、已知b a ,是实数,则“0>a 且0>b ”是“0>+b a 且0>ab ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件
11、在直角△ABC 中,∠C=90°,AC=4,则⋅等于( ) A .-16 B .-8 C .8 D .16
12、已知数列{}n a 中,5
4
1=
a ,⎪⎪⎩
⎪⎪⎨⎧
≤<-≤≤=+1
21,12210,21n n n n n a a a a a ,则2012a 等于( ) A .
54 B .53 C .52 D .51
二、填空题
13、设集合A ={0,a },集合B ={a 2,-a 3,a 2-1}且A ⊆B ,则a 的值是________.
14、已知向量a ,b 夹角为45
1=
,102=-a
_______=
15、数列{}n a 的前n 项和为2n S n =,则8a =
16、命题“对任何342,>-+-∈x x R x ,”的否定是
三、解答题
17、设A ={x |2x 2-px +q =0},B ={x |6x 2+(p +2)x +5+q =0},若A ∩B ={12},
求A ∪B .
18、等比数列{}n a 的各项均为正数,且13221=+a a ,622
39a a a =。

(1)求数列{}n a 的通项公式 (2)求数列{}n na 的前n 项和
19、当m 实数为何值时,i m m m m m Z )65(3
6
22++++--=
(1)为实数(2)为纯虚数
(3)复数Z 对应的点在复平面的第二象限内
20、已知)4,3(),1,3(),4,2(----C B A ,若c CA b BC a AB ===,,
(1)求c b a 33-+
(2)求满足n m +=的实数m ,n
(3)若3=,2-=,求M ,N 的坐标
21、已知向量)2,(n n a =,向量),2(11++-=n n a ,*
N n ∈,向量与垂直,且11=a (1)求数列{}n a 的通项公式
(2)若数列{}n b 满足1log 2+=n n a b ,求数列{}n n b a 的前n 项和n S。

相关文档
最新文档